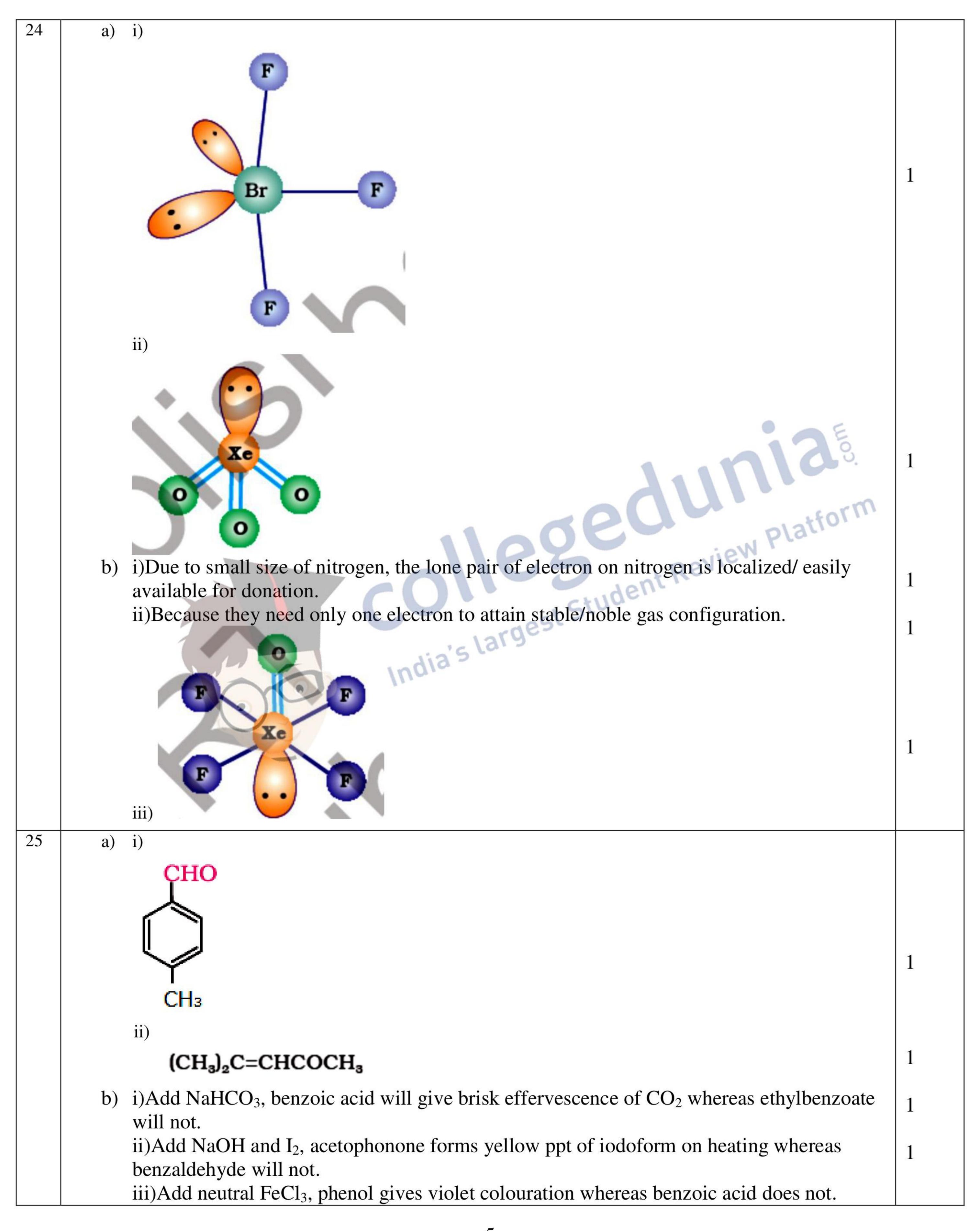
CHEMISTRY MARKING SCHEME SET -56/2 Compt. July, 2015

