CBSE Class 12 Physics Qu estion Paper Solution 2020 Set 55/2/1

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{MARKING SCHEME: PHYSICS (042)} \\
\hline \multicolumn{4}{|c|}{Code : 55/2/1} \\
\hline Q.No. \& Value Points/Expected Answer \& Marks \& Total Marks \\
\hline \multicolumn{4}{|c|}{SECTION A} \\
\hline 1 \& (D) \(\mathrm{R}=0\) \& 1 \& 1 \\
\hline 2 \& (A) Resistivity \& 1 \& 1 \\
\hline 3 \& (A) move in a straight line. \& 1 \& 1 \\
\hline 4 \& (B) ferromagnetic material becomes paramagnetic \& 1 \& 1 \\
\hline 5 \& (A) electric field is changing \& 1 \& 1 \\
\hline 6 \& (A) X - rays \& 1 \& 1 \\
\hline 7 \& (C) zero as diffusion and drift current are equal and opposite. \& 1 \& 1 \\
\hline 8 \& (B) just below the conduction band \& 1 \& 1 \\
\hline 9 \& (A) binding energy per nucleon increases \& 1 \& 1 \\
\hline 10 \& (A) neutron converts into a proton emitting antineutrino. \& 1 \& 1 \\
\hline 11 \& \(\left(\boxtimes_{2}-\boxtimes_{1}\right) \varepsilon_{0} /\left(\boxtimes_{1}-\boxtimes_{2}\right) \varepsilon_{0}\) \& 1 \& 1 \\
\hline 12 \& \begin{tabular}{l}
Third \\
OR \\
\(\frac{2 \lambda}{a}\) \\
[Alternatively, broader]
\end{tabular} \& 1 \& 1 \\
\hline 13 \& Small/ shorter \& 1 \& 1 \\
\hline 14 \& Perpendicular \& 1 \& 1 \\
\hline 15 \& Blue \& 1 \& 1 \\
\hline 16 \& \(\mathrm{X}_{\mathrm{c}}=\frac{1}{2 \pi v \mathrm{C}} \quad \mathrm{OR} \quad \mathrm{Z}=\mathrm{R}\) \& 1 \& 1 \\
\hline 17 \& Zero \& 1 \& 1 \\
\hline 18 \& \& 1 \& 1 \\
\hline 19 \& \begin{tabular}{l}
\[
6.03 \times 10^{-7} \mathrm{~m}
\] \\
[Award full 1 mark even if a student writes \(6 \times 10^{-7} \mathrm{~m}\)]
\end{tabular} \& 1 \& 1 \\
\hline 20 \& For a given photosensitive material, there exists a certain minimum cut-off frequency of the incident radiation, called the threshold frequency, below which no emission of photo electrons takes place, no matter how intense the incident light is. \& 1 \& 1 \\
\hline \multicolumn{4}{|c|}{SECTION B} \\
\hline 21 \& \begin{tabular}{l}
\begin{tabular}{|l|l|}
\hline Definition of mobility or formula \& 1 \\
Derivation of relationship \& 1 \\
\hline
\end{tabular} \\
Mobility is defined as the magnitude of drift velocity per unit electric field.
\[
\mu=\frac{\mid}{E}
\] \\
[Even if a student writes only the mathematical relation award \(1 / 2\) mark] \\
Given \(V_{d}=\frac{e \tau E}{m}\) \\
Hence, \(\mu=\frac{V_{d}}{E}=\frac{e \tau}{m}\)
\end{tabular} \& 1

$1 / 2$
$1 / 2$ \& 2 \\
\hline
\end{tabular}

	Definition of drift velocity 1 Relation between current density and drift velocity 1 The average speed with which electrons move when an electric field or potential difference is applied is called drift velocity. $\sqrt{\alpha}=\frac{-e \sqrt{\underline{E}} \tau}{m}$ [Award $1 / 2$ mark if student writes the formulae] The amount of charge crossing the area A in time Δt $\|\Delta t=n e A\| \Delta t$ Hence current density $j=\frac{\mathrm{l}}{\mathrm{~A}}=n e \mathrm{~V}_{\mathrm{d}}$	$1 / 2$	
22	Diagram $1 / 2$ Formula $1 / 2$ Calculation of value of shunt 1 Resistance of ammeter, $\quad \mathrm{R}_{\mathrm{A}}=0.8 \Omega$ $\begin{aligned} & \mathrm{I}_{\mathrm{g}} R_{A}=\left(\mathrm{I}-\mathrm{I}_{\mathrm{g}}\right) \mathrm{S} \\ & \boxtimes 1 \times 0.8=(5-1) \mathrm{S} \\ & \boxtimes \quad \mathrm{~S}=0.2 \Omega \end{aligned}$	1/2	2
23	(a) Sharpness of resonance 1 (b) Value of power factor 1 (a) Sharpness of resonance is the sharpness of the peak of the resonance curve / a graph between I_{m} and ω. The sharper or narrower the curve the narrower is the resonance or the resonance lasts over a very small range of frequencies / Q factor or quality factor is the measure of sharpness of curve. (b) $\mathrm{Z}=\mathrm{R}$ Hence Power factor $\cos \boxtimes=\frac{R}{Z}$	1	

