POST GRADUATE COMMON ENTRANCE TEST - 2018

PS	COURSE M.E./M.Tech./ M.Arch./Courses offered by VTU/UVCE/ UBDTCE	23	SUBJECT LYMER SCII D TECHNOL	30		
MAXIMUM MARKS	TOTAL DURATION		TIME		}	
100	150 Minutes		2.30 p.m. to 4.	30 p.m.	009	
MAXIMUM TIME FOR MENTION YOU ANSWERING		OUR P	GCET NUMBER	3	9	- 1
120 Minutes						

DOs:

- Candidate must verify that the PGCET number and Name printed on the OMR Answer Sheet is tallying with the PGCET number and Name printed on the Admission Ticket. Discrepancy if any, report to invigilator.
- number and Name printed on the Admission Ticket. Discrepancy if any, report to invigilator.

 2. This question booklet is issued to you by the invigilator after the 2nd bell i.e., after 02.25 p.m.
- The Version Code of this Question Booklet should be entered on the OMR Answer Sheet and the respective circle should also be shaded completely.
- The Version Code and Serial Number of this question booklet should be entered on the Nominal Roll without any mistakes.
- Compulsorily sign at the bottom portion of the OMR answer sheet in the space provided.

DON'Ts:

- THE TIMING AND MARKS PRINTED ON THE OMR ANSWER SHEET SHOULD NOT BE DAMAGED / MUTILATED / SPOILED.
- 2. The 3rd Bell rings at 2.30 p.m., till then;
 - . Do not remove the seal present on the right hand side of this question booklet.
 - Do not look inside this question booklet.
 - Do not start answering on the OMR answer sheet.

MINDSTEAM INSTRUCTIONS TO CANDIDATES

- This question booklet contains 75 (items) questions and each question will have one statement and four answers. (Four different options / responses.)
- After the 3rd Bell is rung at 2.30 p.m., remove the paper seal on the right hand side of this question booklet and check
 that this booklet does not have any unprinted or torn or missing pages or items etc., if so, get it replaced by a complete test
 booklet. Read each item and start answering on the OMR answer sheet.
- 3. During the subsequent 120 minutes:
 - Read each question (item) carefully.
 - Choose one correct answer from out of the four available responses (options / choices) given under each question / item. In
 case you feel that there is more than one correct response, mark the response which you consider the best. In any case,
 choose only one response for each item.
 - Completely darken / shade the relevant circle with a blue or black ink ballpoint pen against the question number on the OMR answer sheet.

ಸರಿಯಾದ ಕ್ರಮ	ತಪ್ಪು ಕ್ರಮಗಳು WRONG METHODS									
CORRECT METHOD										
$A \odot O$										

- 4. Use the space provided on each page of the question booklet for Rough Work. Do not use the OMR answer sheet for the same.
- After the last bell is rung at 4.30 p.m., stop marking on the OMR answer sheet and affix your left hand thumb impression on the OMR answer sheet as per the instructions.

6. Hand over the OMR answer sheet to the room invigilator as it is.

- After separating the top sheet (KEA Copy), the invigilator will return the bottom sheet replica (candidate's copy) to you to carry home for self-evaluation.
- 8. Preserve the replica of the OMR answer sheet for a minimum period of ONE year.

9. Only Non-programmable calculators are allowed.

Marks Distribution

PART - 1:50 QUESTIONS CARRY ONE MARK EACH (1 TO 50) PART - 2:25 QUESTIONS CARRY TWO MARKS EACH (51 TO 75)

3434314MYONC

301009

PART - 1

1.	The process of heat transfer from one part motion of the particle, is called as	icle (of the body to another without the actual
	(A) Conduction (B) Convection	(C)	Radiation (D) Distillation
2.	If the rate of heat transfer is constant, it is	s kno	own as
	(A) Steady state heat transfer	(B)	Unsteady state heat transfer
	(C) Uniform heat transfer	(D)	Non-uniform heat transfer
3.	Multiple pass heat exchanger is used to		
	(A) Increase rate of heat transfer	(B)	Increase pressure drop
	(C) Decrease pressure drop	(D)	Decrease vibrations
4.	Raoult's law is applicable to		
	(A) Non-volatile solute	(B)	Real solution
	(C) Ideal solution	(D)	Mixture of water and alcohol
5.	A mixture of acetone and chloroform can	be s	eparated by
	(A) Flash distillation	(B)	Vacuum distillation
	(C) Steam distillation	(D)	Azeotropic distillation
6.	Flash distillation is used at a large scale in	n	
	(A) Phenol-formaldehyde resin synthesis	(B)	Petroleum refining
	(C) Ammonia synthesis	(D)	Sulphuric acid synthesis
7.	The total entropy change for a system and process is	d its	surroundings increases if the
	(A) Endothermic	(B)	Irreversible
	(C) Exothermic	(D)	Reversible
8.	Entropy change of a system is zero in		- 53
	(A) Reversible process	(B)	Isothermal process
	(C) Adiabatic process	(D)	Reversible adiabatic process

