# M.SG Emvirmmental Science

Set No. 1

Question Booklet No.

# 16P/290/7

|            | (To be f | filled up by t | he candidate by blue/bla | ck ball-point pen)                      | .,               |
|------------|----------|----------------|--------------------------|-----------------------------------------|------------------|
| Roll No.   |          |                |                          |                                         |                  |
| Serial No. | . of OMR | Answer Shee    | Code N'                  | (489)                                   |                  |
| Day and    |          | •••••••        | (2014)                   | *************************************** | of Invigilator ) |

## INSTRUCTIONS TO CANDIDATES

(Use only blue/black ball-point pen in the space above and on both sides of the Answer Sheet)

- 1. Within 30 minutes of the issue of the Question Booklet, check the Question Booklet to ensure that it contains all the pages in correct sequence and that no page/question is missing. In case of faulty Question Booklet bring it to the notice of the Superintendent/Invigilators immediately to obtain a fresh Question Booklet.
- 2. Do not bring any loose paper, written or blank, inside the Examination Hall except the Admit Card without its envelope.
- 3. A separate Answer Sheet is given. It should not be folded or mutilated. A second Answer Sheet shall not be provided. Only the Answer Sheet will be evaluated.
- 4. Write your Roll Number and Serial Number of the Answer Sheet by pen in the space provided
- 5. On the front page of the Answer Sheet, write by pen your Roll Number in the space provided at the top and by darkening the circles at the bottom. Also, wherever applicable, write the Question Booklet Number and the Set Number in appropriate places.
- 6. No overwriting is allowed in the entries of Roll No., Question Booklet no. and Set no. (if any) on OMR sheet and Roll No. and OMR sheet no. on the Question Booklet.
- 7. Any change in the aforesaid entries is to be verified by the invigilator, otherwise it will be taken
- 8. Each question in this Booklet is followed by four alternative answers. For each question, you are to record the correct option on the Answer Sheet by darkening the appropriate circle in the corresponding row of the Answer Sheet, by pen as mentioned in the guidelines given on the
- 9. For each question, darken only one circle on the Answer Sheet. If you darken more than one circle or darken a circle partially, the answer will be treated as incorrect.
- 10. Note that the answer once filled in ink cannot be changed. If you do not wish to attempt a question, leave all the circles in the corresponding row blank (such question will be awarded
- 11. For rough work, use the inner back page of the title cover and the blank page at the end of this
- 12. Deposit only OMR Answer Sheet at the end of the Test.
- 13. You are not permitted to leave the Examination Hall until the end of the Test.
- 14. If a candidate attempts to use any form of unfair means, he/she shall be liable to such punishment as

Total No. of Printed Pages: 48

[उपर्युक्त निर्देश हिन्दी में अन्तिम आवरण पृष्ठ पर दिये गए हैं।]





#### ROUGH WORK रफ़ कार्य



No. of Questions: 180

Time: 2 Hours

Full Marks: 360

Note: (1) Attempt as many questions as you can. Each question carries 3

(Three) marks. One mark will be deducted for each incorrect

answer. Zero mark will be awarded for each unattempted question.

- (2) If more than one alternative answers seem to be approximate to the correct answer, choose the closest one.
- (3) This Question Booklet comprises two Sections viz.. Section-A and Section-B:

**Section-A**: This is compulsory. This contains two sub-sections having question of **two** disciplines viz.

- (i) Basic Environmental Science
- (ii) Chemistry

A candidate is required to attempt above both all sub-sections are compulsory.

Section-B: This contains three Sub-sections having questions of three disciplines viz.,

- (i) Life Science
- (ii) Physics
- (iii) Geology

A candidate is required to attempt only one from above three Sub-sections.



P.T.O.



#### **SECTION - A**

## (i) BASIC ENVIRONMENTAL SCIENCES (Compulsory for all)

| 01. | Whi  | ch region of the sea oceans ar   | e the   | most polluted?    |
|-----|------|----------------------------------|---------|-------------------|
|     | (1)  | Estuarine                        | (2)     | Sea depths        |
|     | (3)  | Sea surface                      | (4)     | Coastal           |
| 00  | D    |                                  | ly of   |                   |
| 02. | реп  | nography is the statistical stud | ty or . |                   |
|     | (1)  | Bird population                  | (2)     | Human population  |
|     | (3)  | Human Society                    | (4)     | Human Life        |
|     |      |                                  |         |                   |
| 03. | Lar  | gest salt water lake in India is | :       |                   |
|     | (1)  | Chilka                           | (2)     | Lonar             |
|     | (3)  | Wullar                           | (4)     | Sambhar           |
|     | **** | ' 1                              | naank   | perio reservoir 2 |
| 04. | wn   | ich elemental cycle has no atn   | nospi   | lette reservon .  |
|     | (1)  | Oxygen                           | (2)     | Carbon            |
|     | (3)  | Phosphorus                       | (4)     | Nitrogen          |
|     |      |                                  |         |                   |
| 05. | Con  | ncept of ecological pyramid wa   | s give  | en by:            |
|     | (1)  | A.G. Tansley                     | (2)     | E.P. Odum         |
|     | (3)  | R. Mishra                        | (4)     | C. Elton          |
|     | (-)  |                                  |         |                   |



| 06. | How  | many mega       | -bio   | diverse  | countri    | es have be   | een ident  | ified | in t | he |
|-----|------|-----------------|--------|----------|------------|--------------|------------|-------|------|----|
| 920 | wor  | ld ?            |        |          |            |              |            |       |      |    |
|     | (1)  | 12              | (2)    | 17       | (3)        | 24           | (4)        | 35    | ,    |    |
| 07. | Eco  | logical of phys | siolog | ical rac | es are al  | so known     | as:        |       |      | •  |
|     | (1)  | Ecads           |        |          | (2)        | Ecotypes     | S          |       |      |    |
|     | (3)  | Ecophens        |        |          | (4)        | Ectogens     | S          |       |      |    |
| 08. | Max  | imum amoun      | t of r | adiation | n per un   | it area is r | eceived in | the   |      |    |
|     |      |                 |        |          |            |              |            |       | •    |    |
|     | (1)  | Tropical regi   | on     |          | (2)        | Tempera      | ite region |       |      |    |
|     | (3)  | Higher latitu   | ıde    | ¥        | (4)        | Mid latit    | rude       |       |      |    |
| 09. | Ecos | systems regul   | ation  | in natu  | are is cal | lled :       |            |       |      |    |
|     | (1)  | Homeostasis     |        |          | (2)        | Successi     | ion        |       |      |    |
|     | (3)  | Cybernetics     |        |          | (4)        | Ecosyste     | m functio  | n     |      |    |
| 10  | TI.  |                 |        |          | 9          |              |            |       |      |    |
| 10. | ine  | wave length o   | f the  | atmosp   | heric wi   | ndows is :   |            |       |      |    |
|     | (1)  | 4.0 - 6.0 μ     | 79.    |          | (2)        | 2.0 - 5.0    | μ          |       |      |    |
|     | (3)  | 8.0 - 13.0 μ    |        |          | (4)        | 7.0 - 10.0   | Эμ         |       |      |    |



