Sample Paper

ANSWER KEYS																			
1	(c)	7	(b)	13	(d)	19	(c)	25	(d)	31	(a)	37	(c)	43	(c)	49	(a)	55	(b)
2	(a)	8	(c)	14	(b)	20	(c)	26	(d)	32	(a)	38	(c)	44	(a)	50	(d)	56	(c)
3	(c)	9	(c)	15	(d)	21	(b)	27	(b)	33	(c)	39	(b)	45	(b)	51	(b)	57	(c)
4	(c)	10	(d)	16	(b)	22	(b)	28	(c)	34	(a)	40	(b)	46	(c)	52	(a)	58	(c)
5	(c)	11	(b)	17	(c)	23	(c)	29	(d)	35	(d)	41	(a)	47	(d)	53	(c)	59	(a)
6	(c)	12	(b)	18	(b)	24	(d)	30	(d)	36	(d)	42	(b)	48	(d)	54	(d)	60	(d)

C)SOLUTIONS

1. (c) The gas evolved at anode during electrolysis of brine is chlorine (G). When chlorine gas is passed through dry $\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{Y})$ produces bleaching powder (Z), used for disinfecting drinking water.

$$
\mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{Cl}_{2} \longrightarrow \mathrm{CaOCl}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

Slaked lime (Y) Bleaching powder (Z)
Since Y and Z are calcium salts, therefore X is also a calcium salt and it is calcium carbonate.

$$
\begin{aligned}
& \mathrm{CaCO}_{3}+2 \mathrm{HCl} \longrightarrow \mathrm{CaCl}_{2}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \\
& \underset{\mathrm{Y}}{\mathrm{X}} \mathrm{COH})_{2}+\mathrm{CO}_{2} \longrightarrow \underset{\mathrm{X}}{\mathrm{CaCO}}+\mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

2. (a) Cu reacts with conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ on heating but does not react with FeSO_{4} as it is less reactive than Fe .
3. (c) 4. (c)
4. (c) Silver and platinum are less reactive than copper hence does not displace copper from copper sulphate solution.
5. (c) 7. (b)
6. (c) $\underset{\mathrm{X}}{\mathrm{Mg}}+\mathrm{Cl}_{2} \rightarrow \underset{\mathrm{Y}}{\mathrm{MgCl}_{2}}$
7. (c) $2 \mathrm{NaHCO}_{3} \longrightarrow \mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{CO}_{2}$
8. (d) Distilled water and glucose water do not contain ions. Hence, they can not conduct electricity.
Rain water, while falling to the earth through the atmosphere, dissolves acidic gases like $\mathrm{CO}_{2}, \mathrm{SO}_{2}$ etc. from the air thus forms acids like carbonic acid $\left(\mathrm{H}_{2} \mathrm{CO}_{3}\right)$, sulphurous acid $\left(\mathrm{H}_{2} \mathrm{SO}_{3}\right)$ etc. These acids provides ions to rain water. So, due to presence of these acids, the rain water conducts electricity.
9. (b)
10. (b)
11. (d)
12. (b)
13. (d)
14. (b)
15. (c) $\frac{1}{v}-\frac{1}{u}=\frac{1}{f}$
$v=$ image distance
$u=$ object distance and
$f=$ focal length of lens
16. (b) Power of lens, $P=\frac{1}{f \text { (in metre) }}=\frac{1}{\frac{50}{100}}=2 \mathrm{D}$
17. (c) $F=\frac{R}{2} \Rightarrow R=2 F$
18. (c) The minimum distance between a real object and its real image formed by convex lens is 4 f i.e. four times of focal length.
19. (b) Given $n_{12}=\frac{n_{1}}{n_{2}}=\frac{\sqrt{2}}{\sqrt{3}}$

Applying Snell's law
$\mathrm{n}_{1} \sin \mathrm{i}=\mathrm{n}_{2} \sin \mathrm{r}$
$\frac{n_{1}}{n_{2}} \sin x=\sin 45^{\circ}$
$\frac{\sqrt{2}}{\sqrt{3}} \sin x=\frac{1}{\sqrt{2}}$

$$
\sin x=\frac{\sqrt{3}}{2}
$$

$$
x=60^{\circ}
$$

22. (b) Refraction of light through prism causes refraction at two refracting surfaces.
 where $\angle \mathrm{A}=$ angle of prism
23. (c)

