	Question Booklet No
(To be filled up by the candidate	by blue/black ball-point pen)
Roll No.	
Roll No. (Write the digits in words)	2017
Serial No. of OMR Answer Sheet	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Day and Date	(Signature of Invigilator)

INSTRUCTIONS TO CANDIDATES

(Use only blue/black ball-point pen in the space above and on both sides of the Answer Sheet)

- 1. Within 30 minutes of the issue of the Question Booklet, check the Question Booklet to ensure that it contains all the pages in correct sequence and that no page/question is missing. In case of faulty Question Booklet bring it to the notice of the Superintendent/Invigilators immediately to obtain a fresh Ouestion Booklet.
- 2. Do not bring any loose paper, written or blank, inside the Examination Hall except the Admit Card without its envelope.
- 3. A separate Answer Sheet is given. It should not be folded or mutilated, A second Answer Sheet shall not be provided. Only the Answer Sheet will be evaluated.
- 4. Write your Roll Number and Serial Number of the Answer Sheet by pen in the space provided above.
- 5. On the front page of the Answer Sheet, write by pen your Roll Number in the space provided at the top, and by darkening the circles at the bottom. Also, wherever applicable, write the Question Booklet Number and the Set Number in appropriate places.
- 6. No overwriting is allowed in the entries of Roll No., Question Booklet No. and Bet No. (if any) on OMR sheet and also Roll No. and OMR sheet No. on the Question Booklet.
- 7. Any change in the aforesaid entries is to be verified by the invigilator, otherwise it will be taken as unfair means.
- 8. Each question in this Booklet is followed by four alternative answers. For each question, you are to record the correct option on the Answer Sheet by darkening the appropriate circle in the corresponding row of the Answer Sheet, by ball-point pen as mentioned in the guidelines given on the first page of the Answer Sheet.
- 9. For each question, darken only one circle on the Answer Sheet. If you darken more than one circle or darken a circle partially, the answer will be treated as incorrect.
- 10. Note that the answer once filled in ink cannot be changed. If you do not wish to attempt a question, leave all the circles in the corresponding row blank (such question will be awarded zero mark).
- 11. For rough work, use the inner back page of the title cover and the blank page at the end of this Booklet.
- 12. Deposit only the OMR Answer Ch.

 13. You are not permitted to leave the Examination Hall until the end of the Test.
- 14. If a candidate attempts to use any form of unfair means, he/she shall be liable to such punishment as the University may determine and impose on him/her.

[उपर्युक्त निर्देश हिन्दी में अन्तिम आवरण-पृष्ठ पर दिये गए हैं]

Total No. of Printed Pages: 22

ROUGH WORK रफ़ कार्य

No. of Questions/प्रश्नों की संख्या : 120

Time: 2 Hours]	[Full Marks: 36
समय : 2घण्टे]	पूर्णांक : 36

- Note: (i) Attempt as many questions as you can. Each question carries 3 (Three) marks. One mark will be deducted for each incorrect answer. Zero mark will be awarded for each unattempted question. अधिकाधिक प्रश्नों को हल करने का प्रयत्न करें। प्रत्येक प्रश्ने 3 (तीन) अंक का है। प्रत्येक गलत उत्तर के लिए एक अंक काटा जायेगा। प्रत्येक अनुत्तरित प्रश्न का प्राप्तांक श्रून्य होगा।
 - (ii) If more than one alternative answers seem to be approximate to the correct answer, choose the closest one.
 यदि एकाधिक वैकल्पिक उत्तर सही उत्तर के निकट प्रतीत हो, सो निकटसम सही उत्तर दें।
- 1. Biotechnology is based on:
 - (1) only microorganisms
 - (2) only microorganisms and animal cells
 - (3) only animal cells and plant cells
 - (4) microorganisms, animal cells and plant cells
- 2. In general, gene expression is regulated at the level of:
 - (1) transcription

(2) translation

(3) protein transport

(4) RNA processing

3. In case of complementary gene interaction, the test-cross ratio is:

(1) 1:1:1:1

(2) 1:1

(3) 3:1

(4) 9:7

(1)

(Turn Over)