SPACE FOR ROUGH WORK

9.	For a process to be sp	oontaneous in isolat		T ₁₀₀ B 10 T	מ מוג	e
	(A) Zero	(B) Negative	(C)	Constant	(D)	Positive
10.	In PV diagram of isoth increasing V, pressure (A) Slowly		12024-00	on of state, for the is	-	erm T > T _c , with To zero
	la a volversible ediaba	tie compression				
11.	In a reversible adiaba (A) Temperature rem	W5 W 20 30	(B)	Heating takes plac	e	
	(C) Pressure remains			Cooling takes place		•
12.	The enthalpy (H) of a	ny system is defined	by by			iii
	(A) $H = W - PV$	(B) $H = V + PW$	(C)	H = W + PV	(D)	H = W + RT
13.	In a turbulent flow in a	a pipe				
	(A) Raynolds numbe	50 7 60 04 2000	000			
	(B) Fluid particles mo					
	(C) Head loss varies	100 M				
	(D) Shear stress vari	es inlearly with rault	19			
14.	For measuring flow by	y a venturimeter, it s	houl	d be installed in		
	(A) In any direction a	and in any location	(B)	Horizontal line		
	(C) Inclined line with	upward flow	(D)	Vertical line		
15.	Pitot tube is used to r	neasure the velocity	hea	d of		
	(A) Laminar flow	(B) Flowing fluid	(C)	Still fluid	(D)	Turbulent flow
16.	Capillarity is due to					
	(A) Cohesion		(B)	Adhesion		
	(C) Adhesion and co	hesion	(D)	Gravity		
17.	Friction drag is gener	ally larger than the p	oress	sure drag in		39
	(A) Flow past a cylin	der	(B)	Flow past a sphere)	
	(C) Flow past an airf	oil	(D)	Flow past a thin sh	eet	
ALUMAN DISPOSE	S-17485	PS91				

				(B) Highly turbulent flow (D) Steady flow		
19.	SI unit of mass flux is (A) kg/m ² .s	(B) 1/m ² .h	(C)	g/m ² .s	(D)	<i>l</i> b/m.s
20.	A sample of sea wate weight percentage is	r contains 35 ×10 ³ p	pm	solids. The concent	ratio	n of solids in
	(A) 0.3%	(B) 0.35%	(C)	35%	(D)	3.5%
21.	The average molecula	ar weight of air assu	ming	79% of N ₂ and 21°	% of	oxygen is
	(A) 18.4	(B) 23.6	(C)	28.8	(D)	10.6
22.	Mole fraction of metha 13 moles of methanol		7 mo	les of water, 10 mo	les o	f ethanol and
	(A) 0.24	(B) 0.43	(C)	0.32	(D)	0.86
23.	If the repeat units are	joined in a 3-dimens	siona	al array, the resultin	g po	lymer will be
	(A) Linear polymer			Branched polymer		
	(C) Cross linked poly	mer	(D)	Block copolymer		17.
24.	Which of the following	is optically transpa	rent	engineering polyme	r?	
	(A) LDPE	en en same ann		Nylon 66		
	(C) TiO ₂ filled PMMA	* ×	(D)	Poly carbonate		
25.	Polymers are also known	own as				
	(A) Sub-macromoleo	cules	(B)	Macromolecules		
	(C) Oligomers		(D)	Micromolecules		
26.	Block copolymers are	generally produced	by			
	(A) Free radical poly	merization	(B)	Anionic polymeriza	tion	
	(C) Cationic polymer	ization	(D)	Coordination polyn	neriz	ation

	Coordination polymerization is also known (A) Insertion polymerization (B) Poly condensation polymerization (C) Interfacial polymerization (D) Poly addition polymerization	n as
28.	Mark-Houwink equation is related to the f	following physical properties
	(A) Melting	(B) Crystallinity
	(C) Elasticity	(D) Viscosity
29.	The most chemically inert polymer, used	in non-sticking kitchen ware is
	(A) Melamine resin (B) Teflon	(C) PC (D) PVC
30	The chain carrier in case of cationic polyr	merization are
00.	(A) Carbonium ion	(B) Hydroxyl ion
	(C) Carbanion	(D) Carbonyl ions
31.	The technique which produces polymers	
	(A) Emulsion polymerization	6
	(C) Bulk polymerization	(D) Suspension polymerization
32.	is an example for free rac	dical initiator.
	(A) AIBN (B) Lewis acid	(C) DDM (D) TMTD
33.	Disposable cups are produced by	
707.5	(A) Extrusion	(B) Injection molding
	(C) Compression molding	(D) Thermoforming
34.	Example for open-molding process is	
	(A) Extrusion	(B) Injection molding
	(C) Hand lay up	(D) Pressure bag molding
35.	The kinetic chain length of a polymer is e	expressed as
	(A) R_p/R_i (B) R_i/R_p	(C) R_t/R_p (D) R_i/R_t
_	№ 95 5	