	$\cos \boxtimes=1$ Even if a student just writes power factor is 1, award full 1 mark	1	2
	OR Deduction of expression for current 1 (i) Graph V vs $\omega \mathrm{t}$ $1 / 2$ (ii) Graph I vs $\omega \mathrm{t}$ $1 / 2$$\begin{aligned} & I=\frac{\mathrm{dq}}{\mathrm{dt}}= \frac{d}{d t} \\ & C V_{0} \sin \omega t=\omega C V_{0} \cos \omega t \\ &=I_{0} \cos \omega t \\ &=I_{0} \sin \left(\omega t+\frac{\pi}{2}\right) \end{aligned}$ where $I_{0}=\frac{V_{0}}{(1 / \omega C)}$ (i) [Student can draw the two graphs separately also provided the graphs are co-related.]	$1 / 2$ $1 / 2$	(2
24	Identification of waves (a) \& (b) Uses $1 / 2+1 / 2$ $1 / 2+1 / 2$ (a) minimum wavelength: γ rays (b) minimum frequency: Microwaves γ rays are used to treat cancer Microwaves are used for communication [or any other correct use]	$\begin{array}{\|l} 1 / 2 \\ 1 / 2 \\ 1 / 2 \\ 1 / 2 \end{array}$	2
25	Values of f and u with sign conventions Nature of image Position of image $1 / 2$ $1 / 2$ The focal length $f=\frac{-R}{2}=-30 \mathrm{~cm} u=-20 \mathrm{~cm}$ $\frac{1}{V}+\frac{1}{u}=\frac{1}{f}$ $\boxtimes \frac{1}{V}-\frac{1}{20}=-\frac{1}{30} \quad \boxtimes \frac{1}{V}=-\frac{1}{30}+\frac{1}{20}$ $\boxtimes V=+60 \mathrm{~cm}$ Nature of image: virtual, erect and magnified	$1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$	2

26	Identification of b and θ $1 / 2+1 / 2$ Values of b $1 / 2+1 / 2$ (a) b represents impact parameter θ represents scattering angle (b) (i) for $\theta=0^{0}$ impact parameter is large or infinite (ii) for $\theta=180^{\circ}$ impact parameter is zero.	$1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$	2
27	V-I characteristics 1 Explanation for voltage independence of reverse current 1 Since reverse current is due to flow of minority charge carriers across the junction, it is limited due to the concentration of minority carriers on either side of the junction. It is therefore independent of the voltage applied.	1	2
	SECTION C		
28	(a) Magnitude \& direction of net dipole moment (a) $\begin{aligned} P & =\left(p_{1}^{2}+p_{2}^{2}+2 p_{1} p_{2} \cos 120^{0}\right)^{1 / 2} \\ & =\left(2 p^{2}-p^{2}\right)^{1 / 2} \\ & =\mathrm{p} \end{aligned}$ Making 60° angle with 归 and $\mathrm{a}=30^{\circ}$ (angle with X axis) $\left[\mathrm{p}_{1}=\mathrm{p}_{2}=\mathrm{p}\right]$ [Do not deduct $1 / 2$ mark if diagram is not drawn but dipole moment and its direction are correctly worked out.	1/2	

\begin{tabular}{|c|c|c|c|c|}
\hline \& \begin{tabular}{l}
If correct and complete vector diagram is drawn but dipole moment is not worked out then award 1 mark out of 1.5] \\
(b) \\
Direction of \(\tau\) is into the plane of the paper or along -z direction. \\
OR \\
(a) \(\mathrm{C}=\mathrm{C}_{4}=4 \mu \mathrm{~F} \quad\) (as \(\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{4}, \mathrm{C}_{5}\) are short circuited) \\
(b)
\[
\begin{gathered}
\mathrm{Q}=\mathrm{CV}=4 \times 7 \mu \mathrm{C} \\
=28 \mu \mathrm{C} \\
U=\frac{1}{2} \mathrm{CV}^{2} \\
=\frac{1}{2} \times 4 \times 10^{-6} \times 7 \times 7=98 \times 10^{-6} \mathrm{~J}
\end{gathered}
\]
\end{tabular} \& \(1 / 2\)
\(1 / 2\)
\(1 / 2\)