1.	Pea rust is caused by:		
	(1) Fusarium oxysporum	(2) Uromyces fabo	ae
	(3) Puccinia pisi	(4) Erysiphe pisi	
5.	Which of the following is a flowering	ng parasite of crops ?	
	(1) Orobanche (2) Ustilago	(3) Parthenium	(4) Chlorella
6.	Meloidogyne is:		
	(1) a fungus	(2) a nematode	
	(3) a protozoan	(4) an insect	
7.	Earthworms thrive well in:		
	(1) acidic soils	(2) saline soils an	d acidic soils
	(3) alkaline soils	(4) neutral soils	
8.	The Calvin cycle is related to:	•	
	(1) respiration	(2) photosynthesis	s
	(3) photorespiration	(4) lipid synthesis	i
9.	Which of the following is responsib	le for permanent hard	lness of water?
	(1) carbonates	(2) nitrates	
	(3) sulphates	•	
		(2)	(Continued

10. Rhizobium and	Pseudomonas are	;	
(1) chemoauto	trophs	(2) autotrophs	
(3) heterotroph	ns	(4) photoautot	rophs
11. Plant dry matte	r has the highest co	oncentration of:	
(1) H	(2) C	(3) N	(4) O
12. The essential el	ements involved in	n electron transfer be	long to :
(1) group II	(2) group III	(3) group I	(4) group IV
13. In plants, apical	dominance involve	58 :	
(1) gibberellin	(2) auxin	(3) ABA	(4) cytokinin
14. The water potent	tial of pure water is	s :	
(1) zero	(2) two	(3) five	(4) one
15. The osmotic pote	ential values are :		
(1) always positiv	ve	(2) mostly posit	ive
(3) always negative	ve	(4) mostly negat	ive
16. In climacteric fruincrease in the pre	its, the beginning	of climacteric is as	sociated with a sharp
(1) gibberollin	(Z) auxiii	درد	(4) ethylene
	. (3	5)	
			Jum Over

7.	The 'bud chip' me	ethod is related to:		
	(1) planting of su	garcane	(2) grafting in trees	
	(3) budding in tr	ees	(4) planting of pota	ito
8. The predominant system of cropping		system of cropping	in India is :	
	(1) maize-wheat		(2) rice-potato	
	(3) rice-wheat		(4) soybean-wheat	
9.	Striga parasitises		*	
	(1) pigeonpea	(2) pearl millet	(3) tomato	(4) chick-pea
20.	Phalaris minor i	s a weed in:		
	(1) wheat	(2) pea	(3) rice	(4) groundnut
21. Odotatermes obesus is the scientific name for:				
	(1) cockroach	(2) cutworm	(3) termite	(4) budworm
22.	Tree banding is	relevant to:		
	(1) stem bover		(2) mango happer	
	(3) cutworm		(4) mealy bug of n	nango
23	. Sanjose scale in	nfests:		
	(1) pear	(2) apple	(2) mango	(4) citrus
		((4)	(Continued)

.17P/287/29

				*
24. Wh	ich of the fo	llowing is a syster	nic insecticide?	
(1)	Parathion	(2) Azadiratin	(3) Malathion	(4) Carbofuron
25. The	primary fur	ection of a gene is	to encode :	
(1)	an RNA		(2) a polypept	ide
(3) &	ın enzyme		(4) a protein	
26. Whi	ch of the fol	lowing effects is f	ixable ?	**
(1) [Dominance		(2) Epistatic	
(3) A	Additive		(4) Environme	ntal
27. Which	h of the foll	owing traits shows	s codominance?	
(1) H	uman ABO	blood group	(2) Seed shape	în pea
(3) E ₃	ye colour in	Drosophila	(4) Für colour i	n rabbit
28. The 1	:4:6:4: ?	1 ratio in F, indic	ates which of the f	ollowing gene interac-
(1) In l	hibitory		(2) Supplementa	ıry
(3) Du	plicate	•	(4) Additive	
29. Which	of the follo	wing is an often cr	oss-pollinated crop	?
(1) Chi	ickpea (2) Pigeonpea	(3) Grounding	(4) Rice
		(5))	(Turn A