| 11. | Government   | of   | India   | has  | enacted   | various  | Acts   | for  | protection | & |
|-----|--------------|------|---------|------|-----------|----------|--------|------|------------|---|
|     | conservation | of e | enviror | ımen | t. Howeve | er, more | inclus | sive | Act is:    |   |

- (1) Water (Prevention & Control of Pollution) Act 1974
- (2) Air (Prevention & Control of Pollution) Act 1981
- (3) The Biological Diversity Act 2002
- (4) Environment (Protection) Act 1986

## 12. Richael Carsson in her book Silent Spring has raised concerned on :

- (1) Economical & social impacts
- (2) Impacts of agro-chemicals on ecological functions
- (3) Deforestation
- (4) Climate change
- 13. Redox titration is used in determination of:
  - (1) Dissolved oxygen
- (2) Total hardness
- (3) Chemical oxygen demand
- (4) Biochemical oxygen demand
- 14. Convention on International Trade in Endangered species was held in:
  - (1) 1980

(2) 1973

(3) 1962

(4) 1986



| 15. | Sp   | ecies - Area Curve is record of | : -     |                                 |
|-----|------|---------------------------------|---------|---------------------------------|
|     | (1)  | Frequency and Area              | (2)     | Density and Area                |
|     | (3)  | Number of species and Area      | a (4)   | Abundance and Area              |
| 16. | Ma   | una Loa, in Hawaii is famous    | for :   |                                 |
|     | (1)  | Botanical Gardens               |         | :                               |
|     | (2)  | Monitoring sea level rise sin   | ice 19  | 950                             |
|     | (3)  | Biggest collection of mamma     | al's fo | ossils                          |
|     | (4)  | Continuous monitoring atm       | osph    | eric CO <sub>2</sub> since 1957 |
| 17. | Lar  | gest source fresh water on ear  | rth is  | :                               |
|     | (1)  | Rivers                          | (2)     | Lakes                           |
|     | (3)  | Glaciers                        | (4)     | Polar Ice                       |
| 18. | "Ita | i Itai" disease is caused by :  |         |                                 |
|     | (1)  | Mercury                         | (2)     | Cadmium                         |
|     | (3)  | Lead                            | (4)     | Arsenic                         |
| 19. | Acet | yl choline esterase enzyme is   | inhi    | bited by:                       |
|     | (1)  | Organophosphates                | (2)     | Triazine                        |
|     | (3)  | Phenylurea                      | (4)     | Organomercurals                 |
|     |      |                                 |         |                                 |



| 20.   | The   | Headquarter of UNEP is located    | d at   | :                              |
|-------|-------|-----------------------------------|--------|--------------------------------|
|       | (1)   | Paris                             | (2)    | Rio de Jenerio                 |
|       | (3)   | Narobi                            | (4)    | Geneva                         |
|       |       |                                   |        |                                |
| 21.   | Pern  | nafrost soil is characteristic of | :      | *                              |
|       | (1)   | Tundra biome                      | (2)    | Taiga biome                    |
|       | (3)   | Tropical rain forest              | (4)    | Savannah                       |
|       |       |                                   |        |                                |
| 22.   | The   | biggest hindrance in using bio    |        | -                              |
|       | (1)   | Lack of proven technology for     | con    | nmercialization                |
|       | (2)   | Energy yield is low               |        |                                |
|       | (3)   | Large land area is required to    | gro    | w energy crops                 |
|       | (4)   | Air pollution due to combusti     | ion    |                                |
| 23.   | Wh    | ich of the following category o   | of pla | ants get benefited more due to |
|       |       | vation of CO <sub>2</sub> level ? |        |                                |
|       | (1)   | C <sub>3</sub> plants             | (2)    | C <sub>4</sub> plants          |
|       | (3)   |                                   | (4)    | All of the above               |
|       |       |                                   |        |                                |
| 24    | . The | e value of solar constant(S) is : |        |                                |
| 276.7 |       | 20 W/m <sup>2</sup>               | (2)    | 1372 W/m <sup>2</sup>          |
|       | (3)   | 2                                 | (4)    | $1330 \text{ W/m}^2$           |
|       |       |                                   |        |                                |
|       |       |                                   |        |                                |



| 25. | The  | second most important sour               | rce a  | fter fossil fuels contributing to |
|-----|------|------------------------------------------|--------|-----------------------------------|
|     | Ind  | ia's energy needs is :                   |        |                                   |
|     | (1)  | Solar energy                             | (2)    | Nuclear energy                    |
|     | (3)  | Wind energy                              | (4)    | Hydropower                        |
| 26. |      | ich one of the following is a servation? | an E   | x-Situ method of biodiversity     |
|     | (1)  | Seed storage                             | (2)    | Tissue culture                    |
|     | (3)  | Gene bank                                | (4)    | All of the above                  |
| 27. | Ran  | nsar convention on Wetland I             | ntern  | ational Importance is effective   |
|     | sino | ce:                                      |        |                                   |
|     | (1)  | 1992                                     | (2)    | 1971                              |
|     | (3)  | 1972                                     | (4)    | 1974                              |
| 28. | Nati | ural source of polycyclic arom           | atic l | nydrocarbons (PAHs) is :          |
|     | (1)  | Grass fire                               | (2)    | Root exdudates                    |
|     | (3)  | Aerobic bacteria                         | (4)    | Anaerobic bacteria                |
| 29. | Cina | bar is an ore of:                        |        | *                                 |
|     | (1)  | Iron                                     | (2)    | Mercury                           |
|     | (3)  | Gold                                     | (4)    | Lead                              |
|     |      |                                          |        |                                   |