Ray which passes through optical centre remains undeviated.
24. (d) $\mathrm{f}=+30 \mathrm{~cm}, \mathrm{u}=-15 \mathrm{~cm}$
$\frac{1}{\mathrm{f}}=\frac{1}{\mathrm{v}}-\frac{1}{\mathrm{u}} \Rightarrow \frac{1}{\mathrm{v}}=\frac{1}{30}-\frac{1}{15}$
$\mathrm{V}=-30 \mathrm{~cm}$
$\mathrm{m}=\frac{\mathrm{v}}{\mathrm{u}}=\frac{-30}{-15}=2$
$\mathrm{m}=2$
25. (d)
26. (d) $4 \mathrm{FeSO}_{4} \longrightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}+4 \mathrm{SO}_{2}+\mathrm{O}_{2}$
27. (b) In acid, blue litmus changes to red and in basic solution red litmus changes to blue. Hence blue litmus first changes its color to red and then to blue.
28. (c) A metal which is soft-sodium a nonmetal which is hardest-diamond Iodine is not hardest nonmetal.
29. (d) Balanced equation is
$\mathrm{Pbs}+4 \mathrm{H}_{2} \mathrm{O}_{2} \longrightarrow \mathrm{PbSO}_{4}+4 \mathrm{H}_{2} \mathrm{O}$
30. (d)
31. (a) Magnesium ion and oxide ions are divalent thus form stong electrostatic bond or ionic bond.
32. (a) Both assertion and reason are true and reason is the correct explanation of assertion.
33. (c) Rupiration in catabolic while Photosynthesis an anabolic process. In rupiration, glucoic in broken down into water and carbondioxide and energy During Photosynthesis, CO_{2} and $\mathrm{H}_{2} \mathrm{O}$ combine in the presence of sunlight to produce glucoic and oxygen. Procus in exactly opposite of Rupiration.
34. (a)
35. (d) $\mathrm{H}_{2} \mathrm{CO}_{3}$ (carbonic acid) is a weak acid.
36. (d) 37. (c) 38. (c)
39. (b) Time taken $=\frac{\frac{\text { distance }}{\text { thickness }}}{V_{\text {med }}}$

$$
=\frac{t}{\frac{c}{n}} \quad\left[\because V_{\mathrm{med}}=\frac{c}{n}\right]
$$

\therefore Time taken $=\frac{n t}{c}$
40. (b) According to snell's law,
$\therefore c=$ speed of light in vaccum $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$
$i=$ angle of incidence
$=45^{\circ}$

$$
\begin{aligned}
& r=\text { angle of refractive } \\
& \mu=\frac{\sin i}{\sin r}=\frac{c}{v} \\
& \Rightarrow \quad v=c \frac{\sin r}{\sin i}=3 \times 10^{8} \times \frac{\sin 30^{\circ}}{\sin 45^{\circ}} \\
&=3 \times 10^{8} \times \frac{\frac{1}{2}}{\frac{1}{\sqrt{2}}} \Rightarrow 3 \times 10^{8} \times \frac{\sqrt{2}}{2}=3 \times 10^{8} \times \frac{1.414}{2} \\
&= 3 \times 0.707 \times 10^{8} \\
&= 2.121 \times 10^{8} \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

41. (a) 42. (b)
42. (c) White colour of cloud is due to scattering of light. Also, Sun is visible two minutes before the actual sunrise due to atmospheric refraction.
43. (a) For an incident ray directed towards centre of curvature of a spherical mirror the reflected ray retraces its path.
44. (b) From the figure, $u=-20 \mathrm{~cm}, v=20 \mathrm{~cm}, f=$?

Using lens formula, $\frac{1}{v}-\frac{1}{u}=\frac{1}{f}$
$\Rightarrow \frac{1}{20}-\frac{1}{(-20)}=\frac{1}{f} \Rightarrow \frac{1}{20}+\frac{1}{20}=\frac{1}{f}$
or, $\frac{1}{f}=\frac{1+1}{20}$
$\therefore f=\frac{20}{2}=10 \mathrm{~cm}$
46. (c) Power of combination of lenses,

$$
P_{\mathrm{eq}}=P_{1}+P_{2}+P_{3}=+3.5+2.5+1=+7 \mathrm{D}
$$

47. (d) When light ray travels from rarer to denser medium, it bends towards the normal and vice-versa.
48. (d) Tungsten is used is high melting electrical devices such as bulb. Iodine is soft, shiny, lustrous element, while napthalene and compounds not elementary silver is a very good conductor of electricity but is expensive thus its use is limited.
49. (a) $\mathrm{C}_{2} \mathrm{H}_{6}+\frac{7}{2} \mathrm{O}_{2} \longrightarrow 3 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{CO}_{2}$
50. (d) 51. (b)
51. (a) $2 \mathrm{Al}+3 \mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}+3 \mathrm{H}_{2}$
52. (c) 54. (d) 55. (b) 56. (c) 57. (c) 58. (c)
53. (a) Dispersion arises because of basic phenomenon refraction.
54. (d) Violet deviates the most.