30.			imn B lists the oil stor ion from those given b	
	A. C B. O	astor ilpalm oybean	Column B I. Cotyledon II. Mesocarp III. Endosperm	
	Options:			67
	(1) AI BII C	ш	(2) A III B II C	I .
	(3) All BIII	CI	(4) AIII BI C	ц
31.	Which of the fol	lowing organisms c	auses the greatest dan	nage to crop plants?
	(1) Viruses	(2) Bacteria	(3) Fungi	(4) Nematodes
32.	The greatest amo	ount of insecticides	is used in :	
	(1) wheat	(2) tomato ·	(3) sugarcane	(4) cotton
33.	Pro-vitamin A is	:		•
	(1) β-carotene	(2) a-tocopherol	(3) Lycopene	(4) Xanthophyll
34.	The number of	unino acids conside	red essential for hum	ans is:
	(1) 4	(2) 10	(3) 8	. (4) 12
35.		ning amino acids are	deficient in:	
	(1) rice		(3) maize	(4) wheat
	(-)		(6)	(Continued)

36. Cereal proteins are deficient in	:
(1) Lysine (2) methionir	ne (3) leucine (4) valine
37. Oils become rancid due to:	
(1) palmitic acid	(2) oleic acid
(3) erucic acid	(4) linolenic acid
38. Biodegradable plastic is:	
(1) a bacterial product	(2) a plant product
(3) an animal product	(4) a petroleum product
39. Aphids do not:	*
(1) reproduce asexually	(2) attack cotton
(3) feed on tissues	(4) transmit viruses
0. Stem rust of wheat is caused by:	
(1) Puccinia recondita	(2) Puccinia graminis
(3) Puccinia striiformis	(4) Puccinia triticina
1. Consumption of grains infected by	which of the following may cause abortion?
(1) Bunt (2) Rust	(3) Ergot (4) Sept
, (7) (Turn Over)

42.	Eukaryotic chrom	atin is composed of	:		
	(1) DNA+RNA		(2) RNA + proteins		
	(3) DNA + protein	ns .	(4) DNA + proteins	s+RNA	
43.	The eukaryotic ch	romatin fiber has the	e diameter of:		
	(1) 100 Å	(2) 300 Å	(3) 250 Å	(4) 500 Å	
44.	The symbol n repr	resents:			
	(1) gametic chron	nosome complemen	t		
	(2) somatic chron	nosome complemen	t		
	(3) polyploid con-	dition			
	(4) genomic numb	ber		•	
45.	Lampbrush chron	nosomes are found in	1:		
	(1) pollen mother	r cells	(2) human sperm		
	(3) ascospores		(4) human oocytes	3	
46.	Somatic chromos	some pairing occurs	in:		
	(1) Dipteran saliv		(2) pollen grains	··· •	
	(3) root hairs		(4) trichomes		
	12. 51	(5	3)	(Continued)	

47.	Heterosis is	believed to involve:		
	(1) overdom	inance only		
	(2) overdom	inance, dominance ar	nd epistasis	
	(3) dominano	ce only		
	(4) overdomi	nance and dominanc	e only	
48.	Histones are	a regular component	of:	
	(1) bacterial	chromosomes	(2) bacteriophag	e chromosomes
	(3) plastid ch	romoscares	(4) animal chron	
19.	The term 'inbr	red' is not related to :	•	
	(1) maize	(2) rice	(3) pearl millet	(4) Brassings
50.	Each chromos	ome comprises a sing	de de la company	
	(1) S phase	(2) Gl phase	(3) prophase	(4) G2 these
1. 7	The lowest mag	gnitude of inbreeding	depression is observe	O Illiania
		pollinated crops		
(2	2) clonal crops	3		
(3) cross-polling	ated crops		
(4) self-pollinat	ed crops		
		70	T	Ψ
				(Turn Over)