Qu es.	Value points	Marks
1	Emulsions are liquid – liquid colloidal systems. For example – milk, cream (or any other one correct example)	1/2 + 1/2
2	Formation of stable complex by polydentate ligand.	1
3	Propanal	1
4	p-Nitroaniline < Aniline < p-Toluidine	1
5	Frenkel defect	1
6	i) Due to high bond dissociation enthalpy of $N \equiv N$ ii) Due to low bond dissociation enthalpy of F_2 than Cl_2 and strong bond formation between N and F	1
7	Potassium permanganate is prepared by fusion of MnO_2 with an alkali metal hydroxide and an oxidising agent like KNO_3 . This produces the dark green K_2MnO_4 which disproportionates in a neutral or acidic solution to give permanganate. $2MnO_2 + 4KOH + O_2 \rightarrow 2K_2MnO_4 + 2H_2O$ $3MnO_4^{2-} + 4H^+ \rightarrow 2MnO_4^{-} + MnO_2 + 2H_2O$	1
	Oxalate ion or oxalic acid is oxidised at 333 K: $5C_2O_4^{2-} + 2MnO_4^{-} + 16H^+ \longrightarrow 2Mn^{2+} + 8H_2O + 10CO_2$ OR	1
7	Iodine is liberated from potassium todide: $10I^- + 2MnO_4^- + 16H^+ \longrightarrow 2Mn^{2+} + 8H_2O + 5I_2$	1
	Hydrogen sulphide is oxidised, sulphur being precipitated: $H_2S \longrightarrow 2H^+ + S^{2-}$ $5S^{2-} + 2MnO_4^- + 16H^+ \longrightarrow 2Mn^{2+} + 8H_2O + 5S$	1
8	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1/2
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1/2
		1

	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
9	9 i) Mole fraction of a component =			
	Number of moles of the component			
	Total number of moles of all the components			
	ii) Molality (<i>m</i>) is defined as the number of moles of the solute per kilogram (kg) of the solvent.			
	Moles of solute			
	Molality (m) = Moles of solution Mass of solvent in kg			
10	Zero order: mol L ⁻¹ s ⁻¹ Second order: L mol ⁻¹ s ⁻¹	1 1		
11	i) It lowers the melting point of alumina / acts as a solvent.ii)	1		
	Roasting Calcination	1		
	Ore is heated in a regular supply of air Heating in a limited supply or absence of air.			
	(Or with equation)			
	iii) It is a process of separation of different components of a mixture which are differently adsorbed on a suitable adsorbent.	1		
11	OR _S t Stu	6 v 1/2		
11	3Fe ₂ O ₃ + CO→2Fe ₃ O ₄ +CO ₂ (Iron ore)	$6 \times \frac{1}{2}$ = 3		
	$Fe_3O_4 + CO \rightarrow 3FeO + CO_2$			
	$CaCO_3 \rightarrow CaO + CO_2$ (Limestone)			
	CaO + SiO₂ → CaSiO₃ (Slag)			
	FeO + CO \rightarrow Fe + CO ₂			
	$C + CO_2 \rightarrow 2CO$ Coke			
	$C + Q \rightarrow CO_{2}$ FeO + C \rightarrow Fe + CO (any 6 correct equations)			
12	Disproportionation: The reaction in which an element undergoes self-oxidation and self-	1 1/2		
	reduction simultaneously. For example –	1 1/2		
	$2Cu^{+}(aq) \longrightarrow Cu^{2+}(aq) + Cu(s)$			
	(Or any other correct equation)			
13	i) Hexaamminecobalt(III) chloride	1		
	ii) Tetrachlorido nickelate(II)	1		
	iii) Potassium hexacyanoferrate(III)			