1
$1 / 2$
$1 / 2$
$1 / 2$
$1 / 2$ \& 3

3 \& collegedunia \\

\hline 29 \& | (a) Derivation of balance condition |
| :--- |
| (b) Circuit diagram |
| (a) |
| In a balanced Wheatstone bridge $I_{g}=0$ |
| $\boxtimes I_{1}=I_{3}$ and $I_{2}=I_{4}$ |
| Applying loop rule in ADBA $\begin{align*} & -I_{1} R_{1}+0+I_{2} R_{2}=0 \\ & \boxtimes \frac{I_{1}}{I_{2}}=\frac{R_{2}}{R_{1}} \tag{i} \end{align*}$ |
| And in loop CBDC $\begin{align*} & \mathrm{I}_{2} \mathrm{R}_{4}+0-\mathrm{I}_{1} \mathrm{R}_{3}=0 \\ & \boxtimes \frac{\mathrm{I}_{1}}{\mathrm{I}_{4}}=\frac{\mathrm{I}_{4}}{\mathrm{R}_{3}} \quad \text { (ii) } \tag{ii} \end{align*}$ |
| From (i) and (ii) $\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}}=\frac{\mathrm{R}_{4}}{\mathrm{R}_{3}}$ |
| Condition for balanced Wheatstone bridge | \& \& \& re Aspirants \\

\hline
\end{tabular}

	(b)	1	3
30	(a) Capacitance of the capacitor 1 (b) Value of inductance 1 (c) Graph 1 (a) From graph $X_{c}=6 \Omega$ at $u=100 \mathrm{~Hz}$ $\begin{gathered} X_{c}=\frac{1}{\omega C}=\frac{1}{2 \pi u C} \\ C=\frac{1}{2 \pi u X_{c}}=\frac{1}{2 \pi \times 600} \\ C=\frac{1}{1200 \pi}=0.265 \mathrm{mF}=0.265 \times 10^{-3} f \end{gathered}$ Even if a student evaluates part(a) correctly using any other point on the graph, award full 1 mark. (b) $\begin{gathered} X_{C}=X_{L}=\omega L=6 \text { at } 100 \mathrm{~Hz} \\ L=\frac{6}{2 \pi U} \\ =\frac{6}{2 \pi \times 100}=0.955 \times 10^{-2} \mathrm{H} \end{gathered}$ (c)	1/2	3
31	Differences in construction 1 mark Determination of position of object 2 marks Aperture of telescope objective lens is large whereas aperture of microscope objective is small $\left.\begin{array}{ll} \mathrm{f}_{\mathrm{o}}>\mathrm{f}_{\mathrm{e}} & \text { in telescope } \\ \mathrm{f}_{\mathrm{o}}<\mathrm{f}_{\mathrm{e}} & \text { in microscope } \end{array}\right]$ [Alternatively, focal length of telescope objective is large whereas focal length of microscope objective is very small] [Award full 1 mark even if a student writes only one difference]	$1 / 2$ $1 / 2$	