52.	Hybrid varieties of commercial cultiva		owing crops were th	e first to be used for
	(1) Pearl millet	(2) Rice	(3) Maize	(4) Sorghum
53.	The term 'recurren	t parent' is related	to:	
	(1) backcross met	hod	(2) pedigree meth	od .
	(3) bulk method		(4) recurrent sele	ction
54.	The opaque-2 gen	e of maize improve	es:	
	(1) kernel appeara	nce	(2) protein conter	nt
	(3) endosperm ter	cture	(4) protein quality	y
55.	Breeder seed is pr	rogeny of:		
	(1) truthful seed		(2) certified seed	
	(3) nucleus seed		(4) foundation seed	
56	. In eukaryotic chr	omosomes, highly	repetitive DNA gene	rally occurs in:
	(1) bands of gian		(2) telomeres an	d centromeres
(3) chromomeres (4) only centre		(4) only centron	neres	
-	The Indian Instit	tute of sugarcane re	search is located in:	
5	(1) Lucknow	(2) Kanpur	(3) Coimbatore	(4) Shahjahanpur
	(I) Luckie		(10)	(Continued)

58. Neurospora is:		
(I) a fungus	(2) an animal	
(3) a bacterium	(4) an angiosperm	
59. Rhizobium forms nodules in:	4.	
(1) tomato (2) rice	(3) finger millet	(4) lentil
60. Bilirubin level in blood is elevated i	in:	
(1) hepatitis (2) gastritis	(3) encephalitis	(4) dengue
61. Atmospheric nitrogen is fixed by:		
(1) green algae	(2) only blue-green	algae
(3) bacteria and blue-green algae	(4) only bacteria	.,
62. The disease transmitted through water	er is :	
(1) hepatitis B	(2) hepatitis A	
(3) encephalitis	(4) dengue	
63. Orobanche attacks		•
(1) flowers	(2) leaves	
(3) leaves and flowers	(4) roots	
(11))	
		(Turn Over)

4. The fatty acid with antinutritional effects is:				
	(1) linolenic acid		(2) erucic acid	
	(3) linoleic acid		(4) oleic acid	
55,	Hypersensitive ho	st response is typic	cal of resistance to:	
	(1) obligate parasites		(2) facultative para	asites
	(3) facultative sap	rophytes	(4) saprophytes	
66.	Pythium spp. caus	se:	•	
	(1) leaf spot	(2) rust	(3) root rot	(4) mildew
67.	Tilletia indica car	ises:		
,	(1) karnal bunt of	wheat	(2) partial bunt of	rice
	(3) loose smut of barley		(4) loose smut of	
68	. Dysdercus cingu	latus generally atta	icks:	
	(1) rice	(2) sugarcane	(3) groundnut	(4) cotton
69	. The favourite for	od of lady beetles is	s:	
	(1) jassids	(2) aphids	(3) flies	(4) mealy bugs
70	o. Nymphs are pro-	duced by:		
	(1) Orthoptera	.(2).Diptera	(3) Coleoptera	(4) Lepidoptera
	(-)		(12)	(Continued)

71. The term 'pureline' is related to:		
(1) maize (2) sugarcane	(3) wheat	(4) potato
72. When the F ₁ from a cross is superphenomenon is called:	rior to the best va	rieties of the crop, the
(1) economic heterosis	(2) average het	erosis
(3) balanced heterosis	(4) heterobeltic	osis
73. The mutagenic effects of ultra violet	rays are due to:	
(1) DNA cross-linking	(2) ionization	
(3) chromosome breakage	(4) thymine dim	er formation
74. Heterochromatin stains deeply during		
(1) anaphase (2) linerphase	(3) telophase	(4) metaphase
75. Crossing over takes place during.		
(1) zygotene (2) leptotene	(3) pachytene	(4) diakinesis
76. Given below are the chief modes of inl	neritance:	· >
(I) Oligogenic (II) Polygenic	() + J topic	smic
Pick the correct option for the known	n modes of inher	ritance for disease
(1) (1), (III) (2) (7), (II) (III)	(3) (II), (III)	(4) (I), (II)
(13)		
		(Turn Over)

