Marking scheme – 2017-18

CHEMISTRY (043)/ CLASS XII (Compartment Exam)

56/3

Q.No	Value Points	Marks
1	Due to the bond formation between the adsorbent and the adsorbate.	1
2	2-Methylprop-1-ene / isobutene / structure	1
3	$C_6H_5COCH_3$	1
4	Order of reaction = ½	1
5	$[Pt(NH_3)_4][CuCl_4]$	1
6	Quantity of charge required to deposit 108 g of silver = 96500 C	1/2
	Quantity of charge required to deposit 1.50 g of silver = $\frac{96500}{100}$ × 1.50 = 1340.28 C	1/2
	Time taken = $\frac{Q}{I} = \frac{1340.28}{1.50} = 893.5 \text{ s}$	1
	I=1.50	
	(or by any other suitable method)	
	OR . 1000 k	11
6	$\Lambda m = \frac{1000 \text{k}}{C}$	1/2
	$\Delta m = \frac{1.65 \times 10^{-4} \times 1000}{1.65 \times 10^{-4} \times 1000}$	1/2
	$= 16.5 \mathrm{S cm^2 mol^{-1}}$	<u>1</u> .,
	- 10.5 5 CIT HIOI	
7	E Caview	1.1
	Jant Re	,
	: Xe F	
	Br	
	(square pyramidal)	
8	CH ₃ CH ₂ CH ₂ Cl, due to primary halide which has less steric hindrance	1,1
9	i) Mn	1
	ii) Mischmetall	1
10.	Intermolecular forces of attraction between carbon disulphide and acetone are weaker than the	1
	pure components.	
2	Minimum boiling azeotrope at a specific composition	1
11	Cu(s) $ Cu^{2+}(aq) Ag^{+}(aq) Ag(s)$	1
	ii) Current will flow from silver to copper electrode in the external circuit.	1
	iii)	
		1/2 + 1/2
	Cathode : $2Ag^{\dagger}(aq) + 2e^{-} \rightarrow 2Ag(s)$	
	Anode $-$: Cu(s) \rightarrow Cu ²⁺ (aq) + 2e ⁻	
12	a) Gold is leached out in the form of a complex with dil. solution of NaCN in the presence of air/	1
	NaCN acts as leaching agent.	
	b) It lowers the melting point of alumina and makes it a good conductor of electricity.	1
	c) CO forms a volatile complex with nickel which is further decomposed to give pure Ni metal.	1
13	i) a) $5SO_3^{2-} + 2MnO_4^{-} + 6H^{+} \longrightarrow 2Mn^{2+} + 3H_2O + 5SO_4^{2-}$	1
	b) $\text{Cr}_2\text{O}_7^{2-} + 14 \text{ H}^+ + 6 \text{ Fe}^{2+} \rightarrow 2 \text{ Cr}^{3+} + 6 \text{ Fe}^{3+} + 7 \text{ H}_2\text{O}$	1
	b) Cr ²⁺ < Fe ²⁺ < Mn ²⁺	1 1
		1 4
	OR	