30. Most Productive zone in a freshwater Lake/Pond is:

(1) Profundal zone

(2) Limnetic zone

(3) Benthic zone

(4) Littoral zone



## (ii) CHEMISTRY

## (Compulsory for all)

| 31. | The    | molecular s     | tructu  | re of ozo  | ne is sir | nilar to tl | nat of :    |           |       |
|-----|--------|-----------------|---------|------------|-----------|-------------|-------------|-----------|-------|
|     | (1)    | Chlorine di     | oxide   |            | (2)       | Carbon      | dioxide     |           |       |
|     | (3)    | Sulphur tri     | oxide   |            | (4)       | Borane      |             |           |       |
| *   |        |                 |         |            |           |             |             |           | 8     |
| 32. | Hov    | v many germ     | s of o  | xygen w    | ill be ob | tained if   | one mole    | e of wate | er is |
|     | fully  | y electrolysed  | 1?      |            |           |             |             |           |       |
|     | (1)    | 0.5 g           | (2)     | 1 g        | (3)       | 16 g        | .(4)        | 32 g      |       |
| 33. | The    | bond angles     | in bo   | ron triflu | oride n   | nolecule a  | are :       |           |       |
|     | (1)    | 90°             | (2)     | 1040       | (3)       | 1090        | (4)         | 120°      |       |
| 34. | The    | bond dissoci    | ation   | energy o   | f fluorin | e is:       |             |           |       |
|     | (1)    | Similar to the  | nat of  | chlorine   | (2)       | Similar     | to that of  | bromin    | e     |
|     | (3)    | Similar to th   |         |            | (4)       |             | among tl    |           |       |
| 35. | If 10  | ml of 0.1 M h   | ydroc   | hloride a  | cid is ac | ided to 5r  | nl of 0.1 N | M sulphi  | ıric  |
|     | acid   | and the mix     | ture ti | trated ag  | gainst 0  | .2 M sodi   | um hydr     | oxide. w  | hat   |
|     | will ł | oe the titre va | alue?   |            |           |             |             | ,         |       |
|     | (1)    | 7.5 ml          | (2)     | 10 ml      | (3)       | 15 ml       | (4)         | 30 ml     |       |
|     |        |                 |         | 1:         | 1         |             |             |           |       |



| 36. | A lis | t of which i                          | nclude               | s on   | y gase   | s tha | t dissolve in v                        | vater to give | an |
|-----|-------|---------------------------------------|----------------------|--------|----------|-------|----------------------------------------|---------------|----|
|     | acid  | ic solution is                        | 3:                   |        |          |       | 4.4                                    |               |    |
|     | (1)   | CO <sub>2</sub> , SO <sub>2</sub> , S | SO <sub>3</sub> , HI |        |          | (2)   | $CO_2$ , $SO_2$ , $F_2$ , $N$          | 2.            |    |
|     | (3)   | NO <sub>2</sub> , SO <sub>2</sub> ,H  | I, F <sub>2</sub>    |        |          | (4)   | CO <sub>2</sub> , SO <sub>2</sub> , SO | 3, HBr        |    |
|     |       |                                       |                      |        |          |       |                                        |               |    |
| 37. | Wha   | t is the best                         | way to               | des    | scribe t | he ge | cometry of XeF                         | 4 ?           |    |
|     | (1)   | Spherical                             |                      |        |          | (2)   | Octahedral                             |               |    |
|     | (3)   | Tetrahedra                            | 1                    |        |          | (4)   | Planar                                 |               |    |
| ••  | mi    |                                       |                      |        |          | ! -   |                                        |               |    |
| 38. | The   | anion and o                           | ation a              | ire is | o-efect  | romic | : III :                                |               |    |
|     | (1)   | LiF                                   | (2)                  | NaF    |          | (3)   | RbI                                    | (4) CsCl      |    |
| 39. | Whi   | ch of the fol                         | lowing               | is no  | ot a po  | lymer | ric compound                           | ?             |    |
|     | (1)   | Starch                                |                      |        |          | (2)   | Cellulose                              |               |    |
|     | (3)   | Melanin                               |                      |        |          | (4)   | Tryptophan                             |               | ,  |
|     |       |                                       |                      |        |          |       |                                        |               |    |
| 40. | How   | many unpa                             | aired el             | ectro  | ons are  | ther  | e in an atom o                         | of C?         |    |
| ×   | (1)   | None                                  | (2)                  | 1      | 100      | (3)   | 2                                      | (4) 3         |    |
| 13  |       |                                       |                      |        |          |       |                                        |               |    |
| 41. | Whi   | ich of the fol                        | llowing              | is n   | ot a pa  | rama  | gnetic compo                           | and?          |    |
|     | (1)   | O2                                    |                      |        |          | (2)   | NO <sub>2</sub>                        |               |    |
|     | (3)   | CuCl <sub>2</sub>                     |                      |        |          | (4)   | $C_6H_6^-$ (anion                      | n)            |    |
|     | (0)   |                                       |                      |        |          |       |                                        |               |    |
|     |       |                                       |                      |        |          |       |                                        |               |    |