	$\begin{gathered} \mathrm{m}=\mathrm{m}_{\mathrm{o}} \times \mathrm{m}_{\mathrm{e}} \\ \mathrm{~m}_{\mathrm{e}}=1+\frac{\mathrm{D}}{\mathrm{f}_{\mathrm{e}}}=1+\frac{25}{5}=6 \\ \boxtimes \mathrm{~m}_{\mathrm{o}}=\frac{30}{6}=-5 \\ \mathrm{~m}_{\mathrm{o}}=\frac{\mathrm{v}}{\mathrm{u}}=-5 \\ \mathrm{v}=\frac{1}{-5 u} \\ \frac{1}{\mathrm{f}}=\frac{1}{\mathrm{v}}-\frac{1}{\mathrm{u}} \\ \frac{1}{1.25}=\frac{1}{5 \mathrm{u}_{\mathrm{o}}}+\frac{1}{\mathrm{u}_{0}} \quad ; \mathrm{u}=-\mathrm{u}_{0} \\ \mathrm{u}_{0}=\frac{6}{5} \times 1.25=1.5 \mathrm{~cm} \\ m_{o}=\frac{v}{u}=\frac{f_{o}}{f_{o}+u_{o}} \\ -5=\frac{1.25}{1.25+\mathrm{u}_{\mathrm{o}}} \\ -7.5=5 \mathrm{u}_{\mathrm{o}} \\ (\text { for last } 1 / 2 \text { mark })] \end{gathered}$	1/2	3
32	Deduction of expression for threshold wavelength Deduction of expression for work function when $\begin{gathered} \lambda=\lambda_{2} \\ 2 \mathrm{~K}_{\max }=\mathrm{hc}\left(\frac{1}{\lambda_{2}}-\frac{1}{\lambda_{0}}\right) \\ \frac{\mathrm{K}_{\max }}{2 \mathrm{~K}_{\max }}=\frac{1}{2}=\frac{\left(\frac{1}{\lambda_{1}}-\frac{1}{\lambda_{0}}\right)}{\left(\frac{1}{\lambda_{2}}-\frac{1}{\lambda_{0}}\right)} \\ \lambda_{0}=\frac{\lambda_{1} \lambda_{2}}{2 \lambda_{2}-\lambda_{1}}=\text { Threshold wavelength } \\ \boxtimes_{0}=\frac{\mathrm{hc}}{\lambda_{0}}=\frac{\mathrm{hc}\left(2 \lambda_{2}-\lambda_{1}\right)}{\left(\lambda_{1} \lambda_{2}\right)} \end{gathered}$	$1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$ 1	3
33	a) Differentiation between Half life and Average life $1 / 2+1 / 2$ b) Deduction of fraction of amount of the substance 2 Half life is the time it takes for a radioactive sample, that has initially N_{o} radio nuclei, to reduce to $\frac{\mathrm{N}_{0}}{2}$ $T_{1 / 2}=\frac{\ln 2}{\lambda}=\frac{0.693}{\lambda}$ Mean life is obtained by adding the lives of all the nuclei over time 0 to infinity and dividing it by total number N_{o} of nuclei at $\mathrm{t}=0$ $\tau=1 / \lambda$	1/2	

	[Even if a student writes only the relations for $\mathrm{T}_{1 / 2}$ and τ award full marks for the definitions] $N=N_{o} e^{-\lambda t}$ At $t=\tau=1 / \lambda$ $\begin{gathered} N=N_{0} e^{-\lambda \times \frac{1}{\lambda}} \\ \frac{N}{N_{0}}=\frac{1}{e} \end{gathered}$	$1 / 2$ $1 / 2$ 1	3
34	Function of solar cell 1 mark Working of solar cell $11 / 2$ mark IV characteristics $1 / 2 \mathrm{mark}$ Solar cell is a device which converts solar energy into electrical energy. [Alternatively, when solar radiation falls on a solar cell, it generates emf.] Working When solar radiation falls on a solar cell three important phenomena occur 1) Generation: e-h pair generation near the depletion region 2) Separation: e-h will separate due to the electric field in depletion region 3) Collection- electrons are collected by front contact on n side and holes are collected by back contact on p side. Thus, a potential difference will be created.	$1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$	3
	SECTION D		
35	(a) Expression for electric field outside a charged shell 2 Graph of E vs r b) Location of point where field is zero 1 (a)	1/2	

	$W=q_{1} v_{1}+q_{2} v_{2}+\frac{1}{4 \pi \boxtimes_{0}} \frac{q_{1} q_{2}}{r}$ [V_{1} and V_{2} are potentials at the two points in the electric field] (b) (i) $\begin{aligned} \mathrm{E}=\frac{-\mathrm{dV}}{\mathrm{dx}} & =-\frac{d}{d x}(10 x+5) \\ \boxtimes \mathbb{E} & =-10 \mathrm{i} \mathbb{N} / \mathrm{C} \end{aligned}$ (ii) Electric flux through the cube, $\phi=$ sum of electric flux through 6 faces Electric flux through faces perpendicular Y and Z axis $=0$ $\boxtimes E$ is along x axis Electric flux through faces perpendicular to x axis $\begin{aligned} & =\phi_{1}+\phi_{2} \\ & =10 \times(0.2)^{2}-10 \times(0.2)^{2} \\ & =0 \end{aligned}$	$1 / 2$ 1 1 $1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$	5
36	(a) Magnetic field at a point on the axis of the current loop (a) $d B \boxtimes \frac{\triangle_{0} I d l}{4 \boxtimes\left(x^{2} \boxtimes R^{2}\right)}$ $d B$ has two components $d B_{x}$ and $d B_{\boxtimes}$, perpendicular components from diametrically opposite elements dl cancel out, thus only $d B_{\mathrm{x}}$ components remain effective $\begin{aligned} & d \mathrm{~B}_{\mathrm{x}}=\mathrm{dB} \cos \theta \\ & \text { and } \cos \theta=\frac{\mathrm{R}}{\left(\mathrm{x}^{2}+\mathrm{R}^{2}\right)^{\frac{1}{2}}} \\ & \boxtimes \mathrm{~B}=\int \mathrm{dB} \\ & =\int_{0}^{2 \pi \mathrm{R}} \frac{\mu_{0} \mathrm{IdIR}}{4 \pi\left(\mathrm{x}^{2}+\mathrm{R}^{2}\right)^{\frac{3}{2}}} \end{aligned}$	1/2	

