Sample Paper

Time: 90 Minutes Max. Marks: 40

General Instructions

- 1. The Question Paper contains three sections.
- 2. Section A has 24 questions. Attempt any 20 questions.
- Section B has 24 questions. Attempt any 20 questions. 3.
- 4. Section C has 12 questions. Attempt any 10 questions.
- 5. All questions carry equal marks.
- 6. There is no negative marking.

	SECTION-A									
	ion – uated		estion	s. Attempt any 20 quest	ions f	rom this section. The first	attem	pted 20 questions would be		
1.	Wh	Which of the following flower petals can be used as an indicator								
	(1)	Petunia	(2)	Hydrangea	(3)	Geranium	(4)	Cabbage		
	(5)	Hibiscus								
	(a)	1,2,4	(b)	2,3,5	(c)	1,2,4,5	(d)	1,2,3,4		
2.	The	e correct order of incre	easing	g chemical reactivity is –						
	(a)	$Zn \le Fe \le Mg \le K$	(b)	Fe < Mg < Zn < K	(c)	Fe < Mg < K < Zn	(d)	Fe < Zn < Mg < K		
3.	Wh	ich of the following is a redox rea		lox reaction(s)?						
	(a) $BaCl_2 + H_2SO_4 \rightarrow BaSO_4 + 2HCl$				(b)	$H_2SO_4 + 2NaOH \rightarrow 2Na_2SO_4 + 2H_2O$				
	(c) $CH_3COOH + C_2H_5OH \rightarrow CH_3COOC_2H_5 + H_2O$				(d)	$2\text{FeCl}_3 + \text{SnCl}_2 \rightarrow 2\text{FeCl}_2 + \text{SnCl}_4$				
4.	The pH?	-	of soil X is 7.5 while that of soil Y is 4.5. Which of the two solil, should be treated with powdered chalk to adjust							
	(a)	X only	(b)	Yonly	(c)	Both X and Y	(d)	none of these		
5.	The	e elements preserved i	n ker	osere and water respecti	vely a	re				
	(a)	Ca, Na	(b)	A1, P	(c)	Na, P	(d)	Hg, Br		
6.	Wh	ich of the following is	an ex	othermic reation?						
	(a) Decomposition of AgCl in light									
	(b) Dissolution of amononium chloride									
	(c)	Diisolution of H ₂ SO		vater						
	(d)	Electrolysis of water								
7.	Ant	acids contain –								
	(a)	weak base	(b)	weak acid	(c)	strong base	(d)	strong acid		
8.	Al_2	O ₃ reacts with								
	(a)	only water	(b)	only acids	(c)	only alkalis	(d)	both acids and alkalis		

Sample Paper-8 sp.55

9. Which of the following observations made by her is incorrect?

- (a) The coloured crystals changes from light green to white.
- (b) Ferous sulphate crystals lose water of crystallisation to form anhydrous ferrous sulphate.
- (c) Anhydrous ferrous sulphate decomposes to from one solid and one gaseous product.
- (d) The gaseous products are acidic in nature.
- 10. Plaster of paris is made from
 - (a) lime stone
- (b) slaked lime
- (c) quick lime
- (d) gypsum
- 11. The given figure shows a section of small intestine. What is the function of structure marked as I in the given figure.

- (a) Duodenum Proximal part of small Intestine.
- (b) Jejunum bear finger like projections called villi.

(c) Ileum -Club-shaped Villi

- (d) Villi Transport fats
- 12. Identify the given diagram of human respiratory system. What is the function of structure marked as X?

- (a) To prevent food from entering in to trachea.
- (c) To help in exchange of gases

- (b) To filter & warm the air
- (d) To catch dust & bacteria.

