

CHEMISTRY

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which **ONLY ONE** is correct.

Choose the correct answer :

- 1. Maximum no. of e^- in n = 4 shell
 - (1) 72
 - (2) 50
 - (3) 16
 - (4) 32

Answer (4)

Sol. Maximum number of $e^- = 2n^2$

 $= 2(4)^2$

= 32

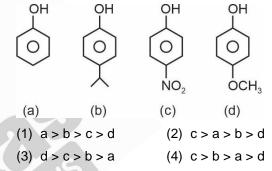
- BOD value of a water sample is 3 ppm. Select the correct option about the given sample of water.
 - (1) It is highly polluted water
 - (2) It is clean water
 - (3) Concentration of oxygen in the given sample is very less
 - (4) None of these

Answer (2)

- **Sol.** The given sample of water is clean water as BOD value of clean water ranges between 3 to 5.
- 3. Which of the following chloride is more soluble in organic solvent?
 - (1) Be
 - (2) K
 - (3) Ca
 - (4) Mg

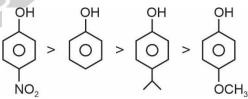
Answer (1)

Sol. Out of the given elements, the chlorides of K and Ca are largely ionic. So, they will be more soluble in water and less soluble in organic solvents. BeCl₂ has higher covalent character than MgCl₂. Therefore, BeCl₂ is more soluble in organic solvents than MgCl₂.

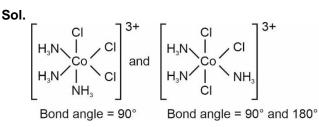

- The correct order of bond strength H₂O, H₂S, H₂Se, H₂Te
 - (1) $H_2O > H_2S > H_2Se > H_2Te$
 - (2) $H_2S > H_2O > H_2Se > H_2Te$
 - (3) $H_2Te > H_2Se > H_2S > H_2O$
 - (4) $H_2Te > H_2S > H_2O > H_2Se$

Answer (1)

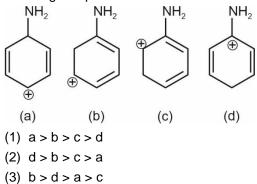
Sol. The correct order of bond strength is


 $H_2O > H_2S > H_2Se > H_2Te$

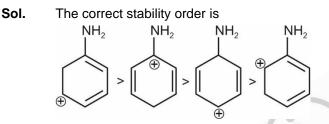
5. The correct order of acidic strength of the following compounds is


Answer (2)

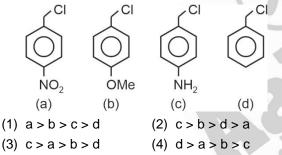
Sol. The correct acidic order is


- 6. What is CI Co CI bond angle in $[Co(NH_3)_3CI_3]$?
 - (1) 120° and 90°
 - (2) 90° and 180°
 - (3) 90°
 - (4) 180°

Answer (2)

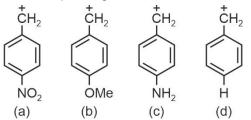


7. The correct decreasing order of stability of the following compounds is



(4) b > a > d > c

Answer (3)



8. Which of the following is correct order of S_N1 reaction?

Answer (2)

Sol. The reactivity order of the given aralkyl halides towards S_N1 reaction will be decided by the stability of their corresponding carbocations.

The benzyl carbocation is stabilised by resonance. The presence of $-NH_2$ group at the p-position promotes the resonance stabilisation due to +R effect. The -OMe group also promotes but to a lesser extent due to higher electronegativity of O-atom than N-atom. The $-NO_2$ group opposes the resonance stabilisation due to its -R effect.

 \therefore The correct order is c > b > d > a.