	 $\Delta \boxtimes I(a b) \sin \Delta$ where ab $\boxtimes A$ (area of the loop) 区 $I A B \sin X$ for N number of turns $\Delta \boxtimes N I A B \sin \triangle$ 狍 $\vec{M} \boxtimes \vec{B}$ Where magnetic moment M=NIA Galvanometer has Radial magnetic field to increase the field strength and to make torque independent of orientation $\theta /$ it maximise the torque (b) The kinetic energy $K E=\frac{1}{2} \frac{q^{2} B^{2} R^{2}}{m}$ $\begin{aligned} & =\frac{1}{2} \times \frac{\left(1.6 \times 10^{-19}\right)^{2} \times(0.4)^{2} \times(0.4)^{2}}{1.6 \times 10^{-27}} J \\ & =\frac{\left(1.6 \times 10^{-19}\right)^{2} \times(0.4)^{2} \times(0.4)^{2}}{2 \times 1.6 \times 10^{-27} \times 1.6 \times 10^{-19}} \mathrm{eV} \\ & =1.28 \mathrm{MeV} \end{aligned}$	1/2	
37	(a) Derivation of the lens maker's formula (b) Ray diagram (c) Focal length of the mirror (a) C	1/2	

(b)
For first refracting surface

$$
\frac{\mu_{2}}{v_{1}}-\frac{\mu_{1}}{u}=\frac{\mu_{2}-\mu_{1}}{R_{1}}
$$

For second refracting surface ADC
Adding equations 1 and 2 , we get

$$
\begin{aligned}
& \frac{\mu_{1}}{v}-\frac{\mu_{1}}{\mathrm{u}}=\left(\mu_{2}-\mu_{1}\right)\left[\frac{1}{\mathrm{R}_{1}}-\frac{1}{\mathrm{R}_{2}}\right] \\
& \boxtimes \frac{1}{\mathrm{v}}-\frac{1}{\mathrm{u}}=\left(\frac{\mu_{2}}{\mu_{1}}-1\right)\left[\frac{1}{\mathrm{R}_{1}}-\frac{1}{\mathrm{R}_{2}}\right] \\
& \boxtimes \frac{1}{\mathrm{v}}-\frac{1}{\mathrm{u}}=\frac{1}{\mathrm{f}} \\
& \boxtimes \frac{1}{\mathrm{f}}=\left(\frac{\mu_{2}}{\mu_{1}}-1\right)\left[\frac{1}{\mathrm{R}_{1}}-\frac{1}{\mathrm{R}_{2}}\right] \\
& \text { also } \\
& \frac{\mu_{2}}{\mu_{1}}=\mu \\
& \boxtimes \frac{1}{\mathrm{f}}=(\mu-1)\left[\frac{1}{\mathrm{R}_{1}}-\frac{1}{\mathrm{R}_{2}}\right]
\end{aligned}
$$

(a)
Wavefront is a surface of constant phase.
Alternatively, It is the locus of all those points which are in the same phase of disturbance.
The wave propagates in a direction perpendicular to the wavefront through secondary wavelets originating from different points on it.

Consider a plane wave AB incident at an angle I with speed v on the surface MN in time τ
Therefore
$B C=v \tau$
Using Huygen's principle, a sphere of radius $v \tau$ which has tangent plane CE is reflected at an angle r
$\triangle A E X B C \boxtimes$
$\boxtimes \triangle E A C$ and $\triangle B A C$ are congruent
(b)

$$
\boxtimes \boxtimes i=\boxtimes r
$$

(i)

$$
\begin{aligned}
& x=\frac{\lambda D}{d} \\
& \boxtimes d=\frac{\lambda D}{x}=\frac{500 \times 10^{-9} \times 1}{2.5 \times 10^{-3}}=2 \times 10^{-4} \mathrm{~m}
\end{aligned}
$$

(ii) For the first Secondary maxima

$$
\begin{aligned}
x & =\frac{3 \lambda D}{2 d} \\
& =\frac{3 \times 500 \times 10^{-9} \times 1}{2 \times 2 \times 10^{-4}}=3.75 \mathrm{~mm}
\end{aligned}
$$

$11 / 2$