7.	The evolution of new	genes involve	s:		
	(1) duplication (2) deletion	(3) translocation	(4) inversion	
8.	Bt-cotton hybrids ar	e:			
	(1) virus resistant	5.	(2) disease resistar	nt	
	(3) herbicide resista	nt	(4) insect resistant		
19.	The first transgenic variety approved for commercial cultivation was improved for:				
	(1) herbicide resista	ince	(2) virus resistance	ė	
	(3) a quality trait		(4) drought resista	nce	
80.	Specific RNA molecules are detected by:				
	(1) ELISA		(2) Southern blotti	ing	
	(3) Western blottin	g	(4) Northern blott	ing	
81.	Antibodies are used	lin:			
	(1) Southern hybrid	lization	(2) Western blotti	ing	
	(3) Northern blotting		(4) Colony hybrid	fization	
82	32. Transposable elements were first discovered in :		discovered in:		
		(2) E. cui	(3) yeast	(4) Arabidopsis	
	(-)		(14)	(Continued)	

83. Southern hybridization does a	not use :
(1) gel electrophoresis	(2) restriction enzymes
(3) primers	(4) probes
84. Hargovind Khorana is known i	for:
(1) recombinant DNA	·
(2) chemical synthesis of a cor	mplete gene
(3) genetic transformation	
(4) endonucleases	
85. Consider the following compon	ents of genetic variance:
(I) Additive	(II) Dominance
(III) Additive x additive	(IV) Additive × dominance
Selection in a crop like rice will	be able to utilize :
(1) (I) and (TV)	(2) (1) and (11)
(3) (I), (II) and (IV)	(4) (I) and (III)
86. The Indian Institute of Pulses Res	earch is located in ;
(1) New Delhi (2) Kanpu	(3) Kamai (4) Varanasi
	(15)
	(Turn Over)

87.	A human individual with t	hree copies of chromosome 21 would show	:
	(1) Turner's syndrome	(2) Patau syndrome	
	(3) Down's syndrome	(4) Kleinfelter's syndrome	
88.	The 'grow-out' test for see	ed lots is a test for:	
	(1) genetic purity	(2) germination	
	(3) physical purity	(4) presence of disease	
89.	The genetic consequence	of asexual reproduction is:	
	(1) increased heterozygo	sity (2) increased homozygosity	
	(3) no change in genotyp	e (4) new genetic variation	
90.	Consider the following:		
	(I) Rooting of shoots (II) Suspension culture (III) Somatic embr	ryogenesis
	Auxin is used for:		
	(1) (l),(III)	(2) (I), (II), (III)	
	(3) (I), (II)	(4) (II), (III)	
91	. Micropropagation is a f	orm of:	
	(1) apomixis	(2) sexual reproduction	
	(3) parthenocarpy	(4) vegetative propagation	
		(16)	(Continued)

92.	Consider the followi	ng techniques :	
	(I) Meristem culture		(III) Protoplast fusion
	The techniques usefu	l in interspecific hybridiza	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
	(1) (II) and (III)	(2) (I) au	
	(3) (I) and (III)		II) and (III)
93.	Consider the following		ir) and (III)
	(I) Pathogens	(II) Insect pests	(III) Weeds .
1	Quarantine' aims at mi	inimizing the risk of entry	
	U (I) 1 cm	as are risk of entry	into the country of new:
,	(1) (I) and (II)	(2) (II) an	
	3) (I) and (III)	(4) (1), (11) and (TII)
94. T	Disarming' of Ti plasm	id refers to the deletion of	;- -
) T-DNA	C District .	•
(2) vir genes , ,	~*~	•
) genes for auxin and c		
	genes for opine synti	The state of the s	
95. The	e enzyme reverse trans	scriptase is used for the co	nstruction of:
	recombinant DNA	(2) cDNA III	
(3)	genomic library	(4) vectors	
	17	(17)	
			(Turn Over)

