(To be filled up by the can	didate by blue/black ball-point pen)
Roll No.	
Roll No. (Write the digits in words)	2017
Serial No. of OMR Answer Sheet	
Day and Date	(Signature of Invigilator)

INSTRUCTIONS TO CANDIDATES

(Use only blue/black ball-point pen in the space above and on both sides of the Answer Sheet)

- Within 30 minutes of the issue of the Question Booklet, check the Question Booklet to ensure that
 it contains all the pages in correct sequence and that no page/question is missing. In case of faulty
 Question Booklet bring it to the notice of the Superintendent/Invigilators immediately to obtain a
 fresh Question Booklet.
- Do not bring any loose paper, written or blank, inside the Examination Hall except the Admit Card without its envelope.
- A separate Answer Sheet is given. It should not be folded or mutilated. A second Answer Sheet shall not be provided. Only the Answer Sheet will be evaluated.
- 4. Write your Roll Number and Serial Number of the Answer Sheet by pen in the space provided above.
- 5. On the front page of the Answer Sheet, write by pen your Roll Number in the space provided at the top, and by darkening the circles at the bottom. Also, wherever applicable, write the Question Booklet Number and the Set Number in appropriate places.
- No overwriting is allowed in the entries of Roll No., Question Booklet No. and Set No. (if any) on OMR sheet and also Roll No. and OMR Sheet No. on the Question Booklet.
- Any change in the aforesaid entries is to be verified by the invigilator, otherwise it will be taken as unfair means.
- 8. Each question in this Booklet is followed by four alternative answers. For each question, you are to record the correct option on the Answer Sheet by darkening the appropriate circle in the corresponding row of the Answer Sheet, by ball-point pen as mentioned in the guidelines given on the first page of the Answer Sheet.
- For each question, darken only one circle on the Answer Sheet. If you darken more than one circle or darken a circle partially, the answer will be treated as incorrect.
- 10. Note that the answer once filled in ink cannot be changed. If you do not wish to attempt a question, leave all the circles in the corresponding row blank (such question will be awarded zero mark).
- For rough work, use the inner back page of the title cover and the blank page at the end of this
 Booklet.
- 12. Deposit only the OMR Answer Sheet at the end of the Test.
- 13. You are not permitted to leave the Examination Hall until the end of the Test.
- 14. If a candidate attempts to use any form of unfair means, he/she shall be liable to such punishment as the University may determine and impose on him/her.

[उपर्युक्त निर्देश हिन्दी में अन्तिम आवरण-पृष्ठ पर दिये गए हैं]

[No. of Printed Pages: 20+2

Full Marks: 360

No. of Questions: 120

Time: 2 Hours

(1) Attempt as many questions as you can. Each question carries 3 marks. Note: One mark will be deducted for each incorrect answer. Zero mark will be awarded for each unattempted question. (2) If more than one alternative answers seem to be approximate to the correct answer, choose the closest one. In a certain code, 'PLANT' is written as '\$@2***. *VIELD' is written as 'β64@%'. How is DELAY written in that code language? (3) %42@ß (4) %4@2B (2) \(\beta4@2\%\) (1) B4*2% 2. How many meaningful English words can be formed with the letters ARILT using each letter only once in that word? (1) One (2) Two (3) Three (4) More than three 3. D said, "A's father is the only brother of my sister's son". How is A's father related to D? (2) Nephew (3) Aunt (1) Cousin (4) Uncle (46)(P.T.O.)

4.	If A is coded as 1, B is coded as 3, C is coded as 5 and so on, which of the following is the numerical value of the word FAZED?				of the						
	(1) 81	l	(2)	79		(3)	80		(4)	78	
5.		of the	followi	ng pairs	s of	Word	is have	the	same	relationshi	ip as
	(1) W	ATER : DI	RINK			(2)	LIGHT :	NIG	НТ		
	(3) F(OOD : HU	NGER			(4)	AIR: B	REAT	HE		
6.	100	es faster th V. Who ar					2	faste	er tha	n R. S types	faster
	(1) V		(2)	T		(3)	S		(4)	Data inadeq	uate
7.	Select	the missi	ing nu	mber from	n the	e give	n respon	nses	:		
				0,	7, 26	, 63,	5				
	(1) 12	24	(2)	98		(3)	148		(4)	188	
Direct alterna		Question N	o. 8 to 1	11) : Selec	et the	relat	ed letter	/word	l/num	ber from the	given
8.	Reaso	ning : Log	gic : : S	Science :	?						
	(1) Ev	volution	(2)	Facts		(3)	Laborat	ory	(4)	Scientists	
9.	Petal	: Flower :	: Bran	ch : ?						1.0	
	(1) B	ee	(2)	Office		(3)	Tree		(4)	Sports	
10.	EJOT	: KPUZ :	: CHM	IR : ?							
	(1) J	YTO	(2)	HMRW		(3)	INSX		(4)	LQVA	
(46)					2	2					