12		1
13	i) $3MnO_4^{2-} + 4H^+ \rightarrow 2MnO_4^- + MnO_2 + 2H_2O$	_
	(or any other correct equation)	
	ii) $4 \text{ FeCr}_2O_4 + 8 \text{ Na}_2CO_3 + 7 O_2 \rightarrow 8 \text{ Na}_2CrO_4 + 2 \text{ Fe}_2O_3 + 8 CO_2$	1
	$^{1}_{111}$ 2 CrO ₄ ²⁻ + 2H ⁺ \rightarrow Cr ₂ O ₇ ²⁻ + H ₂ O	1
14	i) $(CH_3)_3N < CH_3NH_2 < (CH_3)_2NH$	1
	ii) A: $C_6H_5N_2^+Cl^-$ B: C_6H_5OH	1
	iii) $R-NH_2 + CHCl_3 + 3KOH \xrightarrow{Heat} R-NC + 3KCl + 3H_2O$	1
15	ÇN	
	i) CH_2 = CH - CH = CH_2 + CH_2 = CH	1
	H N	
	H_2C $C=O$	1
	$\begin{array}{c} H_2C & CH_2 \\ H_2C & -CH_2 \end{array}$	
	HOH ₂ C - CH ₂ OH + HOOC COOH ·	
	iii)	1
16	i) Hexaamminenickel(II) chloride	1
	ii) Potassium hexacyanidoferrate(III)	1
	iii) Tris(ethane-1,2-diamine)cobalt(III) ion	1
17	$C_2H_5OH \xrightarrow{H_2SO_4} CH_2 = CH_2 + H_2O$	1/
	i) $C_2H_5OH \xrightarrow{2} 443 \text{ K}$ $CH_2 = CH_2 + H_2O$ $Step 1:$ Formation of protonated alcohol.	1/2
	H H Fast H H H H	
	$H - \dot{C} - \dot{C} - \ddot{O} - H + \dot{H}^{\dagger} \xrightarrow{fasc} H - \dot{C} - \dot{C} - \dot{O} - \dot{H}$	1/2
	Ethanol Protonated alcohol (Ethyl oxonium ion)	
	Step 2: Formation of carbocation: It is the slowest step and hence, the	
	rate determining step of the reaction. H H H H	
	$H - C - C \xrightarrow{Slow} H - C - C^{+} + H_{2}O$	1/2
	Step 3: Formation of ethene by elimination of a proton.	
	$H - \stackrel{\longleftarrow}{C} \stackrel{\longrightarrow}{=} \stackrel{\longleftarrow}{C} \stackrel{\longleftarrow}{=} \stackrel{\longleftarrow}{C} + \stackrel{\longleftarrow}{H}$	
	$H-C \stackrel{\longleftarrow}{\leftarrow} C \stackrel{\longleftarrow}{\longleftarrow} C \stackrel{\longleftarrow}{\leftarrow} C \stackrel{\longleftarrow}{\leftarrow} H$	1/2
	ii) o-Nitrophenol is steam volatile due to intramolecular hydrogen bonding while p-nitrophenol is	/2
	less volatile due to intermolecular hydrogen bonding.	1
18	i) Due to the formation of zwitter ion.	1
	ii) The two strands are complementary to each other because the hydrogen bonds are	26.002
	formed between specific pairs of bases	1
	iii) CHO CHO COOH Or glucose gets oxidised to gluconic acid on	
	CHO (CHOH) ₄ Br ₂ water (CHOH) ₄ (CHOH) ₄ reaction with mild oxidising agent like	
	CH ₂ OH CH ₂ OH Bromine water.	1
	Gluconic acid	
19.	i) Propene ii) 4-nitrochlorobenzene and 2-nitrochlorobenzene / structures	1 1/ 1/
	iii) Methylcyanide / Ethanenitrile / structure	1/2 + 1/2
20.	i) Rate = $k[A][B]^2$	1
	ii) Rate becomes 9 times	1
s.	iii) Rate becomes 8 times	1