96.	Consider the fol	llowing organisms	:	
	(l) plants	(II) E. coli	(III) yeast	
	Plasmid is know	wn to occur in:		
	(1) (II), (III)		(2) (I), (II), (III)	
	(3) (I),(III)		(4) (I), (II)	
97	. Vernalization i	is related to :		
	(1) drought to	lerance	(2) heat shock	
	(3) cryoprese		(4) cold treatment	
99	8. The 'Dolly' sh	eep was a:		
	(1) cloned an		(2) hybrid animal	
	(3) sexual pro		(4) transgenic animal	
•	9. In plant cell	walls, pectin is pre	sent in:	
	(1) primary		(2) plasma lemma	
	(3) middle l		(4) secondary cell wall	
		asma lemma is ma	de up of:	
	(1) lipids		(2) proteins	
	(3) polysa	ccharides	(4) lipids and proteins	(Continued)
	Y * * * * * * * * * * * * * * * * * * *		(18)	(Commueu)

101. Off-season n	ursery of wheat is gro	wn at:	
(1) Cuttack	(2) Wellington	(3) Pusa	(4) Srinagar
102. The green rev	olution' was initiated	by semi-dwarf ve	trictics of:
(1) wheat	(2) rice	(3) maize	(4) sorghum
103. In plants, sperr	ns are produced by		
(1) meiosis in	pollen grains		
(2) mitosis in p	ollen grains		
(3) meiosis in p	ollen mother cells		
(4) mitosis in p	ollen mother cells		,
104. EEG monitors th	ne activity of :		
(1) lungs	(2) heart	(3) brain	(4) liver
105. 'Canola' quality o	il has :		Washington and Pro-
(1) 'zero' glucosir	nolate and 'zero' eruci	c acid	**· · · · · · · · · · · · · · · · · · ·
(2) 'zero' glucosin	-	The second second	
(3) 'zero' erucic ac	id only		
(4) 'zero' linolenic	acid only		*
	T19)		(Turn Over)

106. The spore associa	ated with sexual repro	duction is:	
(1) conidia	(2) sporangiospore	(3) pycniospore	(4) ascospore
107. A ring of four ch	romosomes at the firs	st metaphase of meio	sis suggests:
(1) deletion	(2) inversion	(3) translocation	(4) duplication
108. A new species is	produced by:		
(1) aneuploidy		(2) translocation	
(3) autopolyplo	idy	(4) allopolyploidy	
109. The spore produ	aced at the tip of speci	ial branches is:	
(1) sporangiosp	oores	(2) conidia	
(3) oidia		(4) ascospores	
110. Somacional var	riation is related to:		
(1) mutation	(2) hybridization	(3) heterosis	(4) segregation
111. The bulk method	od of breeding can be	used in:	
(1) a genetical	ly variable pureline of	fwheat	
(2) segregation	g generations of barle	ry .	
	ollinated variety of m	aize	
(4) a multilin	e variety of wheat		
		(20)	(Continued)

112. Insect parasitoids belong to:		
(1) Coleoptera (2) Orthoptera	(3) Lepidoptera	(4) Hymenoptera
113. The biocontrol agent Bacillus th	uringiensis is not effect	
(1) Lepidoptera (2) Coleoptera		(4) Diptera
114. Golgi bodies are concerned with	:	
(1) packaging of molecules	(2) cell division	***
(3) cell differentiation	(4) storage	
115. Grafting is generally used for vege	etative propagation of:	
(1) date palm (2) mango	(3) oil palm	(4) citrus
116. tRNA participates in:		
(1) RNA processing	(2) transcription	
(3) RNA editing	(4) translation	
17. The radiation with the lowest penetr	ration in biological tissu	es is :
(1) gamma-rays	(2) X-rays	
(3) β-rays	(4) fast neutrons	
(2	N,	
	•	(Turn Over)

118. Pyrilla is a pest of	:
---------------------------	---

- (1) sugarcane
- (2) cotton
- (3) cucurbits
- (4) rice

119. The 2n chromosome complement of barley has:

- (1) 7 chromosomes
- (2) 14 chromosomes
- (3) 18 chromosomes
- (4) 20 chromosomes

120. The equipment particle gun is used for:

(1) insect control

- (2) virus elimination
- (3) somatic hybridization
- (4) genetic transformation

B-1,900

ROUGH WORK रफ़ कार्य

अभ्यर्थियों के लिए निर्देश

(इस पुस्तिका के प्रथम आवरण-पृष्ठ पर तथा उत्तर-पत्र के दोनों पृष्ठों पर केवल नीली या काली बाल-प्याइंट पेन से ही लिखें)