| 42. | Wh   | at is the oxi                       | dation                        | number     | of Fe ir | 1 (NH <sub>4</sub> ) <sub>3</sub> [Fe | (CN) <sub>6</sub> ]             | 14          |
|-----|------|-------------------------------------|-------------------------------|------------|----------|---------------------------------------|---------------------------------|-------------|
|     | (1)  | +2                                  | (2)                           | -2         | (3)      | +3                                    | (4)                             | +4          |
| 43. | Wh   | at is the C-I                       | H bond                        | -order in  | benzer   | ne:                                   |                                 |             |
|     | (1)  | 0                                   | (2)                           | 1          | (3)      | 1.5                                   | (4)                             | 2           |
| 44. | Ide  | ntify the pair                      | r in wh                       | ich both 1 | nolecul  | es have sp                            | o² hybridi                      | sed atoms : |
|     | (1)  | C <sub>2</sub> H <sub>4</sub> and ( | CO2                           |            | (2)      | C <sub>6</sub> H <sub>6</sub> and     | d CHCl <sub>3</sub>             |             |
|     | (3)  | C <sub>2</sub> H <sub>4</sub> and ( | C <sub>3</sub> H <sub>4</sub> |            | (4)      | HCN and                               | d C <sub>2</sub> H <sub>2</sub> |             |
| 45. |      | at is the to                        |                               |            | orbital  | associated                            | d with th                       | e principal |
|     | qua  | ntum numb                           | er, n=4                       | 4 ?        | 4        |                                       |                                 |             |
|     | (1)  | 3                                   | (2)                           | 4          | (3)      | 16                                    | (4)                             | 24          |
| 46. | The  | name of de                          | Brogile                       | e is assoc | iated w  | ith:                                  |                                 |             |
|     | (1)  | The uncert                          | ainty p                       | orinciple  | (2)      | Matter w                              | aves                            |             |
| *   | (3)  | Atomic orbi                         | itals                         |            | (4)      | Electron                              | spin                            |             |
| 17. | An e | element crys                        | stallize                      | s in FCC   | lattice  | . How ma                              | ny atoms                        | are the     |
|     | per  | unit cell?                          |                               | 3 -        |          |                                       | 7                               | are mere    |
|     | (1)  | 1                                   | (2)                           | 2          | (3)      | 3                                     | (4) 4                           |             |
|     |      |                                     |                               | 13         | 3        |                                       |                                 |             |
|     |      |                                     |                               |            |          | 1                                     |                                 | P.T.O.      |



| 48.        | A sa  | mple of water                                          | conta              | ains 200 p  | pm of               | Ca²+ in it. Wha                                    | t is the molality                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|------------|-------|--------------------------------------------------------|--------------------|-------------|---------------------|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | of th | e solution wit                                         | h res              | pect to Ca  | (at. w              | t. 40) ?                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            | (1)   | 0.2 m                                                  | ×                  |             | (2)                 | 2 m                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            | (3)   | $5 \times 10^{-3}$ m                                   |                    |             | (4)                 | 0.05 m                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            |       |                                                        |                    |             |                     |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 49.        | Coke  | e is often used                                        | d in e             | xtractive r | netallu             | ırgy. Its major                                    | role is:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|            | (1)   | As an oxidizi                                          | ng ag              | gent        | (2)                 | As a reducing                                      | g agent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|            | (3)   | As a fuel                                              |                    |             | (4)                 | To form slag                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            |       |                                                        |                    |             |                     |                                                    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 50.        | Whi   | ch of the follo                                        | wing               | is not a cr | rystallı            | ne substance                                       | <i>r</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|            | (1)   | Glass                                                  |                    |             | (2)                 | Quartz                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            | (3)   | Chalk                                                  |                    |             | . (4)               | Diamond                                            | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|            |       |                                                        | ne o               | re than in  | the n               | ucleus of a 170                                    | ) atom ?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 51.        | How   | many neutro                                            |                    |             |                     | ucleus of a 17C                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            | (1)   | 6                                                      | (2)                | 8           | (3)                 | 9                                                  | (4) 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| <b>5</b> 2 | Whi   | ch element e                                           | xists              | in the +2   | 2 oxida             | ation state in                                     | all its common                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 34.        |       | pounds?                                                |                    |             |                     |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            |       | Mn                                                     | (2)                | Mg          | (3)                 | Мо                                                 | (4) Eu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|            | (1)   |                                                        |                    |             |                     |                                                    | 2000 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - |
| 53         | froi  | n each pair g                                          | iven t             | elow iden   | tify th             | e ion which is                                     | smaller in size.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|            | [Fe   | <sup>2+</sup> , Fe <sup>3+</sup> ) [K <sup>+</sup> , C | Ca <sup>2+</sup> ] | [Na+, F-]   | [Se <sup>2-</sup> , | $S^{2-}$ ]:                                        | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|            |       | 0 17+ F- C                                             | 12-                |             | (2)                 | Fe3+,Ca2+ Na+                                      | , S <sup>2-</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|            | (1)   | Fe <sup>2+</sup> , K F , S                             | F⁻, Se             | 2-          | (4)                 | Fe <sup>3+</sup> ,K <sup>+</sup> Na <sup>+</sup> , | Se <sup>2-</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|            | (3)   |                                                        |                    |             |                     |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            |       |                                                        |                    | 1           | 14                  | 9                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            |       |                                                        |                    |             |                     |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| 01. | ** 111 | ich one of the     | TOTIC | owing set c  | onta  | ins one element     | each from s         |
|-----|--------|--------------------|-------|--------------|-------|---------------------|---------------------|
|     | bloo   | ck, p-block and    | d d-b | lock?        |       |                     | *                   |
|     | (1)    | Rb, K, Ru          |       |              | (2)   | Li, W, Bi           |                     |
|     | (3)    | C, Cl, Sr          |       |              | (4)   | Sc, Pd, Te          |                     |
| 55. | Whi    | ch of the follow   | wing  | is not a Le  | wis a | cid ?               |                     |
| 2   | (1)    | S <sup>2-</sup>    | (2)   | Zn²+         | (3)   | BF <sub>3</sub>     | 4) Co <sup>3+</sup> |
| 56. | Pota   | assium permai      | ngana | ate solution | n ma  | y be standardise    | d by titration      |
|     | agai   | nst:               |       |              |       |                     |                     |
|     | (1)    | Sodium carbo       | onate | <b>:</b> ,   | (2)   | Chromic acid        |                     |
|     | (3)    | Phthalic acid      | , - 1 |              | (4)   | Sodium oxalate      |                     |
| 57. | Whi    | ch of the follow   | ving  | compounds    | doe:  | s not contain a (   | C=O group ?         |
|     | (1)    | Acetic acid        |       |              | (2)   | Formaldehyde        |                     |
|     | (3)    | Cyclobutanor       | ne    |              | (4)   | Furan               |                     |
| 58. | Whic   | ch group is pre    | esent | in a secon   | dary  | amine ?             |                     |
|     | (1)    | -NR <sub>2</sub> ( | 2)    | -NHR         | (3)   | -NH <sub>2</sub> (4 | ) =NH               |
|     |        |                    |       |              | :     |                     |                     |

15

P.T.O.