36. In cationic polymerization, the overall polymerization rate is directly proportional to

	(A) First power of monomer concentration	on	
	(B) Second power of monomer concentr	ration	
	(C) Third power of monomer concentration	ion	
	(D) Not related to monomer concentration	on	The State of the S
37.	Nylon 6 is prepared by	10	
	(A) Condensation polymerization		
	(B) Ring opening polymerization		
	(C) Addition polymerization		6 1 36
	(D) Poly addition polymerization		
		21	
38.	The role of sodium chloride in emulsion p	474.747	
	(A) Initiator		Emulsifier
	(C) Coagulant	(D)	Suspending agent
20	Malt flow index of a polymor is inversely	prop	ortional to
39.	Melt flow index of a polymer is inversely	•	
	(A) Density		Molecular weight
	(C) Crystallinity	(D)	Tacticity
40	The functionality of acetylene monomer i	S	
10.	(A) Two		Three
	(C) Four		Five
	(0) 1001	(2)	
41.	Polyether Ether Ketone (PEEK) is a		We have
	(A) Homopolymer	(B)	Heteropolymer
	(C) Copolymer	(D)	Crystalline polymer
		SA 50	
42.	TGA can be used to measure		
	(A) Thermal stability		
	(B) Tg		
	(C) Crystallinity		
	(D) Degree of polymerization		

SPACE FOR ROUGH WORK

43.	HDPE is produced by		
	(A) Low pressure process	(B)	Unipol process
	(C) Solid phase polymerization	0.0000000000000000000000000000000000000	Photo polymerization
	(o) cond pridoo porymenicanom	(-)	. Hote polymenzation
44.	Polystyrene produced from suspension po	olym	erization is in the form of
	(A) Solution	(B)	Latex
	(C) Beads	(D)	Powder
45.	Blow molding process is used to produce		
	(A) Sheets	(B)	Rods
	(C) Fibers	(D)	Bottles
46.	Long fiber reinforced product obtained by		70 ×2
	(A) Compression molding	(B)	Blow molding
	(C) Pultrusion	(D)	Vacuum bag molding
17	In thermaforming process, probacting of	n obc	eat is usually carried out by
47.	In thermoforming process, preheating of a	a Sile	eet is usually carried out by
	(A) Infra red radient electrical heater		
	(B) Hot air		
	(C) Steam		
	(D) Microwave irradiation		₩
48.	Compounding of thermoplastics can be can	arrie	d out using
	(A) Extrusion		Blow molding
	(C) Injection molding		Compression molding
49.	Which of the following polymer is moisture	e sei	nsitive?
	(A) Polyethylene	(B)	Polyamide
	(C) Polypropylene	(D)	Polybutadiene
50.	is an example for inorganic p	olym	er.
	(A) Natural rubber	(B)	Polyester resin
	(C) Silicone rubber	(D)	Polystyrene

PART - 2

51,	1. In pipes larger than 25 mm, carrying water, the laminar flow							
	(A) Very often exists		(B)	Generally exists				
	(C) Rarely exists	Kesta ∗a	(D)	Unpredicted	an local de .			
52.	Bernoulli's theorem d	eals with conversion	of	•				
	(A) Mass	(B) Force	(C)	Momentum	(D) Energy			
53.	If the Mach number o	f a flow is 3, the flow	is k	nown as				
	(A) Super super son	ic	(B)	Super sonic	9.			
	(C) Sonic		(D)	Subsonic				
54.	If the Froude number	in open channel flow	w is (equal to 1.0, the flow	w is			
	(A) Laminar flow	(B) Turbulent flow	(C)	Shooting flow	(D) Streaming flow			
55.	According to first la accompanying a proc given by the relation				가게 되는 사람이 되었다. 그 아이들은 그리고 있다면 하는데 그리고 있다.			
	(A) $\Delta E = Q - W$	*	(B)	$\Delta E = Q + W$				
	(C) $\Delta E = \Delta Q + \Delta W$		(D)	$\Delta E = \Delta Q - \Delta W$				
56.	When a gas expands pressure, then the en	and the first tempt of the second control of the second control of the second control of the second control of	a re	egion of high pressu	re to a region of low			
	(A) Remains constar	nt A	(B)	Decreases				
	(C) Increases		(D)	ls zero	8			
57.	During isothermal exp	oansion of an ideal g	jas, i	its	•			
	(A) Internal energy in	ncreases	(B)	Enthalpy remains	unaffected			
	(C) Enthalpy decrease	ses	(D)	Enthalpy reduces t	to zero			
58.	If the viscosity of air is thermal conductivity i			5.3	1 Table 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
	(A) 0.30		(B)	0.15				
	(C) 0.20		(D)	0.25				
		SPACE FOR RO	OUG	H WORK				