14	i)	2-bromobutane	1
	ii)	1, 3-dibromobenzene	1
	iii)	3-choloropropene	1
16	i) ii) ii)	$CH_{2}CI$ $CH_{2}ON_{8}$ $CH_{2}OH$ $CH_{3}CH_{2}MgCI \xrightarrow{HCHO} CH_{3}-CH_{2}-CH_{2}-OH$ $CH_{3}CH=CH_{2}+ H_{2}O \xrightarrow{H'} CH_{3}-CH-CH_{3}$ OH $CH_{3}-CH_{2}OH \xrightarrow{PCl_{5}} CH_{3}CH_{2}CI$ $OH \xrightarrow{OH} OH \xrightarrow{OH} OH$ $CH_{3}-CH_{2}OH \xrightarrow{OH} OH$ $OH \xrightarrow{OH} OH$	1 1 1
	111)	CH₃Cl + CH₃CH₂-ONa —→ CH₃CH₂-O-CH₃	1
17	i)	Peptide linkage – in proteins, ∝-amino acids are connected to each other by peptide	1
	ii)	bond or peptide linkage (-CONH- bond). Primary structure - each polypeptide in a protein molecule having amino acids which	1
	iii)	are linked with each other in a specific sequence. Denaturation - When a protein is subjected to physical change like change in temperature or chemical change like change in pH, protein loses its biological activity.	1
18		erisation is a polymerisation reaction in which a mixture of more than one monomeric allowed to polymerise and form a copolymer.	1
		$CH = CH_{2}$ $CH = CH_{2}$ $CH_{2} - CH = CH - CH_{2} - CH - CH_{2}$ $CH_{2} - CH = CH - CH_{2} - CH - CH_{2}$ $CH_{3} - CH - CH_{4} - CH - CH_{2}$ $CH_{2} - CH - CH_{3} - CH - CH_{4}$ $CH_{3} - CH - CH_{4} - CH - CH_{4}$ $CH_{4} - CH_{5} - CH - CH_{4}$ $CH_{5} - CH_{5} - CH_{5} - CH_{5} - CH_{5}$ $CH_{5} - CH_{5} - CH_{5} - CH_{5} - CH_{5}$ $CH_{5} - CH_{5} - CH_{5} - CH_{5} - CH_{5}$ $CH_{5} - CH_{5} - CH_{5} - CH_{5} - CH_{5}$ $CH_{5} - CH_{5} - CH_{5} - CH_{5} - CH_{5}$ $CH_{5} - CH_{5} - CH_{5} - CH_{5} - CH_{5}$ $CH_{5} - CH_{5} - CH_{5} - CH_{5} - CH_{5}$ $CH_{5} - CH_{5} - CH_{5} - CH_{5} - CH_{5}$ $CH_{5} - CH_{5} - CH_{5} - CH_{5} - CH_{5}$ $CH_{5} - CH_{5} - CH_{5} - CH_{5} - CH_{5}$ $CH_{5} - CH_{5} - CH_{5} - CH_{5} - CH_{5}$ $CH_{5} - CH_{5} - CH_{5} - CH_{5} - CH_{5}$ $CH_{5} - CH_{5} - CH_{5} - CH_{5} - CH_{5}$ $CH_{5} - CH_{5} - CH_{5} - CH_{5} - CH_{5}$ $CH_{5} - CH_{5} - CH_{5} - CH_{5} - CH_{5} - CH_{5}$ $CH_{5} - CH_{5} - CH_{5} - CH_{5} - CH_{5} - CH_{5}$ $CH_{5} - CH_{5} - CH_{5} - CH_{5} - CH_{5} - CH_{5}$ $CH_{5} - CH_{5} - CH_{5} - CH_{5} - CH_{5} - CH_{5} - CH_{5} - CH_{5}$ $CH_{5} - CH_{5} $	1