59. For which one among the following reactions does Δ Ho of the reaction represent an enthalphy of formation?

(1) 
$$2H_2(g) + C(s) \rightarrow CH_4(g)$$

(2) 
$$2NO_2$$
 (g)  $\rightarrow N_2O_4$  (g)

(3) 
$$2N_2(g) + 3O_2(g) \rightarrow 2NO_2(g) + 2NO(g)$$

(4) 
$$CO_2(g) + H_2(g) \rightarrow H_2O(g) + CO(g)$$

60. Consider the following three reactions:

$$NH_4NO_3(s) = N_2O(g) + 2H_2O(g)$$
 (1)

$$2H_2(g) + O_2(g) = 2H_2O(g)$$
 (2)

$$2H_2(g) + O_2(g) = 2H_2O(I)$$
 (3)

which statement regarding the entropy changes (AS) in the above reactions is correct?

(1) 
$$\Delta S_1 > \Delta S_2 > \Delta S_3$$
 (2)  $\Delta S_1 > \Delta S_2 = \Delta S_3$ 

(2) 
$$\Delta S_1 > \Delta S_2 = \Delta S_3$$

(3) 
$$\Delta S_1 < \Delta S_2 < \Delta S_3$$
 (4)  $\Delta S_1 > \Delta S_2 < \Delta S_3$ 

$$(4) \quad \Delta S_1 > \Delta S_2 < \Delta S_3$$

61. Which one of the following compounds does not decolourise potassium permaganate solution?

Styrene (1)

- Benzene
- Propionaldehyde (3)
- Oxalic acid (4)



|   | 62  | . Wh | nich one of the follow | ing compo   | und i  | is optically active?         |
|---|-----|------|------------------------|-------------|--------|------------------------------|
|   |     | (1)  | Ethyl benzoate         |             | (2)    | Succinic acid                |
|   |     | (3)  | Salicylaldehyde        | ¥           | (4)    | Sucrose                      |
|   | 63  | . Wh | ich of the following o | compounds   | is a   | cidic ?                      |
|   |     | (1)  | Allyl alcohol          |             | (2)    | Aniline                      |
|   |     | (3)  | Acetophenone           |             | (4)    | Phenol                       |
|   | 64  |      |                        |             |        |                              |
|   | 64  | . Ho | w many isomers are     | there for d | lichlo | robenzene ?                  |
|   |     | (1)  | 1 (no isomer)          |             | (2)    | 2                            |
|   |     | (3)  | 3                      |             | (4)    | 4                            |
|   | 65, | Wh   | ich one of the followi | ng stateme  | ent is | s false ?                    |
|   |     | (1)  | Cis and trans ison     | ners of a   | com    | pound will, in general, have |
|   |     |      | different melting po   | oints       |        |                              |
|   |     | (2)  | Enantiomers will ha    | ave same o  | lipole | moments                      |
| 9 |     | (3)  | Diastereomers will     | always hav  | e sai  | me solubilities              |
|   |     | (4)  | Asymmetric centre      | is not esse | ntial  | for chirality                |
|   | 66. | The  | number of degree of    | freedom a   | t the  | triple point of water is:    |
| - |     | (1)  | 0 (2) 1                |             | (3)    | 2 (4) 3                      |
|   |     |      |                        | 17          | a a    |                              |

- 67. Which one of the following statements is false?
  - (1) p-nitrophenol has an higher melting point than o-nitrophenol
  - (2) Aniline is less basic than benzyl amine
  - (3) t-butanol forms a more stable carbonium ion than isopropanol
  - (4) Pyridine is more basic than ammonia
- 68. Markonikof's rule applies to:
  - (1) Electrophilic substitution of aromatic compounds
  - (2) Electrophilic addition of alkenes
  - (3) Steric strain
  - (4) Relative stabilities of carbanions
- 69. What is the major product when t- butylbenzene is nitrated?
  - (1) p-nitro-t-butylbenzene
  - (2) 2,6-nitro-t- butylbenzene
  - (3) o-nitro-t-butylbenzene
  - (4) m- nitro-t- butylbenzene
- 70. What product will be obtained if acetaldehyde is oxidized?
  - (1) Ethanol

(2) Menthanol

(3) Acetic acid

(4) Acetamide



| 71. | Wh      | What is the main compound of cooking gas? |           |                                |  |  |
|-----|---------|-------------------------------------------|-----------|--------------------------------|--|--|
|     | (1)     | Propane                                   | (2)       | Ethanol                        |  |  |
|     | (3)     | Butane                                    | (4)       | Methane                        |  |  |
| 72. | The     | boat and chair from of cycl               | ohexar    | ne are :                       |  |  |
|     | (1)     | Isomers                                   |           | Enantiomers -                  |  |  |
|     | (3)     | Diasteromers                              | (4)       | Conformers                     |  |  |
| 73. | $S_N 1$ | reaction involves a                       | as aı     | n Intermediate :               |  |  |
|     | (1)     | Carbanion                                 |           | Carbonium ion                  |  |  |
| 2   | (3)     | Pentavalent carbon species                | (4)       | Free radical                   |  |  |
| 74. | Whi     | ch one of the crystal unit ce             | lls doe   | es not have all axes orthogona |  |  |
|     |         | ne another?                               |           |                                |  |  |
|     | (1)     | Tetragonal cell                           | (2)       | Rhombohedral cell              |  |  |
|     | (3)     | Orthorhombic cell                         | (4)       | Cubic cell                     |  |  |
| 75. | If the  | e half life of a radioactive par          | rticle is | s 12 minutes what percentage   |  |  |
|     | of the  | e total number of particles v             | vill ren  | nain after 10 minutes 2        |  |  |
| 10  |         | E6                                        |           | ×                              |  |  |
|     | , ,     | (2) 54                                    | (3)       | 17 (4) 60                      |  |  |