	(1) 27	(2)	81	(3) 243	(4) 99
12.	If the 4th d Saturday of	ay of a mo	onth is Mo ?	nday, what date	will it be 4 days after 3rd
	(1) 16	(2) 2	20	(3) 23	(4) 28
13.	Abhay moves left and mov from the sta	es ou km.	rinally, he	turns left and me turns right and w	oves 40 km. Again he turns 1000 km. How far is he
	(1) 70 km	(2)	00 km	(3) 50 km	(4) 40 km
14.	Find the odd	d number f	rom the gi	ven alternatives :	
			93, 86, 79	9, 72, 65, 59	
	(1) 93	(2) 7	9	(3) 72	(4) 59
15.	Select the m	issing num	ber from t	he given respons	es:
	Ţ	Name of the last	56 150		
	1	6 8	5 5		
	}	8 (5 9		
	L	32 3	7 7		
	(1) 25	(2) 3	4	(3) 39	(4) 40
16.	Artist is to P	ainting as	Senator is	to	
	(1) Attorney	(2) L	aw	(3) Fonucian	(4) Constituents
17.	A can do a pic	ece of work	in 24 days , e work in	while B alone can 8 days. C alone	do it in 16 days. With the
	(1) 48 days	(2) 42	2 days	(3) 36 days	(4) 32 days
(46)	3			3	oz days
10 April 10 April 1					(P.T.O.)

11. 5:625::3:?

18.	A train 700 m long is running at the speed of 72 km per hour. If it crosses a tunnel in 1 minute, then the length of the tunnel is						
	(1) 500 m	(2)	550 m	(3) 600 m	(4) 650 m		
19.	A trader lists cash paymen	his artic it. His ga	les 20% above in percent is	cost price and all	ows a discount of 10% on		
	(1) 5	(2)	6	(3) 7	(4) 8		
20.	The sides of length of the	a urlangl	e are in the re t side is	atio $\frac{1}{3}$: $\frac{1}{4}$: $\frac{1}{5}$ and it	s perimeter is 94 cm, the		
	(1) 18·4 cm	(2)	22.5 cm	(3) 23·2 cm	(4) 24 cm		
21.	A mixture of should be a	40 litres dded to t	of milk and w	vater contains 10% ater may be 20%	% water. How much water in the new mixture?		
	(1) 5 litres	(2)	5.5 litres	(3) 6 litres	(4) 8 litres		
22.	The profit of	a comp	any is given b	pelow:			
		Year	Profit (in cror	res of Rs)			
		2001	5.2	1			
		2002	6.5				
		2003	7.8	1			
		2004	9.9				

In how many years, the profit was above the average?

10.8

9.5

11.4

(1) 2

(2) 3

2005

2006

2007

(3) 4

(4) 5

23. The loan disbursed by 5 banks for three years are given below:

Dombo		Years	
Banks	2005	2006	2007
A	23	45	30
В	33	18	41
C	29	22	19
D	16	28	32
E	19	27	34

What was the percentage increase of disbursement of loans of all banks together from 2005 to 2007?

111 10	18.7%		
(1) 10	(2) 20	(3) 30	(4) 23 13

24. Fare by bus and car are Rs 5 and Rs 14 per km respectively. A man who travels 220 km spends Rs 2,270 in going a part of distance by bus and the remaining in car. How many km did he travel in car?

25. The surface area of a sphere is same as the total surface area of a cylinder whose height is 4 cm and the diameter of the base is 8 cm. Then the radius of the sphere is

26. Production of a company in 2012 was 468 tonnes. If it increases by 15% in the first year and decreases by 8% in the second year, then the production of the

(1) 500-76	(2) 495.14	(8) 493-875	(4) 487-14
(46)		5		. ,, 14

Directions (Question No. 27 to 29): Three of the following four are alike in a certain way and so form a group. Which is the one that does not belong to the group?

- 27. (1) Spain
- (2) Croatia
- (3) Italy
- (4) Brazil

- 28. (1) Phoenix
- (2) Miami
- (3) Nashville
- (4) Boston

29. (1) Basic

(1) 9

- (2) Barley
- (3) Fortran
- (4) Cobol
- 30. Which number replaces the question (?) mark?