	$ \begin{array}{c} CN \\ - CH_2=CH_2+nCH_2=CH \end{array} \xrightarrow{Copolymerisation} - CH_2-CH_2-CH_2-CH_2-CH_2-CH_2-CH_2-CH_2-$	1
	1,3-Butadiene Acrylonitrile Buna-N (or any other correct example)	
	$r = \frac{\sqrt{2}a}{}$	1
	$\frac{4}{1.414 x} 4.077 x 10^{-8} cm$	
	$r = \frac{1.414 \times 4.077 \times 10^{-6} \text{ cm}}{4}$	1
	$r = 1.44 \times 10^{-8} \text{ cm}$	1
	$ \pi_{\text{cane sugar}} = \pi_{\text{X}} $	
	Therefore, $c_{cane\ sugar} = c_X$ (where c is molar concentration)	
	$W_{cane\ sugar}$ W_X	1
	$M_{cane\ sugar} = M_X$	
	$\frac{5 g}{342 g mol^{-1}} = \frac{0.877}{M_X}$	1
	$\frac{1}{3}$ 0.877 x 342 $\frac{1}{3}$	
	$M_{\rm X} = \frac{0.577 \times 512}{5} \rm gmol^{-1}$	1
	$M_{X} = 59.9 \text{ or } 60 \text{ gmol}^{-1}$	I
	$k = \frac{2.303}{t} \log \frac{[R]_0}{[R]}$	1
	1 2 303 [R]	
	$60 \text{ s}^{-1} = \frac{2.303}{t} \log \frac{\frac{[R]_0}{[R]_0}}{\frac{[R]_0}{10}}$	
	$t = \frac{2.303}{60 s^{-1}} \log 10$	1
		1
	$t = \frac{2.303}{60} \text{ s}$	
	t = 0.0384 s	1
	i) It is a process of removing the dissolved substance from a colloidal solution by means	1
	of diffusion through a semi - permeable membrane.	Notes and
	ii) The movement of colloidal particles under an applied electric potential towards oppositely charged electrode is called electrophoresis.	1
	iii) Colloidal particles scatter light in all directions in space. This scattering of light	
	illuminates the path of beam in the colloidal dispersion.	1
	i) Aspartame, Saccharin (any one)	1
	ii) Noiii) Social concern, empathy, concern, social awareness (any 2)	$\frac{1}{2}$
į.	a) Due to relatively stable half – filled p-orbitals of group 15 elements	2
	b) i) $CaF_2 + H2SO_4 \rightarrow CaSO_4 + 2HF$	1
	$_{ii)}$ SO ₂ (g) + Cl ₂ (g) \rightarrow SO ₂ Cl ₂ (l)	1 1
	$_{iii}$ 2NH ₄ Cl + Ca(OH) ₂ \rightarrow 2NH ₃ + 2H ₂ O + CaCl ₂	
	OR	

	OR (or any other correct test)	1
25	a) i) CH₃ C=N-OH CH₃ ii)	1
	CH ₃ C=N-NH -C-NH ₂	1
	b) i) Zn-Hg CH₃CHO → CH₃-CH₃ conc HCl	1
	2 CH ₃ -CHO \rightleftharpoons CH ₃ -CH-CH ₂ -CHO OH OH Review Platform	1
	iii) LiAlH₄ CH₃CH2OH CH₃CH2OH	1
26	$E^{0}cell = E^{0}_{Sn2+/Sn} - E^{0}_{Zn2+/Zn}$ $= -0.14V - (-0.76V)$ $= 0.62V$	1
	$\Delta_{\rm r}G^0 = -n \ {\rm F} \ {\rm E}^0_{\rm cell}$ = - 2 x 96500 C mol ⁻¹ x 0.62 V = - 119660 J mol ⁻¹	1
	$E_{\text{cell}} = E_{\text{cell}}^{0} - \frac{0.059}{n} \log \frac{[Zn^{2+}]}{[Sn^{2+}]}$ $E_{\text{cell}} = 0.62 - \frac{0.059}{2} \log \frac{[Zn^{2+}]}{[Sn^{2+}]}$	1
26	OR a) The conductivity of a colution at any given concentration is the conductance of one unit	
20	a) The conductivity of a solution at any given concentration is the conductance of one unit volume of solution kept between two platinum electrodes with unit area of cross section and at a distance of unit length.	1/2
	Molar conductivity of a solution at a given concentration is the conductance of the volume <i>V</i> of solution containing one mole of electrolyte kept between two electrodes with area of cross section <i>A</i> and distance of unit length.	1/2
	Molar conductivity increases with decrease in concentration.	1

$b)E^{0}cell = E^{0}_{C} - E^{0}_{A}$		
= 0.80V - 0.77V		1/2
=0.03V		1/2
$\Delta_{\rm r}G^0 = -n \; F \; E^0_{\rm cell}$		
$= -1 \times 96500 \text{ C mol}^{-1}$	x 0.03 V	1
$= -2895 \text{ J mol}^{-1}$		
$Log K_c = \frac{n E_{cell}^o}{0.050}$		1/2
0.059		
$Log K_c = \frac{1 \times 0.03}{0.059}$		1/2
$Log K_c = 0.508$		

Dr. Sangeeta Bhatia

Sh. S.K. Munjal

Sh. D.A. Mishra

Ms. Garima Bhutani