| 76. | The                               | RMS speed o       | f nitr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ogen molect         | ules a  | t 300 K is 51 | б m/s    | . What w          | ill |
|-----|-----------------------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------|---------------|----------|-------------------|-----|
|     | be th                             | ne RMS spee       | d of h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nelium atom         | ns?     | v             |          |                   |     |
|     | (1)                               | 3612 m/s          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | (2)     | 1365 m/s      |          |                   |     |
|     | (3)                               | 965 m/s           | and the same of th |                     | (4)     | 1806 m/s      |          |                   |     |
| 77. | The                               | cryoscopic co     | onsta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nt of water         | is 2 º( | C/m. What wi  | ill be t | he freezi         | ng  |
|     | poin                              | t of 1 kg of      | water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | in which 1          | .1 kg   | of ethylene a | glycol   | $(C_2H_6O_2)$     | is  |
|     | diss                              | olved?            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.85                |         |               |          |                   |     |
|     | (1)                               | -36 °C            | (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -12 °C              | (3)     | -24 °C        | (4)      | 23 °C             |     |
| 78. | Wha                               | at solid prod     | ucts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | is obtained         | wher    | n calcium car | rbide    | reacts wi         | th  |
|     | wate                              | er?               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |         |               |          |                   |     |
|     | (1)                               | CaCO <sub>3</sub> | (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ca(OH) <sub>2</sub> | (3)     | Ca            | (4)      | CaCl <sub>2</sub> |     |
| 79. | Whi                               | ch of the foll    | owing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | g are exothe        | ermic   | processes?    |          |                   |     |
|     | (a) I                             | A match burn      | ns;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     |         |               |          |                   |     |
|     | (b) molten candle wax solidifies; |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |         |               |          |                   |     |
|     | (c)                               | kerosene eva      | porat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | es                  |         |               |          |                   |     |
|     | (1)                               | All three         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | (2)     | (a) and (b)   |          |                   |     |
|     | (3)                               | (a) and (c)       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | (4)     | (b) and (c)   |          |                   |     |
|     |                                   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | •       |               |          |                   |     |



80. What will be the main product in the following reaction?

- (1) C<sub>2</sub>H<sub>5</sub>O-C(CH<sub>3</sub>)<sub>3</sub>
- (2)  $(H_3C)(C_2H_5)C=CH_2$
- (3) (H<sub>3</sub>C)<sub>3</sub> C-OH
- (4)  $(H_3C)_2C=CH_2$

81. Other things being equal, how will the rate of the forward reaction in the following system change if the volume of the reaction vessel is halved?

$$CO(g) + Cl_2(g) = COCl_2(g)$$

- (1) The rate will be halved
- (2) The rate will be decrease to 1/4 of the original value
- (3) The rate will be double
- (4) The rate will be increase four times
- 82. What product is obtained when CH<sub>3</sub>CONH<sub>2</sub> is treated with bromine and sodium hydroxide?
  - (1) CH<sub>3</sub>COOH

(2) CH<sub>3</sub>NH<sub>2</sub>

(3)  $C_2H_5NH_2$ 

(4) CH<sub>3</sub>CH<sub>2</sub>Br

| 83. | How many stereoisomers are possible for butane-2,3-dicarboxylic                      |
|-----|--------------------------------------------------------------------------------------|
|     | acid?                                                                                |
|     | (1) 1 (2) 2 (3) 3 (4) 4                                                              |
| 84. | What changes will increase the equilibrium concentration of product                  |
|     | C in the system, $A(g) + B(g) = C(g)$ , if the $\Delta H^{\circ}$ of the reaction is |
|     | negative? Choose from the following conditions:                                      |
|     | (a) The adding of a catalyst,                                                        |
|     | (b) The addition of an extra amount of substance A,                                  |
|     | (C) Raising of the temperature,                                                      |
|     | (d) Lowering the temperature                                                         |
|     | (1) (b) and (d) (2) (a) and (d)                                                      |
|     | (3) (c) (4) (a) and (b)                                                              |
| 85. | What is the pH of a 0.001 M solution of sodium hydroxide?                            |
|     | (1) -3 (2) 3 (3) 11 (4) 7                                                            |
|     |                                                                                      |
| 86. | The reaction of copper sulphate with potassium iodide in aqueous                     |
|     | medium is an example of:                                                             |
|     | (1) Redox reaction                                                                   |
|     | (2) Disproprtionation reaction                                                       |
|     | (3) Double decomposition reaction                                                    |
|     | (4) Halogenation reaction                                                            |
|     | 22                                                                                   |



| 87. | CsF adopts the NaCl crystal structure. If the unit cell edge is length |
|-----|------------------------------------------------------------------------|
|     | 4.02 A, what is the shortest distance between the Cst and Fions in     |
|     | the crystal?                                                           |

- (1) 2.01 Å
- (2) 2.84 A
- (3) 3.48 A
- (4) 4.02 A

- (1) d[C]/dt = -d[A]/dt
- (2) [A] + [C] is a constant

(3) d[B]/dt = 0

(4) [A] - [C] = 0

(1) Ethane

(2) Ethylene

(3) Acetylene

(4) Benzene

SOCl<sub>2</sub>; Cl<sub>2</sub>; PCl<sub>5</sub>; HCl

- (1) SOCl<sub>2</sub> and PCl<sub>5</sub>
- (2) SOCl<sub>2</sub> and Cl<sub>2</sub>

(3) PC1<sub>5</sub>

(4) Cl<sub>2</sub> and HCl





į

### SECTION - B

## (i) LIFE SCIENCE

## (Optional)

| 91. | The   | oldest organisms are consider  | ed to  | be:                             |
|-----|-------|--------------------------------|--------|---------------------------------|
|     | (1)   | PPLO                           | (2)    | Archaea                         |
|     | (3)   | Animals                        | (4)    | Bacteria                        |
| 92. | Gra   | m staining was introduced by   | :      |                                 |
|     | (1)   | Robert Gram                    | (2)    | Christian Gram                  |
|     | (3)   | Robert Koch                    | (4)    | Louis Pasteur                   |
| 93. |       | en a virus enters a cell but d | loes 1 | not replicate immediately, the  |
|     | (1)   | Synergism                      | (2)    | Symbiosis                       |
|     | (3)   | Mutualism                      | (4)    | Lysogency                       |
| 94. | . The |                                | nergy  | y from chemicals are designated |
|     | (1)   | Chemotrophs                    | (2)    | Autotrophs                      |
|     | (3)   | Organotrophs                   | (4)    | Prototrophs                     |
|     |       |                                |        |                                 |