(2) 7

(3) 8

(4) 13

31. Which number replaces the question (?) mark?

(1) 20

(2) 24

(3) 12

(4) 16

32. Find the number of triangles in the following figure:

(1) 11

(2) 13

(3) 15

(4) 17

6

(46)

33. Find the missing number from the given responses :

20160	4/
?	4
480	24 8

744	000
(1)	860
1 4 1	OUU

(4) 3240

The missing term in the series $11\frac{1}{9}$, $12\frac{1}{2}$, $14\frac{2}{7}$, $16\frac{2}{3}$, ? is

(1)
$$8\frac{1}{3}$$

(2)
$$19\frac{1}{2}$$

(4) 221

A cube painted yellow on all faces is cut into 27 small cubes of equal size. How many small cubes are painted on one face only?

(1) 1

(2) 6

(3) 8

(4) 12

36. What number must be added to the numbers 3, 7 and 13 so that they are in a continued proportion?

(1) 5

(2) 6

(3) 7 . (4) 8

37. The radii of two cylinders are in the ratio of 2:3 and their heights are in the ratio 5:3. The ratio of their volumes is

(1) 27:20

(2) 20:27

(3) 4:9

(4) 9:4

38. If the height of a cone is doubled, then its volume is increased by

(1) 100%

(2) 200%

(3) 300%

(4) 400%

The greatest number of four digits which is divisible by each one of the numbers

(1) 9848

(2) 9864

(3) 9828

(4) 9636

(46)

^{(2) 1140}

40. Find the odd one from the following:

253, 136, 352, 460, 324, 631, 244

- (1) 136
- (2) 324
- (3) 352
- (4) 631
- 41. If log 27 = 1.431, then the value of log 9 is
 - (1) 0.934
- (2) 0.945
- (3) 0.954
- (4) 0.958
- **42.** The value of $\left(\frac{1}{\log_3 60} + \frac{1}{\log_4 60} + \frac{1}{\log_5 60}\right)$ is
 - (1) 0
- (2) 1
- (3) 5
- (4) 60
- 43. If $\log_{10} 5 + \log_{10} (5x+1) = \log_{10} (x+5) + 1$, then x is equal to
 - (1) 1
- (2) 3
- (3) 5
- (4) 10
- **44.** Solve for x: -9x+5<17 and 13x+25<-1
 - (1) x < -2 or $x > -\frac{4}{3}$
- (2) x < -2

(3) $x > -\frac{4}{3}$

- (4) there are no solutions
- 45. Choose the correct solution that best describes the following inequality:

 $\frac{5x-32}{2} > 9$ and $\frac{1}{3}(12x-21) < 9$

(1) x < 4

(2) $x \le 4$ or x > 10

(3) x < 4 or x > 10

(4) x > 10

(46)

8

46.	If $ 3-x <10$, then all values of x which make this inequality true is					
	(1) $\{x \mid x \in (-7, 1]\}$	3)}	(2) $\{x \mid x \in (-7, 7)\}$)}		
	(3) $\{x \mid x \in \{-13,$	13)}	(4) $\{x \mid x \in (-13, 10)\}$	7)}		
47.	If the matrix A = and c are	$\begin{bmatrix} 0 & a & 3 \\ 2 & b & 1 \\ c & 1 & 0 \end{bmatrix}$ is a skew	v-symmetric matrix	, then the values of a, b		
	(1) (2, 0, 3)	(2) (-2, 0, -3)	(3) $(2, 0, -3)$	(4) (-2, 0, 3)		
48.	If A is a square the identity mat		$a^2 = A$, then the value	te of $(I + A)^3$, where I is		
	(1) $7A + I$	(2) $3A + 2I$	(3) $4A + 3I$	(4) 7A + 2I		
49.	If $A = \begin{pmatrix} 1 & 2 \\ 4 & 1 \end{pmatrix}$, the	n the value of A^2	+2A -5I is			
	$(1)\begin{pmatrix}6&8\\16&6\end{pmatrix}$	$(2)\begin{pmatrix}6&16\\8&6\end{pmatrix}$	$(3)\begin{pmatrix}11&8\\16&11\end{pmatrix}$	$(4)\begin{pmatrix}11&16\\8&11\end{pmatrix}$		
50.	If A is a 3 × 3 non equals (I is the	-singular matrix su identity matrix)	ch that AA' = A'A a	$\operatorname{nd} B = A^{-1} \cdot A', \text{ then } BB'$		
	(1) I+B	(2) I	(3) B^{-1}	(4) $(B^{-1})'$		
51.	If $A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ a & 2 & b \end{bmatrix}$	is a matrix satisfy	ing the equation A	$A' = 9I$, where I is 3×3		
	identity matrix,	nen ordered pair	arb) is equal to			
	(1) $(-2,1)$	(2) (2.1)	(3) $(-2, -1)$	(4) (2, -1)		
46)		9		(P.T.O.)		

