Physics-Set-1

The dimensional formula of angular momentum is

1.

	a) ML ²⁻	Γ ⁻²	b) MLT ⁻²	j	c) MLT ⁻¹	d)	ML ² T ⁻¹			
2.	Two so	olid spheres	A and B each of	radius 'R'	' are ma	de of mater	rials of den	nsities $ ho_A$ and $ ho_A$	$ ho_B$	
	respectively. Their moments of inertia about a diameter are I_A and I_B respectively. The value									
	of $\frac{I_A}{I_B}$ is	and properties a recommendance				955036 99500W 1 A • • 1000				
			_							
	a) $\sqrt{\frac{\rho}{\rho}}$	<u>A</u> B	b) $\sqrt{\frac{\rho_B}{\rho_A}}$	g	$c)\frac{\rho_A}{\rho_B}$	d)	$\frac{ ho_B}{ ho_A}$			
3.	When a vibrating tuning fork is placed on a sound box of a sonometer, 8 beats per second are									
	heard when the length of the sonometer wire is kept at $101~\mathrm{cm}$ or $100~\mathrm{cm}$. Then the frequency									
	of the t	of the tuning fork is (consider that the tension in the wire is kept constant)								
	a) 1616	6 Hz	b) 1608 Hz		c) 1632	Hz	d) 16	600 Hz		
4.	Sum of	magnitudes	of two forces ac	cting at a p	point is	16N. if thei	r resultant	is normal to		
	smaller	force, and h	nas a magnitude	8 N, then	forces a	re				
	a)	6N, 10N	b) 8N,	8N		c) 4N, 12N	[d) 2N, 14N	1	
5.	Two spheres of the same material have radii 1 m and 4 m and temperatures 4000K and									
	2000K respectively. The ratio of the energy radiated per second by the first sphere to that by									
	the second is									
	a)	1:1	b) 16:1	c) 4:1		d) 1:9				
6.	In an isothermal process									
	a) Pressure remains constants									
	b) Temperature remains constant									
	c) Volume remains constant									
	d) Kinetic energy remains constant									
7.	A long spring is stretched by 2 cm and its potential energy is V. If the spring is stretched by									
	10 cm, its potential energy will be									
	a)	V/25	b) V/5	c) 5V		d) 25V				
8.	First law of thermodynamics is a consequence of the conservation of									
	a) (Charge	b) heat	c) energ	y	d) moment	um			
9.	A weig	A weightless rubber balloon has 100 gm of water in it. Its weight in water will be								
	a) :	100 gm	b) 20 gm	c) 200 g	m	d) zero				
10.	Two ca	pillary tube	s of different dia	meters are	e dipped	in water. T	The rise of	water is		

	b) greater in the tube of larger diameter								
	c) same in both tubes								
	d) zero in both tubes								
11.	Capacitance of a spherical conductor having radius 1 m, is								
	a) $1.1 \times 10^{-10} \text{ F}$ b) 10^{-6}F c) $9 \times 10^{-9} \text{ F}$ d) 10^{-3} F								
12.	The resistance of a wire is 5Ω at 50° C and 6Ω at 100° C. The resistance of the wire at 0° C will								
	be								
	a) 2Ω b) 1Ω c) 4Ω d) 3Ω								
13.	An electric bulb is rated 220V-100W. The power consumed by it when operated on 110V								
	will be								
	a) 75W b) 40W c) 25W d) 50W								
14.	The flux linked with a coil at any instant t is given by $\phi = 10t^2 - 50t + 250$. The induced								
	emf at $t=3$ s is								
	a) -190 V b) -10 V c) 10 V d) 190 V								
15.	The maximum velocity of a particle, executing simple harmonic motion with an amplitude 7								
	mm, is 4.4 ms ⁻¹ . The period of oscillation is								
	a) 0.01 s b) 10 s c) 0.1 s d) 100 s								
16.	The displacement y of a wave travelling in the x-direction is given by $y = 10^{-4} \sin(600t - 10^{-4})$								
	$2x + \frac{\pi}{3}$) meter, where, x is expressed in meters and t in seconds. The speed of the wave								
	motion, in ms ⁻¹ is								
	a) 300 b) 600 c) 1200 d) 200								
17.	Two lenses of power -15D and +5D are in contact with each other. The focal length of the								
	combination is								
	a) -20 cm b) -10 cm c) +20 cm d) +10 cm								
18.	If two mirrors are kept at 60° to each other, then the number of images formed by them is								
	a) 5 b) 6 c) 7 d) 8								
19.	The energy band gap is maximum in								
	a) metals b) superconductors c) insulators d) semiconductors								
20.	The half-life of a radioactive element is 10 hours. The fraction of initial radioactivity of the								
	element that will remain after 40 hours is								
	a) ½ b) ¼ c) 1/16 d) 1/8								

a) greater in the tube of smaller diameter