| 95. | An organism that expends energy to grow in a habitat with a low |                                   |        |                                |
|-----|-----------------------------------------------------------------|-----------------------------------|--------|--------------------------------|
|     | wate                                                            | er activity in order to maintai   | n inte | ernal solute concentrations to |
|     | reta                                                            | in water is:                      |        |                                |
|     | (1)                                                             | Alkalophile                       | (2)    | Aerotolerant                   |
|     | (3)                                                             | Acidophile                        | (4)    | Osmotolerant                   |
| 96. | The                                                             | plasmids can be eliminated fr     | om a   | cell by the process known as:  |
|     | (1)                                                             | Fixing                            | (2)    | Curing                         |
|     | (3)                                                             | Expulsion                         | (4)    | Breaking                       |
| 07  | Dwo                                                             | tain contant in descriptions of C | SCD is |                                |
| 97. | Pro                                                             | tein content in dry weight of S   | SCP IS | • •                            |
|     | (1)                                                             | 80-90% (2) 40-50%                 | (3)    | 60-80% (4) 20-30%              |
| 98. | T-pl                                                            | hages are a specific class of ba  | acteri | ophages with:                  |
|     | (1)                                                             | Double stranded DNA               | (2)    | Single stranded DNA            |
|     | (3)                                                             | Double stranded RNA               | (4)    | Single stranded RNA            |
|     |                                                                 |                                   |        |                                |
| 99. | Sul                                                             | fonamide is synthetic             | .com   | pound :                        |
|     | (1)                                                             | Antiviral                         | (2)    | Antibacterial                  |
|     | (3)                                                             | Antifungal                        | (4)    | None of the above              |
|     |                                                                 |                                   |        |                                |

| 100. Alcohol that is derived from fermentation of germinated barley grains |              |                                   |       |                                  |  |  |
|----------------------------------------------------------------------------|--------------|-----------------------------------|-------|----------------------------------|--|--|
|                                                                            | is known as: |                                   |       |                                  |  |  |
|                                                                            | (1)          | Beer                              | (2)   | Wine                             |  |  |
|                                                                            | (3)          | Vodka                             | (4)   | Rum                              |  |  |
| 101                                                                        | .The         | tuberculosis is caused by :       |       |                                  |  |  |
|                                                                            | (1)          | Mucobacterium                     | (2)   | Mycobacterium                    |  |  |
|                                                                            | (3)          | Campylobacter                     | (4)   | Salmonella                       |  |  |
| 102                                                                        | .Ger         | m theory fo disease was first d   | lemoi | nstrated by :                    |  |  |
|                                                                            | (1)          | Robert Koch                       | (2)   | L. Pasteur                       |  |  |
|                                                                            | (3)          | P.A. Micheli                      | (4)   | Benedict Prevost                 |  |  |
| 103                                                                        | .Cau         | sal agents of severe rusts of all | cerea | al grains and cultivated gasses  |  |  |
|                                                                            | are :        |                                   |       | *                                |  |  |
|                                                                            | (1)          | Puccínia spp                      | (2)   | Salmonella spp                   |  |  |
|                                                                            | (3)          | Pseudomonas spp                   | (4)   | Fusarium spp                     |  |  |
|                                                                            | ***1         | 1' museont more or les            |       | atantlu in a narticular lacation |  |  |
| 104                                                                        |              | n a disease present more or les   |       |                                  |  |  |
|                                                                            | in m         | noderate or severe form is calle  | d as  | :                                |  |  |
| 3                                                                          | (1)          | Pandemic disease                  | (2)   | Epidemic disease                 |  |  |
|                                                                            | (3)          | Endemic disease                   | (4)   | Sporadic disease                 |  |  |
|                                                                            |              |                                   |       |                                  |  |  |



| .Whi                                        | hich of the following reflects the correct order                                       | of events that tak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|---------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| place during the multiplication of a virus? |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| (1)                                         | Attachment, release, biosynthesis, maturat                                             | ion, penetration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| (2)                                         | Attachment, penetration, maturation, biosy                                             | nthesis, release                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| (3)                                         | Penetration, attachment, biosynthesis, mat                                             | uration, release                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| (4)                                         | Attachment, penetration, biosynthesis, ma                                              | turation, release                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|                                             |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| .Whi                                        | hich of the following groups of animals do                                             | es not come unde                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| deu                                         | uterostomes :                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| (1)                                         | Chordata (2) Arthropo                                                                  | oda                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| (3)                                         | Protochordata (4) Echinod                                                              | ermata                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|                                             |                                                                                        | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| .Wat                                        | ater vascular system is found in which of th                                           | e following group o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|                                             |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| (1)                                         | Echinodermata (2) Ctenoph                                                              | ora .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| (3)                                         | Mollusca (4) Platyhel                                                                  | minthis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|                                             |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| .The                                        | e lateral line system of bony fishes and shark                                         | s functions in :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| (1)                                         | Osmoregulation                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| (2)                                         | Gas exchange                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|                                             | pla<br>(1)<br>(2)<br>(3)<br>(4)<br>.W. de<br>(1)<br>(3)<br>.W. an<br>(1)<br>(3)<br>.Th | place during the multiplication of a virus?  (1) Attachment, release, biosynthesis, maturat (2) Attachment, penetration, maturation, biosy (3) Penetration, attachment, biosynthesis, mat (4) Attachment, penetration, biosynthesis, mat (5) Which of the following groups of animals do deuterostomes: (1) Chordata (2) Arthropo (3) Protochordata (4) Echinode (4) Water vascular system is found in which of the animals? (1) Echinodermata (2) Ctenoph (3) Mollusca (4) Platyheli (5) The lateral line system of bony fishes and sharks (1) Osmoregulation | (1) Attachment, release, biosynthesis, maturation, penetration (2) Attachment, penetration, maturation, biosynthesis, release (3) Penetration, attachment, biosynthesis, maturation, release (4) Attachment, penetration, biosynthesis, maturation, release (4) Attachment, penetration, biosynthesis, maturation, release (5) Which of the following groups of animals does not come under deuterostomes: (6) Chordata (7) Arthropoda (8) Protochordata (9) Arthropoda (10) Echinodermata (11) Echinodermata (12) Ctenophora (13) Mollusca (14) Platyhelminthis (15) The lateral line system of bony fishes and sharks functions in: (16) Osmoregulation |  |



hydrodynamics

(4)