- **52.** If $A = \begin{bmatrix} 2 & 1 & 3 \\ 3 & 1 & 2 \\ 1 & 2 & 3 \end{bmatrix}$, then (adj A) A is (where adj is adjoint) (1) 4I (2) 5I (3) 6I (4) 8I

- 53. The value of $\begin{vmatrix} a+b & a & b \\ a & a+c & c \\ b & c & b+c \end{vmatrix}$ is

 (1) abc (2) 4abc (3) $a^2b^2c^2$ (4) $4a^2b^2c^2$

- The system given by 2x y + 3z = 4, x + y 3z = -1 and 5x y + 3z = 7 has 54.
 - (1) no solution

(2) one solution

- (3) two solutions
- (4) infinite number of solutions
- If the equations x = ay + z, y = z + ax, z = x + y are consistent (have non-zero solution), then
 - (1) $a^2 + a = 1$ (2) $a^3 + 1 = 0$ (3) $a^3 1 = 0$ (4) $a^2 = 2$

- 56. If $\begin{vmatrix} 0 & c & b \\ c & 0 & a \\ b & a & 0 \end{vmatrix}^2 = pa^2b^2c^2$, then the value of p is
 - (1) 4
- (2) 3
- (3) 2
- (4) 1
- If x, y, z (all are non-zero) are in AP and tan-1 x, tan-1 y and tan-1 z are also in AP, then
 - (1) 2x = 3y = 6z (2) 6x = 3y = 2z (3) 6x = 4y = 3z (4) x = y = z

58.	If the 2nd, 5th a ratio of this GP	ad 9th terms of a n is	on-constant AP are	in GP, then the common
	(1) $\frac{8}{5}$	(2) 1	(3) $\frac{4}{3}$	(4) $\frac{7}{4}$
59.	Three positive nu doubled, the new	umbers form an inc w numbers are in	creasing GP. If the r	middle term in this GP is non ratio of the GP is
	(1) $\sqrt{2} + \sqrt{3}$	(2) $3 + \sqrt{2}$	(3) 3 - √3	(4) $2 + \sqrt{3}$
60.	If m is AM of two three geometric	distinct real numb means between p	hers p and q (p , q > and q , then $G_1^4 + 2$	1) and G_1 , G_2 and G_3 are $G_2^4 + G_3^4$ equals
	(1) $4pm^2q$	(2) $4 pmq^2$	(3) $4p^2m^2q^2$	$(4) 4p^2mq$
61.	The nth term of	the following sequ	ence 5 + 55 + 555 +	··· is
	(1) $5(10^n-1)$	(2) $5^n(10^n-1)$	(3) $\left(\frac{5}{9}\right)(10^n - 1)$	(4) $\left(\frac{5}{9}\right)^n (10^n - 1)$
62.	The term indepen	adent of x in $\left(x^2 - \frac{1}{x^2}\right)$	$\left(-\frac{1}{x}\right)^{12}$ is	
	(1) 275	(2) 355	(3) 495	(4) 512
63.	The term which i $x = 1$, $y = 2$ is	s numerically grea	itest in the expansi	ion of $(2x-3y)^{12}$, when
	(1) 9th	(2) 10th	(3) 11th	(4) 12th
64.	The sum of the e	ven powers of x in	the expansion of	$(1+x+x^2)^{15}$ is
	-15	(2) $\frac{3^{15}-1}{2}$	(0) 000-	(4) 10220
(46)		11		
				(P.T.O)