- 13. During deficiency of oxygen in tissues of human beings, pyruvic acid is converted into lactic acid in the
 - (a) cytoplasm
- (b) chloroplast
- (c) mitochondria
- (d) golgi body
- **14.** In the following sketch of stomatal apparatus, parts I, II, III and IV were labelled differently by four students. The correct labelling is:

- (a) I-guard cell, II-stroma, III-starch granule, IV-nucleus (b)
-) I-cytoplasm II-nucleus, III-stroma, IV-chloroplast
- (c) I-guard cell, II-starch, III-nucleus, IV-stroma
- (d) I-cytoplasm, II-chloroplast, III-stroma, IV-nucleus
- **15.** The label X represents that function in

- (a) vasa recta -Reabsorption of water, minerals & digestive end products.
- (b) Henle's loop Filtration of plasma leaving the blood.
- (c) vasa recta Filtration of plasma leaving the blood.
- (d) Henle's loop Reabsorption of water minerals and digestive end products.
- **16.** In the given figure, label A represents while label B represents

- (a) A Trachea, B Bronchus
- (c) A Bronchiole, B Trachea

- (b) A Alveolus, B Bronchiole
- (d) A Trachea, B Bronchiole

Sample Paper-8 sp-57

- 17. For reflection through spherical surfaces, the normal at the point of incidence is
 - (a) perpendicular to the principle axis and passes through the centre of curvature
 - (b) perpendicular to the focal plane and passes through the pole.
 - (c) perpendicular to the tangent plane at pole and passes through the focus.
 - (d) perpendicular to the tangent plane at the point of incidence and passes through the centre of curvature.
- 18. Under which of the following conditions a concave mirror can form an image larger than the actual object?
 - (a) When the object is kept at a distance equal to its radius of curvature
 - (b) When object is kept at a distance less than its focal length
 - (c) When object is placed between the focus and centre of curvature
 - (d) When object is kept at a distance greater than its radius of curvature
- 19. According to the laws of reflection
 - (a) angle i = angle r
- (b) $\sin i = \sin r$
- (c) $\sin i / \sin r = \text{constant}$
- (d) All of these

- 20. An inverted image can be seen in a convex mirror,
 - (a) under no circumstances
 - (b) when the object is very far from the mirror
 - (c) when the object is at a distance equal to the radius of curvature of the mirror
 - (d) when the distance of the object from the mirror is equal to the focal length of the mirror
- 21. Which of the following figures correctly shows the bending of a monochromatic light inside the prism?

- 22. The distance between a spherical lens and the image is -15 cm. The lens is
 - (a) concave lens

- (b) convex lens
- (c) either of the two irrespective of the object distance (d) either concave lens or convex lens with object between O and F.
- 23. You are given water, mustard oil, glycerine and kerosene. In which of these media a ray of light incident obliquely at same angle would bend the most?
 - (a) Kerosene

(a) A

- (b) Water
- (c) Mustard oil
- (d) Glycerine

- 24. A real and enlarged image can be formed by using a
 - (a) convex mirror

(b) plane mirror

(c) concave mirror

(d) either convex or a plane mirror

SECTION-B

Section -B consists of 24 questions (Sl. No.25 to 48). Attempt **any 20** questions from this section. The first attempted 20 questions would be evaluated.

25. Which of the following will give displacement reactions?

(c) red copper oxide

None of these

_		
26.	When copper powder is heated it gets coated with –	

- 27. Common salt can also be used as the raw material for making
 - (i) washing soda (ii) bleaching powder
 - (iii) baking soda (iv) slaked lime
 - $(a) \quad (i) \text{ and } (ii) \qquad \qquad (b) \quad (i), (ii) \text{ and } (iv) \qquad \qquad (c) \quad (i) \text{ and } (iii) \qquad \qquad (d) \quad (i), (iii) \text{ and } (iv)$
- 28. The metal that reacts with hot water is –

(a) black copper oxide

- (a) mercury (b) magnesium (c) zinc (d) copper
- 29. Take about 1.0g CaCO₃ in a test tube. Heat it over a flame, a colourless gas comes out. The reaction is called a
 - a) decomposition reaction (b) displacement reaction

(b) yellow copper oxide

- (c) double decomposition reaction (d) double displacement reaction
- **30.** Which of the following is not a mineral acid?
 - (a) Hydrochloric acid (b) Citric acid (c) Sulphuric acid (d) Nitric acid

 (a) Hydrochloric acid (b) Citric acid (c) Sulphuric acid (d) Nitric acid

 (d) Nitric acid

 (e) Sulphuric acid (f) Answer these questions selecting the appropria

Question No. 31 to 35 consist of two statements-Assertion (A) and Reason (R). Answer these questions selecting the appropriate option given below:

- (a) Both A and R are true and R is the correct explanation of A.
- (b) Both A and R are true and R is not the correct explanation of A.
- (c) A is true but R is false.
- (d) A is false but R is true.
- 31. Assertion: Mostly Metals do not read with HNO₃.