- JEE (Main)-2023 : Phase-1 (30-01-2023)- Evening
- Lead storage battery have 38% (w/w) H₂SO₄. Find the temperature at which the liquid of battery will freeze

(i = 2.67); k_f of water = 1.86
$$\frac{K \cdot kg}{mole}$$

- (3) -0.31°C
- (4) -0.031°C

Answer (2)

Sol. $\Delta T_f = ik_f \cdot m$

$$= (2.67)(1.86)(m)$$

$$m = \frac{38(1000)}{(98)(62)} = 6.25$$

$$\Delta T_{f} = (2.67)(1.86)(6.25)$$
$$= 31.06^{\circ}C$$

Freezing point = -31.06°C

 KMnO₄ oxidises I⁻ in acidic & neutral medium in which form – respectively.

(1)
$$IO_3^-, IO^-$$

(2) IO_3^-, IO_3^-
(3) IO_3^-, I_3^-
(4) $I_{23}IO_3^-$

Answer (4)

- **Sol.** : I^{\ominus} converts to I_2 in acidic medium and converts to IO_3^{\ominus} in neutral medium.
- 11. Which of the following equation is correct?
 - (1) $\text{LiNO}_3 \rightarrow \text{Li} + \text{NO}_2 + \text{O}_2$
 - (2) $\text{LiNO}_3 \rightarrow \text{LiNO}_2 + \text{O}_2$

(3)
$$\text{LiNO}_3 \rightarrow \text{Li}_2\text{O} + \text{NO}_2 + \text{O}_2$$

(4) $\text{LiNO}_3 \rightarrow \text{Li}_2\text{O} + \text{N}_2\text{O}_4 + \text{O}_2$

Answer (3)

Sol.
$$2\text{LiNO}_3 \xrightarrow{\Lambda} \text{Li}_2\text{O} + 2\text{NO}_2 + \frac{1}{2}\text{O}_2$$

JEE (Main)-2023 : Phase-1 (30-01-2023)-Evening

- 12. The option containing correct match is
 - (List-I) (List-II)
 - A. Ni(CO)₄ (i) sp^3
 - B. [Ni(CN)₄]²⁻ (ii) sp³d²
 - C. $[Cu(H_2O)_6]^{+2}$ (iii) d^2sp^3
 - D. $[Fe(CN)_6]^{4-}$ (iv) dsp^2
 - (1) A(i), B(iv), C(ii), D(iii)
 - (2) A(iii), B(ii), C(iv), D(i)
 - (3) A(ii), B(iii), C(iv), D(i)
 - (4) A(iv), B(ii), C(i), D(iii)

Answer (1)

- **Sol.** Ni(CO)₄ \rightarrow sp³
 - $[Ni(CN)_4]^{2-} \rightarrow dsp^2$

 $\left[\operatorname{Cu}(\operatorname{H}_2\operatorname{O})_6\right]^{+2} \rightarrow sp^3d^2$

- $\left[\operatorname{Fe}(\operatorname{CN})_{6}\right]^{4-} \rightarrow d^{2}sp^{3}$
- 13. Statement 1:– Antihistamine prevents the secretion of acid in stomach
 - Statement 2: Antiallergic and antacid work on same receptors
 - (1) 1 is correct, 2 is incorrect
 - (2) Both are correct
 - (3) 1 is incorrect, 2 is correct
 - (4) Both are incorrect

Answer (4)

- **Sol.** Antihistamines do not affect the secretion of acid in stomach. Antiallergic and antacid drugs work on different receptors. Therefore, both the statements are incorrect.
- 14. **Statement-1:** During hall-heroult process mixing of CaF₂ and Na₃AlF₆ decreases the M.P. of Al₂O₃.

Statement-2: During electrolytic refining Anode is pure and cathode is impure.

- (1) Both are correct
- (2) Statement-1 is correct, statement-2 is incorrect
- (3) Both are incorrect
- (4) Statement-1 is incorrect, statement-2 is correct

Answer (2)

Sol. Mixture of CaF₂ and Na₃AlF₆ decreases the melting point of Al₂O₃.