 $c_0 + c_2 + c_4 + c_6 + c_8 =$

	(1) 2 ⁷	(2) 256	(3) 29	(4) 258
66.	If $x = \frac{1}{5} + \frac{1.3}{5.10} + \frac{1}{5}$	1.3.5 .10.15 + ···, then 3.	$x^2 + 6x =$	
	(1) 0	(2) 1	(3) 2	(4) -1
67.	The number of wa	ys of distributing 8 is empty is	dentical balls in 3	distinct boxes so that
	(1) 5	(2) 21	(3) 3 ⁸	(4) 8c_3
68.	A polygon has 54 formed using the	diagonals. The total	al number of distinct	et triangles that can be
	(1) 220	(2) 165	(3) 286	(4) 216
69.	Number of divisor	rs of the form 4n+	$-2(n \ge 0)$ of the int	teger 240 is
	(1) 4	(2) 8	(3) 10	(4) 3
70.	The value of 50 c	$r + \sum_{r=1}^{6} \frac{56-r}{c_3}$ is		•
	(1) $^{55}c_4$	(2) $^{55}c_3$	(3) $^{56}c_3$	(4) 56 C ₄
71.	How many ways vowels in alphab	are there to arrang etical order?	e the letters in the	word GARDEN with the
	(1) 120	(2) 240	(3) 360	(4) 480
72.		ays in which 6 meare to sit together,	10 B. 102	dine at a round table, if
	(1) 30	(2) 51×51	$(3) 5! \times 4!$	(4) 71×51
(AE)			12	
(46)				
		*		

65. If c_0, c_2, c_4, \cdots are the binomial coefficients in the expansion of $(1+x)^9$, then

73.	If repetition of the digits is allowed, then the number of even natural numbers having three digits is							
	(1) 250	(2)	350	(3)	450	(4)	550	
74.	If $^{n}c_{r-1}=36$,	ⁿ c, = 84	and "c,	=126, ti	hen r is			
	(1) 1	(2)	2	(3)	3	(4)	4	
75.	A five digit nu and 5 without	mber div repetitio	isible by n. The to	3 is to be i	ormed usi	ng the nu in which t	merals 0, his can be	1, 2, 3, 4 done is
	(1) 216		600		240		3125	
76.	The number of 3, 5, 6, 7 and	f integer	s greater out repe	r than 600 tition is	0 that can	be forme	d, using t	the digits
	(1) 192	(2)	120	(3)	72	(4)	216	
77.	If $x^2 - 7x + a$	has a re	mainder	1 when d	ivided by	x+1, the	n	
	(1) $a = -7$		a = 7		$\alpha = 0$	2000	a = 1	
78.	If $a < 0$, then	function	f(x) = c	$ax^2 + bx + a$	has a m	aximum v	alue at	
	$(1) x = \frac{a}{2b}$					(4)		
79.	If α and β are	roots of	x^2-2x	+3=0, the	en equatio	n with ro	ots $\frac{1}{\alpha}$, $\frac{1}{\alpha}$	is
	(1) $x^2 - 6x + 11$	l = 0		(2)	$x^2 + 6x - 1$ $3x^2 - 2x + 1$	1 = 0	a p	
	(3) $x^2 - 11x + 6$	=0		(4)	$3x^2 - 2x +$	I = 0		
(46)				13				(D.T.o.
								(P.T.O.)

80.	If $a \in R$ and the equation $-3(x-[x])^2 + 2(x-[x]) + a^2 = 0$ (where $[x]$ denotes the greatest integer $\le x$) has no integral solution, then all possible values of a lie in the interval						
	(1) $(-1,0)\cup(0,1)$		(2)	(1, 2)			
	(3) (-2, -1)		(4) $(-\infty, -2) \cup (2, \infty)$				
81.	Let α and β be the			-6x - 2 = 0. If a	t _n =	$=\alpha^n-\beta^n$, for $n\geq 1$,	
	(1) -6	(2) 3	(3)	-3	(4)	6	
82.	The value of a for $x^2 - (a-2)x - a -$	which the sum of 1 = 0 assume the l	the east	squares of the	roc	ots of the equation	
	(1) 1	(2) 0	(3)	3	(4)	2	
83.	If the roots of the b^2-4c equals	equation $x^2 - bx$	+ c =	0 be two cons	ecu	itive integers, then	
	(1) -2	(2) 3	(3)	2	(4)	1	
84.	Let $R = \{(3, 3), (6, 0), (6,$	6), (9, 9), (12, 12), 6, 9, 12}. The relat	(6, 1) tion	2), (3, 9), (3, 12) is	, (3	s, 6)} be a relation	1
	(1) reflexive and transitive			(2) reflexive only			
	(3) an equivalence	e relation	(4)	reflexive and	syn	nmetric only	
85.	The relation R is				e set $A = \{1, 2, 3, 4\}$		
	(1) a function (3) not symmetri	ic	(2)				
100	(~)		4				
(46)							

86. The range of the function $f(x) = {}^{7-x}P_{x-3}$ is

- (1) {1, 2, 3}
- (3) { 1, 2, 3, 4 }
- (4) { 1, 2, 3, 4, 5}

87. If $f: R \to S$ defined by $f(x) = \sin x - \sqrt{3}\cos x + 1$ is onto, then the interval of S is

- (1) [0,3] (2) [-1,1] (3) [0,1] (4) [-1,3]