Reason: HNO₃ oxidises H₂ product to water and itself gets reduced to any of the nitrogen oxides.

32. Assertion: $Mg(s) + F_2(s) \rightarrow MgF_2(s)$,

magnesium loses electrons and acts as a reducing agent.

Reason: Reduction in general means acceptance of electron(s) by a reactant.

33. Assertion: Photorespiration decreases net photosynthesis.

Reason: Rate of respiration in dark and light is almost same in all plants.

34 Assertion : A point object is placed at a distance of 26 cm from a convex mirror of focal length 26 cm. The image will not form at infinity.

Reason : For above given system the equation $\frac{1}{u} + \frac{1}{v} = \frac{1}{f}$ gives $v = \infty$.

35. Assertion: Sodium hydrogen carbonate is used in fire extinguisher.

Reason: Sodium hydrogen carbonate is a mild base.

- **36.** The carbon dioxide is transported *via* blood to lungs as
 - (a) dissolved in blood plasma only.
- (b) in the form of carbonic acid only.
- (c) in combination with haemoglobin only.
- (d) carbaminohaemoglobin and as carbonic acid.
- 37. Which of the following is the correct order for the flow of food from mouth to anus?
 - (a) Oesophagus \rightarrow Stomach \rightarrow Small Intestine \rightarrow Large Intestine
 - (b) Large Intestine \rightarrow Oesophagus \rightarrow Stomach \rightarrow Small Intestine
 - (c) Stomach → Small Intestine → Large Intestine → Oesophagus
 - (d) Small Intestine → Large Intestine → Oesophagus → Stomach
- 38. Select the incorrect statement
 - (a) RBC's are produced by bone marrow and have a lifespan of 2 weeks only.
 - (b) RBC's are important for transport of gases
 - (c) RBC contain haemoglobin that gives red colour to the blood.
 - (d) RbC's ae biconcave in shape.

Sample Paper-8 SP-59

Which of the following phenomena of light are involved in the formation of a rainbow? Refraction, dispersion and total internal reflection (a) Reflection, refraction and dispersion (c) Refraction, dispersion and internal reflection Dispersion, scattering and total internal reflection **40.** The stars in the sky appear twinking due to (a) Reflection of light (b) Atmospheric diffraction None of the above (c) Atmospheric refration (d) 41. Which of the following group of animals have an incomplete duble circulation systems. (a) Frog and Crocodile (b) Shark and Whale Lizard and Pigeon (d) Toad and Lizard. **42.** Tricuspid valve is present in Right atria and right ventricle Left atria and left ventricle (c) Wall of atrium (d) Wall of vetricle A student does the experiment on tracing the path of a ray of light passing through a rectangular glass slab for different angles of incidence. He can get a correct measure of the angles of incidence and angle of emergence by following the labelling indicated in figure. (d) (a) When a lens of focal length f is cut in two pieces transversly, the focal length of each part will become (a) twice (b) thrice (c) half (d) infinite 45. Which of the following does a Dentist use to view the teeth for treatment? (a) Concave Mirror (b) Convex lens (c) Concave lens (d) Convex Mirror 46. Placement of another identical prism in an inverted position with respect to the first and allowing the colours of spectrum to pass through it will change the spectrum into a black band (a) change the spectrum into white light (c) keep the spectrum as before split into more colours **47.** Consider the following statements: (a) The laws of reflection are valid for plane mirrors and not for spherical mirrors. (b) A real image of a point object can be formed only by a concave mirror. Which of these statement(s) is/are correct? Both (a) and (b) (a) (a) only (b) (b) only (c) (d) Neither (a) nor (b) 48. Reema took two beakers and put a metal X in one beaker and metal Y in another beaker. She added acid A in beaker containing X she observed the reaction is vigorous but when she added acid B in second beaker the reaction was not as vigorous as

in case of beaker containing X. When they placed metal Y in the salt solution of metal X. The colour of solution changes from green to colourless.

Which of the following statements is correct description of A, B and X, Y.

(a) Acid A is a strong acid.

Acid B is strong acid.

(c) Metal X is more reactive than Y.