33

2000				SPACE FOR RO	oug	H WORK		
		(A) 2 and 2	(B)	1 and 2	(C)	2 and 4	(D) 2 and 0	
6	58.	Functionality of ethyle	ene g	lycol and adipic	acio	d is		
		(C) Nylon 66 and PE	ı		(D)	Nylon 66 and epox	У	
		(A) Nylon 6 and PU	т			Nylon 6 and PEO		
ŧ	0/.	Examples for ring ope	ening	polymers	/D\	Nulan C and DEO		
,	~~	MANUAL SERVICE SERVICES SERVICES	88 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		(-/		<u> </u>	
C		(A) PET and PU		PVC and PET			(D) Nylon 6 and PU	
a	36	Diol is one of the read	otant	for the following	ı nai	r of polymere		
		(C) Thermoplastic, th	ermo	oset and rubber	(D)	Thermoset, thermo	plastic and rubber	
		(A) Copolymer, thern	nopla	astic and rubber	(B)	Thermoset, rubber	and monomer	
6	35.	SAN, nylon 6 and EPI	DM а	ire				
		(A) PP + PTFE	(B)	PE + PS	(C)	HDPE + PTFE	(D) PP + PVC	
6	34.	Which of the following					Garage Space States	
		V.V 1.1 T.L	(5)		(•)	I I I I I I I I	(D) II TOAN	
6	აპ.	Which of the following (A) PP + PE					(D) PP + SAN	
6								
		(C) Infinite humidity				Between 0 and 100	0% humidity	
		(A) 0% humidity			(B)	100% humidity		
6	62. A saturated gas means							
		(A) 5	(B)	0.05	(C)	50	(D) 0.5	
·	61. If a container holds 2 pounds of NaOH, how many pound moles of NaOH does it contains?							
6	S 1	If a container holds 2	noun	ds of NaOH ho	w m	nany pound moles o	of NaOH does it	
		(A) 1.54×10^{-3}	(B)	154 ×10 ⁻²	(C)	1.54	(D) 1500	
6	80.	Expressing 100 kg/h o	of wa	ter flow rate in t	erm	s of kmol/s of water	gives value as	
		(A) 5500 kg	(B)	5000 kg	(C)	5010 kg	(D) 5030 kg	
		80% ?			15	0 0 2	<u></u>	
5		How much acid soluti weak acid of H ₂ SO ₄ of						
5	iQ.	How much acid soluti	on w	rill he produced	hav	ing H ₂ SO, concen	tration of 20% from	

69.	Tg of polymers can be measured using			
	(A) DSC and DMA	(B)	DSC and TGA	
	(C) DMA and TGA	(D)	DMA and UTM	
70.	Mn of polymers can be measured by			
	(A) Vapour pressure osmometry and end	d ara	oup analysis	8
	(B) Viscometric and end group analysis	· •		
	(C) Viscometric and vapour pressure osr	nom	etry	
	(D) Viscometric and light scattering meth		a r d	
71.	If the molecular weight of HDPE is 28,000), the	e degree of polymer	rization is
	(A) 100 (B) 500	(C)	1000	(D) 10000
		_		
72.	Which of the following are natural polyme		01	900002 € •
	(A) Starch and chitosan	700000000000000000000000000000000000000	Chitosan and polya	
	(C) Chitosan and polyester resin	(D)	Starch and polyole	etines
73.	Which of the following statement is not tru	ue w	ith respect to PTFE	?
	(A) Obtained from addition polymerization		terbalear webwarer ∎rawwellstrubtsubstates v.v. i jeuw wowing	
	(B) Chemically inert			
	(C) Flame retardant		,	
	(D) Sensitive to moisture			
74.	Pipes and sheets can be produced by	(D)	D	
	(A) Extrusion process		Blow molding	
	(C) Rotomolding	(D)	Injection molding	
75.	Increase in the number of aromatic group	s ald	ong the backbone o	f the polymer
	chains is known to			
	(A) Increases the flexibility and Tm			
	(B) Increases the rigidity and Tm			
	(C) Increases the hardness and reduces	Tm		
	(D) Reduces the rigidity and increases T	m		
		0116	NI WORK	
	SPACE FOR R	C 31 16 .	HVVORK	