88. The domain of definition of the function $y = \frac{1}{\log_{10}(1-x)} + \sqrt{x+2}$ is

- (I) (-3, -2) excluding -2.5 (2) [0,1] excluding 0.5
- (3) [-2,1] excluding 0 (4) [1,2] excluding 1.5

89. If $g[f(x)] = |\sin x|$ and $f[g(x)] = (\sin \sqrt{x})^2$, then

- (1) $f(x) = \sin^2 x$, $g(x) = \sqrt{x}$ (2) $f(x) = \sin x$, g(x) = |x|
- (3) $f(x) = x^2$, $g(x) = \sin \sqrt{x}$ (4) f and g cannot be determined

90. If f(x) = 3x - 5, then $f^{-1}(x)$

- (1) is given by $\frac{1}{3x-5}$
- (2) is given by $\frac{x+5}{3}$
- (3) does not exist because f is not one one
- (4) does not exist because f is not onto

(46)

15

91.	The domain of $2^x + 2^y = 2$ is	definition of the f	unction $y(x)$ as g	iven by the equation		
	(1) $0 < x \le 1$	(2) $0 \le x \le 1$	$(3) -\infty < x \le 0$	$(4) -\infty < x < 1$		
92.	If $E = \{1, 2, 3, 4\}$ as	$\operatorname{nd} F = \{1, 2\}, \text{ then then } f$	he number of onto fo	unctions from E to F is		
	(1) 14	(2) 16	(3) 12	(4) 8		
93.	If z is a complex n	umber such that z	≥2, then the minir	num value of $z + \frac{1}{2}$		
	(1) is equal to $\frac{5}{2}$		(2) lies in (1, 2)			
	(3) is strictly gre	ater than $\frac{5}{2}$	(4) lies in (0,1)			
94.	A value of 0 for which $\frac{2+3i\sin\theta}{1-2i\sin\theta}$ is purely imaginary is					
	(1) $\frac{\pi}{6}$	$(2) \sin^{-1}\left(\frac{\sqrt{3}}{4}\right)$	(3) $\sin^{-1}\left(\frac{1}{\sqrt{3}}\right)$	$(4) \frac{\pi}{3}$		
95.	The argument of	the complex numl	ber $\frac{1+2i}{1-3i}$ is			
	$(1) \frac{\pi}{4}$	$(2) \frac{3\pi}{4}$	(3) $\frac{5\pi}{9}$	(4) 2π		
96.	Area of the triang	gle formed by the th	ree complex numbe	rs $1+i$, $1-i$ and $2i$ in the		
	(1) $\frac{1}{2}$	(2) 1	(3) √2	(4) 2		
97.	If $z = \cos\theta + i \sin\theta$	$a \theta$, then $\frac{z^{2n}-1}{z^{2n}+1} =$				
	(1) $\cos n\theta$	(2) $\sin n\theta$	(3) $-i \sin n\theta$	(4) $-i \tan n\theta$		
(46)			16			

collegedunia

9 8.	If the circles $x^2 + y^2 = a$ and $x^2 + y^2 - 6x - 8y + 9 = 0$ touch externally, then $a =$						
	(1) 1	(2) -1	(3) 21		16		
99.	The area of $x^2 + y^2 - 6x - 8y$	an equilateral -25 = 0 is	triangle	inscribed	in the cir	rcle	
	(1) $\frac{225\sqrt{3}}{6}$	(2) 25π	(3) 50π –10	00 (4)	225		
100.	900. A circle S passes through the point $(0,1)$ and is orthogonal to the $(x-1)^2 + y^2 = 16$ and $x^2 + y^2 = 1$. Then						
	(1) radius of S is	. 8	(2) radius	of S is 7			
	(3) centre of S is	(4) centre of S is (-9,1)					
101.	The length of the	latus-rectum of the	he parabola 4	y^2+2x-2	0y + 17 = 0 is		
	(1) 3	(2) 6	(3) $\frac{1}{2}$		U		
102.	The equation to the common tangent of $y^2 = 2x$ and $x^2 = 16y$ is						
	(1) x + 2y - 2 = 0	(2) $x+2y+2=0$	(3) $x + 2y =$	0 (4)	2x + y - 4 = 0		
103.		f the ellipse $9x^2 +$	$25y^2 - 18x - 1$	00y ~116 =	0 is		
	(1) $\frac{25}{16}$	(2) 4/5	(3) $\frac{16}{25}$	(4)	<u>5</u>		
104.	The minimum area (in sq. units) of triangle formed by the tangent to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ and coordinate axes is						
	(1) ab	$(2) \frac{a^2+b^2}{2}$	$(3) \frac{(a+b)^2}{2}$	(4) 9	$\frac{ab+b^2}{2}$		
(46)		17			3		