Metal Y is less reactive than X. (d)

SECTION-C

Section – C consists of three Cases followed by questions. There are a total of 12 questions in this section. Attempt any 10 questions from this section. The first attempted 10 questions would be evaluated.

Case-I

Two metals X and Y form the salt XSO₄ and Y₂SO₄ respectively. The solution of salt XSO₄ is blue in colour whereas that of Y₂SO₄ is colourless. When barium chloride solution is added to XSO₄ solution, then a white precipitate Z is formed alongwith a salt which turns the solution green. And when barium chloride solution is added to Y₂SO₄ solution, then the same white precipitate Z is formed along with colourless common salt solution.

—(:	SP-6	io	-							Science
40	`	TL	o formando o forolt VC	0						
49	<i>)</i> .		e formula of salt XS	•	D ₀ CO	(a)	CvCO	(4)	Maco	
50	1		CaSO ₄ nat could be the forr	(b)	BaSO ₄	(c)	CuSO ₄	(d)	$MgSO_4$	
30	, .			(b)	CaSO ₄		D ₀ SO	(d)	None of the	
5 1	1		CuSO ₄ nat is the formula of		7	(c)	BaSO ₄	(u)	None of the	SC
3	١.				CuCl ₂	_		(4)	BaCl ₂	
52	,		CaCl ₂ e type of reaction of	(b)	-	(c)	MgCl_2	(d)	BaCl ₂	
34	۷.		Displacement	(b)		acement (c)	Neutralization	(d)	Combination	
		(a)	Displacement	(0)	Double displa	Case -I		(u)	Comomation	I
Δ	etu	den	t performed an exp	eriment	to study the act			1 ml starch s	olution in two	test tubes (A)
			He left the both tes							
			. Test tube B gives							
			nich of the following							
			It helps buildup la	_	-	(b)	It is the another to	erm for starch		
		(c)	It is a monomer			(d)	It digests carboh	ydrates		
54	1.	Wł	nich of the following	g digesti	ve enzyme is f	ound in saliva?				
		(a)	mucin	(b)	secretin	(c)	salivary amylase	(d)	pepsin	
55	5.	Th	e experiment set up	to study	the effect of te	emperature on the	he activity of saliva	ary amylase o	n starch is car	ried out at 10
			. The solution mixtu		ontains amyla	se and starch ke	eps on giving blue	colour for iod	dine test about	half an hour.
			nat is the reason for							
			The temperature		=					
		(b) The temperature at which the enzyme denaturated.								
		(c) The temperature at which the enzyme shows the maximum activity.								
		(d) The temperature at which the enzyme shows the minimum activity.								
50).	Addition of Iodine solution to the above experiment gives bluis-black colour. This indicates that								
		(a) starch is broken down into sugars by salivary amylase in saliva.								
		(b) carbohydrate is broken down into sugars by pepsin.								
		(c)								
		(d)	Amylase is absen	t in saliv	a.					
						Case -II				
			a piece of transpare			-				
m	ate	rial	is different from the	at of the	surroundings.	If an object is pl	aced at a distance	ı from the opt	ical centre O	of a lens and its
								1	1 1	
in	nag	es is	s formed at a distan	ce v (froi	n the optical c	entre) and focal	length of this lens	is f, then $\frac{1}{f}$	$=\frac{u}{v}$	
5	7.	An	object is situated a	t a distan	ce of f/2 from	a convex lens o	f focal length f. Fir	nd the distance	e of image is	
			2f	(b)	f	(c)		(d)		
58	3.	` /	convex lens throws o	` '	n 12 m from th	` '		()		find the focal
			gth of the lens.			Č	2 ,	J		,
		(a)	0.50m	(b)	0.75	(c)	1 m	(d)	2m	
59).	An	object is placed at a	a distanc	e of 50 cm from	n a concave len	s of focal length 20	cm. Which o	f the followin	g statements
		is/a	are correct?							
		(I)	The distance of in	nage is –	14.3 from the l	ens (II)	The image is real	(III)	The image is	virtual
		(a)	only (I) is correct	(b)	only (II) is co	orrect (c)	only (I) and (II) is	s correct (d)	only (II) and	(III) is correct
60).		convex lens forms a		-				. If the image	of the same
			e as that of the need			_				
		(a)	–25 cm	(b)	–50 cm	(c)	+25	(d)	+50 cm	