21	i) The precipitated silver iodide adsorbs iodide ions from the dispersion medium	1
	resulting in the negatively charged colloidal solution.	
	ii) Due to large surface area	1
	iii) If the dispersion medium is separated from the dispersed phase, the sol can be	
	reconstituted by simply remixing with the dispersion medium. That is why these sols	1
	are also called reversible sols.	
22	Moles for MgBr ₂ = $\frac{10.5}{184}$ = 0.0571 mol	
	Molality = $\frac{0.0571}{200}$ × 1000 = 0.2855 m	
	i=3	1/
	$\Delta T_f = i K_f m$	1/2
	$= 3 \times 1.86 \times 0.2855$	1/2
	=1.59 K	1
	Freezing point = $273 - 1.59 = 271.41$ K or -1.59 °C	1
23		1
23	 a) Tranquilizers b) It may cause harmful effects and may acts as poison in case of overdose. Therefore, a 	1
	doctor should be always consulted.	
	c) Phenacetin	1
	d) Empathetic, Caring, sensitive (or any other two relevant values)	1
24	i)a) Due to +I effect of methyl group in CH ₃ CHO.	1
4	b)due to –I effect of nitro group in nitroacetic acid.	1
	c) Due to the strong electron withdrawing effect of the carbonyl group and resonance	1
	stabilisation of the conjugate base.	
	ii) a) Add NaOH and I ₂ to both the compounds and heat, ethanal gives yellow ppt of iodoform.	1
	b) Add NaOH and I ₂ to both the compounds and heat, pentan-2-one gives yellow ppt of indeform	
	iodoform.	1
	OR ₂ S ¹	
24	a) 1	
	i)a)	
	CH ₃ - CH-COOH	
	d d	1
	b) C ₆ H ₅ CHO	1
	c) CH ₃ OH + HCOOK	1
	ii)a) CH ₃ COCH ₃ NaBH ₄ CH ₃ CH(OH)CH ₃ conc.H ₂ SO ₄ . 443K CH ₃ -CH=CH ₂	
		1
	b) $C_6H_5CH_2CI$ KCN $C_6H_5CH_2CN$ H_3O^+ $C_6H_5CH_2COOH$	1
25	i) a) Antiferromagnetism	1
	b) i) Schottky defect ii) Frenkel Defect	1/2 + 1/2
	i) $d = \frac{zM}{c}$	1/2
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1/2
	z=4	1/2
	$11.2 = \frac{1.717}{(4 \times 10^{-8})^3 \times (6.02 \times 10^{23})}$	
	M= 107.9 g/mol	1
	IVI- 107.3 8/ IIIOI	1
	Atomic mass = 107.9μ	1/2
	Atomic mass = 107.9 u OR	1/2
25	Atomic mass = 107.9 u OR $r = \frac{a}{-c}$	1/2
25		1/ ₂ 1/ ₂ 1/ ₂

ă	- 1 OC v 10 ⁻⁸ and	1
	$= 1.06 \times 10^{-8} \text{cm}$	1
	$d = \frac{zM}{a^3 Na}$ $z = 4$	½ ½
	$d = \frac{4 \times 108}{(3 \times 10^{-8})^3 \times (6.02 \times 10^{23})}$ = 26.6 g/cm ³	1
26	$2NaOH + Cl_2 \rightarrow NaCl + NaOCl + H_2O$ $i)a) \text{(cold and dilute)}$	1
	b) $2XeF_2$ (s) + $2H_2O(l) \rightarrow 2Xe$ (g) + 4 HF(aq) + $O_2(g)$	1
	ii) a) Sulphur is sterically protected by six F atoms, hence does not allow the water molecules to attack.	1
	b) It contains only two ionisable H-atoms which are present as -OH groups, thus behaves	1
	as dibasic acid. c) Xe has least ionization energy among the noble gases and hence it forms chemical compounds particularly with O ₂ and F ₂ .	1
	OR	
26	 ii) a. Fluorine has less negative electron gain enthalpy than chlorine, b. Fluorine has low enthalpy of dissociation than chlorine c. Fluorine has very high enthalpy of hydration than chlorine. d. Fluorine is stronger oxidizing agent than chlorine. 	½ ×4
	ii) a) $3C11 + 8 HNO (dillute) - 3C11(NO) + 2NO + 4HO$	1
	b) $2 \text{ Fe}^{3+} + \text{SO}_2 + 2\text{H}_2\text{O} \rightarrow 2 \text{ Fe}^{2+} + \text{SO}_4^{2-} + 4 \text{ H}^+$	1
	$(c) \begin{array}{c} XeF_4 + O_2F_2 \rightarrow XeF_6 + O_2 \end{array}$	1
	(Balancing of equations may be ignored)	