			- 14	
105.	The eccentricity	of the hyperbola x	$=\frac{a}{2}\left(t+\frac{1}{t}\right), \ y=\frac{a}{2}\left(t+\frac{1}{t}\right)$	$\left(-\frac{1}{t}\right)$ is
	(1) $\sqrt{2}$	(2) √3	(3) 2√3	(4) 3√2
106.	If the line $2x + \sqrt{2}$ contact is	6y = 2 touches the	hyperbola $x^2 - 2y$	² = 4, then the point of
El .	(1) (-2, √6)	(2) $(-5, 2\sqrt{6})$	(3) $\left(\frac{1}{2}, \frac{1}{\sqrt{6}}\right)$	(4) $(4, -\sqrt{6})$
107.	Two dicc are the	rown simultaneous product is	sly. What is the pr	robability of getting two
	(1) $\frac{3}{4}$	(2) $\frac{1}{4}$	(3) $\frac{7}{4}$	(4) $\frac{1}{2}$
108.	A speaks truth	in 75% of cases an	d B in 80% of case	s. In what percentage of

The probability of a razor blade to be defective is 0.002, the blades are in packet of 10. The number of packets containing no defective blades in a stock of 109. 10000 packets is

cases are they likely to contradict each other, narrating the same incident?

(3) 35

(1) 2000

(1) 30

(2) 9802

(2) 32

- (3) 9950
- (4) 8000

(4) 40

The minimum number of times a fair coin needs to be tossed, so that the probability of getting at least two heads is at least 0.96 is 110.

- (1) 4
- (2) 6
- (3) 8
- (4) 10

111.	A six faced fair dice is thrown until 1 comes, then the probability that 1 comes in even no. of trials is							
	(1) $\frac{5}{11}$	(2) $\frac{5}{6}$	(3) $\frac{6}{11}$	(4) $\frac{1}{6}$	9			
112.	A determination of order 2 with chosen is no	with elements 0 a	andom from the set of and 1 only. The prote	all determinants	of matrices determinant			
	(1) $\frac{3}{16}$	(2) $\frac{3}{8}$	(3) $\frac{1}{4}$	(4) $\frac{2}{7}$				
113.	For $x \in R$, $f($	$ x\rangle = \log 2 - \sin x $	and $g(x) = f(f(x))$)). then				
	(1) $g'(0) = cc$	os (log 2)	(2) $g'(0) = -$	(2) $g'(0) = -\cos(\log 2)$				
	(3) $g'(0) = -$	sin (log 2)	(4) g is not	differentiable at	x = 0			
114.	If a curve y	f(x) passes three	ough the point (1, -1)	and satisfies the	differential			
	equation y (1	+ xy) dx = xdy, t	then $f\left(-\frac{1}{2}\right)$ is equal	to				
	(1) $-\frac{4}{5}$	(2) $\frac{2}{5}$	(3) $\frac{4}{5}$	(4) $-\frac{2}{5}$				
115.	Let $y(x)$ $(x \log x) \frac{dy}{dx} +$	be the $y = 2x \log x$, (x	solution of the ≥ 1) Then $y(e)$ is eq	differential	equation			
	(1) 0	(2) 2	(3) 2e	(4) e				
116.	$\lim_{x\to 0} \frac{(1-\cos 2x)}{x}$	$\frac{(x)(3+\cos x)}{\tan 4x}$ is $\frac{1}{2}$	equal to		5/			
	(1) 3	(2) 2	(3) 1	(4) $\frac{1}{4}$				
46)			19	, 4				
					(P.T.O.)			

- 117. The area (in sq. units) of the region described by $\{(x, y): y^2 \le 2x \text{ and } y \ge 4x 1\}$ is

 - (1) $\frac{5}{64}$ (2) $\frac{15}{64}$ (3) $\frac{9}{32}$ (4) $\frac{7}{32}$

- 118. The integral $\int \frac{dx}{x^2(x^4+1)^{3/4}}$ equals
 - (1) $(x^4+1)^{1/4}+c$

(2) $-(x^4+1)^{1/4}+c$

(3) $-\left(\frac{x^4+1}{x^4}\right)^{1/4}+c$

- (4) $\left(\frac{x^4+1}{x^4}\right)^{1/4}+c$
- 119. The value of integral $\int_0^{\pi/2} \log \tan x \, dx$ is