- प्रश्न पुस्तिका भिलने के 30 मिनट के अन्दर ही देख लें कि प्रश्नपत्र में सभी पृष्ठ मौजूद हैं और कोई प्रश्न छूटा नहीं है । पुस्तिका दोषयुक्त पाये जाने पर इसकी सूचना तत्काल कक्ष-निरीक्षक को देकर सम्पूर्ण प्रश्नपत्र की दूसरी पुस्तिका प्राप्त कर लें ।
- परीक्षा भवन में लिफाफा रहित प्रवेश-पत्र के अतिरिक्त, लिखा या सादा कोई भी खुला कागज साथ में न लाये।
- 3. उत्तर-पत्र अलग से दिया गया है। इसे न तो मोड़ें और न ही विकृत करें। दूसरा उत्तर-पत्र नहीं दिया जायेगा, केवल उत्तर-पत्र का ही मूल्यांकन किया जायेगा।
- अपना अनुक्रमांक तथा उत्तर-पत्र का क्रमांक प्रथम आवरण-पृष्ठ पर पेन से निर्धारित स्थान पर लिखें।
- उत्तर-पत्र के प्रथम पृष्ठ पर पेन से अपना अनुक्रमांक निर्धारित स्थान पर लिखें तथा नीचे दिये घृतों को गाड़ा कर दें।जहाँ-जहाँ आवश्यक हो वहाँ त्रश्न-पुस्तिका का क्रमांक तथा सेट का नम्बर उचित स्थानों पर लिखें।
- औ, एम, आर, पत्र पर अनुक्रमांक संख्या, प्रश्न-पुस्तिका संख्या व सेट संख्या (यदि कोई हो) तथा प्रश्न-पुस्तिका पर अनुक्रमांक संख्या और ओ॰ एम॰ आर॰ पत्र संख्या की प्रविष्टियों में उपरिलेखन की अनुमति नहीं है ।
- उपर्युक्त प्रविष्टियों में कोई भी परिवर्तन कक्ष निरीक्षक द्वारा प्रमाणित होना चाहिये अन्यथा यह एक अनुचित साधन का प्रयोग माना जायेगा।
- प्रश्न-पुस्तिका में प्रत्येक प्रश्न के चार वैकल्पिक उत्तर दिये गये हैं। प्रत्येक प्रश्न के वैकल्पिक उत्तर के लिये आपको उत्तर-पत्र की सम्बन्धित पंक्ति के सामने दिये गये वृत्त को उत्तर-पत्र के प्रथम पृष्ठ पर दिये गये निर्देशों के अनुसार पेन से गाड़ा करना है।
- 9. प्रत्येक प्रश्न के उत्तर के लिये केवल एक ही वृत्त को गाइ। करें । एक से अधिक वृत्तों को गाइ। करने पर अथवा एक वृत्त को अपूर्ण भरने पर वह उत्तर गलत माना जायेगा।
- 10. स्यान दें कि एक बार स्याही द्वारा अंकित उत्तर बदला नहीं जा सकता है। यदि आप किसी प्रश्न का उत्तर नहीं देना चाहते हैं, तो सम्बन्धित पंक्ति के सामने दिये गये सभी वृत्तों को खाली छोड़ दें। ऐसे प्रश्नों पा शृत्य अंक दिये जायेंगे।
- 11. एक कार्य के लिये प्रश्न-पुस्तिका के मुखपृष्ठ के अन्दर वाले पृष्ठ तथा अंतिम पृष्ठ का प्रयोग करें।
- 12. परिक्षा के उपरान्त केवल ओ. एम. आर. उत्तर-पत्र परिक्षा भवन में जमा कर दें।
- 13. परीक्षा समाप्त होने से पहले परीक्षा भवन से बाहर जाने की अनुमति नहीं होगी।
- यदि कोई अध्यर्थी परीक्षा में अनुचित साधनों का प्रयोग करता है, तो वह विश्वविद्यालय द्वारा निर्धारित दंड का/की, भागी होगा/होगी।