- 15. Nessler's reagent is
 - (1) K₂[Hgl₄]
 - (2) K₃[Hgl₄]
 - (3) Hg₂I₂
 - (4) Hgl₂

Answer (1)

- Sol. Nessler's reagent is K2[Hgl4]
- Boric acid is present in solid state while BF₃ is a gas at room temperature because
 - (1) Hydrogen bonding is present in boric acid
 - (2) Boric acid has more molar mass as compared to BF_3
 - (3) BF₃ is polymeric in nature
 - (4) Both (2) and (3)

Answer (1)

- **Sol.** Due to H-bonding, boric acid is solid at room temperature.
- 17.
- 18.
- 19.
- 20.

SECTION - B

Numerical Value Type Questions: This section contains 10 questions. In Section B, attempt any five questions out of 10. The answer to each question is a **NUMERICAL VALUE.** For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to the second decimal place; e.g. 06.25, 07.00, -00.33, -00.30, 30.27, -27.30) using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.

21. For given Ecell,

X | X²⁺(0.001M) || Y²⁺(0.01M) | Y at 298 K

 $E_{X^{2+}/X}^{\circ} = -0.76$

 $E^{\circ}_{V^{2+}/V} = +0.34$

$$\frac{2.303 \text{ RT}}{\text{F}} = 0.06$$

If $E_{cell} = t$, find 5t (closest integer).

Answer (6)

Sol. $E_{cell} = E_{cell}^{\circ} - \frac{0.06}{2} \log \frac{10^{-3}}{10^{-2}}$ = 1.10 - 0.03 (-1)= 1.10 + 0.03t = 1.13 V 5t = 5.65 V

Nearest integer = 6

22. Find the number of formula units of FeO per unit cell (Round off to the nearest integer)

Given that density = 4.0 gm/cm^3

a = 5Å

 $N_A = 6.0 \times 10^{23}$

Answer (04)

Sol. Density =
$$\frac{ZM}{N_A \times a^3} \Rightarrow Z = \frac{\text{density} \times N_A \times a^3}{M}$$

= $\frac{4 \times 6.0 \times 10^{23} \times (5 \times 10^{-8})^3}{(56 + 16)}$
= $\frac{4 \times 6 \times 125 \times 10^{-1}}{72} = 4.16$
23. For 1st order reaction, 540 s is required for 6 completion, then the time for 90% completion

60% on is 1.35 × 10^x. Find x.

 $(\log^4 = 0.6)$

Answer (3)

Sol.
$$\frac{t_{90}}{t_{60}} = \frac{\log \frac{100}{100 - 90}}{\log \left(\frac{100}{100 - 60}\right)} = \frac{1}{\log \frac{10}{4}} = \frac{1}{1 - 0.6} = \frac{1}{0.4}$$
$$t_{90} = \frac{540}{0.4} = 1350 \text{ sec}$$
$$1350 = 1.35 \times 10^{X}$$
$$x = 3$$
24. 1 mole of a gas undergoes adiabatic process given

n that $C_V = 20 \text{ JK}^{-1} \text{ mol}^{-1}$, w = 3 kJ, $T_1 = 27^{\circ}\text{C}$, $T_2 = ?$ (°C)

Answer (177)

Sol. w = + nC_v(T₂ - T₁)

$$3000 = 1 \times 20 \times (T_2 - 300)$$

 $150 = T_2 - 300$
 $T_2 = 450 \text{ K}$

25. Volume strength of H₂O₂ solution is 60 'V', strength of solution is _____ g/L.

(Round off to the nearest integer)

Answer (182)

Sol. Volume strength of $H_2O_2 = 60$ volume

Molarity of H₂O₂ solution = $\frac{60}{11.2}$ M

Strength of H₂O₂ solution = $\frac{60 \times 34}{11.2}$

$$\simeq$$
 182 g/L

28. 29.

26.

27.

30.