 - (1) π (2) $\frac{\pi}{2}$ (3) $\frac{\pi}{3}$
- (4) 0

- 120. If $f(x) \int_0^x t \sin t \, dt$, then f'(x) is
 - (1) $\cos x + x \sin x$

(2) x sin x

(3) $x \cos x$

(4) $\frac{x^2}{2}$

**

अभ्यर्थियों के लिए निर्देश

(इस पुस्तिका के प्रथम आवरण-पृष्ठ पर तथा उत्तर-पत्र के दोनों पृष्ठों पर केवल नीली या काली बाल-प्वाइंट पेन से ही लिखें)

- 1. प्रश्न पुस्तिका मिलने के 30 मिनट के अन्दर ही देख लें कि प्रश्नपत्र में सभी पृष्ठ मौजूद हैं और कोई प्रश्न छूटा नहीं है। पुस्तिका दोषयुक्त पाये जाने पर इसकी सूचना तत्काल कक्ष-निरीक्षक को देकर सम्पूर्ण प्रश्नपत्र की दूसरी पुस्तिका प्राप्त कर लें।
- 2. परीक्षा भवन में लिफाफा रहित प्रवेश-पत्र के अतिरिक्त, लिखा या सादा कोई भी खुला कागज साथ में न लायें।
- उत्तर-पत्र अलग से दिया गया है। इसे न तो मोड़ें और न ही विकृत करें। दूसरा उत्तर-पत्र नहीं दिया जायेगा, केवल उत्तर-पत्र का ही मूल्यांकन किया जायेगा।
- अपना अनुक्रमांक तथा उत्तर-पत्र का क्रमांक प्रथम आवरण-पृष्ठ पर पेन से निर्धारित स्थान पर लिखें।
- 5. उत्तर-पत्र के प्रथम पृष्ठ पर पेन से अपना अनुक्रमांक निर्धारित स्थान पर लिखें तथा नीचे दिये वृतों को गाढ़ा कर दें। जहाँ-जहाँ आवश्यक हो वहाँ प्रश्न-पुस्तिका का क्रमांक तथा सेट का नम्बर उचित स्थानों पर लिखें।
- 6. औ० एम० आर० पत्र पर अनुक्रमांक संख्या, प्रश्न-पुस्तिका संख्या व सेट संख्या (यदि कोई हो) तथा प्रश्न-पुस्तिका पर अनुक्रमांक सं० और ओ० एम० आर० पत्र सं० की प्रविष्टियों में उपिरलेखन की अनुमित नहीं है।
- उपर्युक्त प्रविष्टियों में कोई भी परिवर्तन कक्ष निरीक्षक द्वारा प्रमाणित होना चाहिये अन्यथा यह एक अनुचित साधन का प्रयोग माना जायेगा।
- 8. प्रश्न-पुस्तिका में प्रत्येक प्रश्न के चार वैकल्पिक उत्तर दिये गये हैं। प्रत्येक प्रश्न के वैकल्पिक उत्तर के लिये आपको उत्तर-पत्र की सम्बन्धित पंक्ति के सामने दिये गये वृत्त को उत्तर-पत्र के प्रथम पृष्ठ पर दिये गये निर्देशों के अनुसार पेन से गाढ़ा करना है।
- प्रत्येक प्रश्न के उत्तर के लिये केवल एक ही वृत्त को गाढ़ा करें। एक से अधिक वृत्तों को गाढ़ा करने पर अथवा एक वृत्त को अपूर्ण भरने पर वह उत्तर गलत माना जायेगा।
- 10. ध्यान दें कि एक बार स्याही द्वारा अंकित उत्तर बदला नहीं जा सकता है। यदि आप किसी प्रश्न का उत्तर नहीं देना चाहते हैं, तो सम्बन्धित पंक्ति के सामने दिये गये सभी वृत्तों को खाली छोड़ दें। ऐसे प्रश्नों पर शून्य अंक दिये जायेंगे।
- रफ़ कार्य के लिये प्रश्न-पुस्तिका के मुखपृष्ठ के अन्दर वाले पृष्ठ तथा अंतिम पृष्ठ का प्रयोग करें।
- परीक्षा के उपरान्त केवल ओ०एम०आर० उत्तर-पत्र परीक्षा भवन में जमा कर दें।
- परीक्षा समाप्त होने से पहले परीक्षा भवन से बाहर जाने की अनुमित नहीं होगी।
- यदि कोई अभ्यर्थी परीक्षा में अनुचित साधनों का प्रयोग करता है, तो वह विश्वविद्यालय द्वारा निर्धारित दंड का/की, भागी होगा/होगी।