Sensory preception

| 109. The first set of genes to be activated for axis specification of Drosophila |                                            |                                 |       |                                 |  |  |
|----------------------------------------------------------------------------------|--------------------------------------------|---------------------------------|-------|---------------------------------|--|--|
|                                                                                  | is during early embryonic development is : |                                 |       |                                 |  |  |
|                                                                                  | (1)                                        | Gap genes                       | (2)   | Pair rule gene                  |  |  |
|                                                                                  | (3)                                        | Homeotic genes                  | (4)   | Segment polarity genes          |  |  |
|                                                                                  |                                            |                                 |       |                                 |  |  |
| 110                                                                              | . Dur                                      | ing gastrulation the movemen    | nt of | ectodermal cells to cover the   |  |  |
|                                                                                  | enti                                       | re embryo is known as :         |       |                                 |  |  |
|                                                                                  | (1)                                        | Epiboly                         | (2)   | Delamination                    |  |  |
|                                                                                  | (3)                                        | Ingression                      | (4)   | Invagination                    |  |  |
|                                                                                  |                                            |                                 |       |                                 |  |  |
| 111                                                                              | . Slov                                     | w block to polyspermy resulting | in re | emoval of sperms from vitelline |  |  |
|                                                                                  | men                                        | nbrane is accomplished by:      |       |                                 |  |  |
|                                                                                  | (1)                                        | Changes in membrane poten       | tial  |                                 |  |  |
|                                                                                  | (2)                                        | Cortical rotation               |       |                                 |  |  |
|                                                                                  | (3)                                        | Cortical reaction               |       |                                 |  |  |
|                                                                                  | (4)                                        | Acrosomal reaction              |       |                                 |  |  |

- 112. If you need to prepare 5M NaCl (MW 58.4), you will dissolve:
  - (1) 1 gm of NaCl in a total volume of 100 ml of water
  - (2) 1 gm of NaCl in a total volume of 1000 ml of water
  - (3) 58.4 gm of NaCl in a total volume of 200 ml of water
  - (4) 5.84 gm of NaCl in a total volume of 100 ml of water



| 113. | 113. Which of the following is the major source of blood glucose during an |                                             |                 |                              |  |  |
|------|----------------------------------------------------------------------------|---------------------------------------------|-----------------|------------------------------|--|--|
|      | overnight fasting?                                                         |                                             |                 |                              |  |  |
|      | (1)                                                                        | Hepatic glycogenolysis                      |                 |                              |  |  |
|      | (2)                                                                        | Gluconeogenesis                             | Gluconeogenesis |                              |  |  |
|      | (3)                                                                        | Dietary glucose from intestine              |                 |                              |  |  |
|      | (4)                                                                        | Muscles glycogenolysis                      |                 |                              |  |  |
| 114. | Pear                                                                       | rl is formed in oysters :                   |                 |                              |  |  |
|      | (1)                                                                        | In the shell following the entr             | y of            | an irritant                  |  |  |
|      | (2)                                                                        | By the mantle                               |                 |                              |  |  |
|      | (3)                                                                        | Between the mantle and inner body           |                 |                              |  |  |
|      | (4)                                                                        | By calcium carbonate deposition at any site |                 |                              |  |  |
| 115. | Imn                                                                        | nunoprecipation is done to stu              | dy:             |                              |  |  |
|      | (1)                                                                        | DNA-protein interaction                     | (2)             | Protein- Protein interaction |  |  |
|      | (3)                                                                        | Protein - RNA interaction                   | (4)             | DNA-RNA interaction          |  |  |
| 116. | . Circ                                                                     | cadian rhythm in our body is re             | egula           | ated by:                     |  |  |
|      | (1)                                                                        | TSH                                         | (2)             | Melatonin                    |  |  |
|      | (3)                                                                        | Prostaglandins                              | (4)             | ADH                          |  |  |
|      |                                                                            |                                             |                 |                              |  |  |
|      |                                                                            | 29                                          | 2               | P.T.O.                       |  |  |



| 117 | 117. In ovarian cycle:                                                                                                                                                        |                                                       |       |                      |  |  |  |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------|----------------------|--|--|--|
|     | (1)                                                                                                                                                                           | Preovulatory phase occurs mainly due to section of LH |       |                      |  |  |  |
|     | (2)                                                                                                                                                                           | LH surge causes ovulation                             |       |                      |  |  |  |
|     | (3)                                                                                                                                                                           | Regulation of water balance                           | in th | e blood              |  |  |  |
|     | (4)                                                                                                                                                                           | Filteration of blood                                  |       |                      |  |  |  |
| 118 | 118. Drinking alcoholic beverages on hot days in not safe because alcohol inhibits release of the following hormone which normally help to conserve water during dehydration? |                                                       |       |                      |  |  |  |
|     | (1)                                                                                                                                                                           | Oxytocin                                              | (2)   | Antidiuretic hormone |  |  |  |
|     | (3)                                                                                                                                                                           | Thyroxine                                             | (4)   | Tri-iodothyronine    |  |  |  |
| 119 | .The                                                                                                                                                                          | bulk of CO <sub>2</sub> is transported in             | arter | ial blood as :       |  |  |  |
|     | (1)                                                                                                                                                                           | Dissolved CO <sub>2</sub>                             | (2)   | Bicarbonate          |  |  |  |
|     | (3)                                                                                                                                                                           | Carbamino haemoglobulin                               | (4)   | Carboxyhaemoglobulin |  |  |  |
| 120 | 120. The volume of air breathed in and out during quite respiration is known as:                                                                                              |                                                       |       |                      |  |  |  |
|     | (1)                                                                                                                                                                           | Respiratory minute volume                             | (2)   | Inspiratory capacity |  |  |  |
|     | (3)                                                                                                                                                                           | Residual volume                                       | (4)   | Tidal wave           |  |  |  |
|     |                                                                                                                                                                               |                                                       |       |                      |  |  |  |



#### (ii) PHYSICS

#### (Optional)

| 121 | Whe | en some work is done then there will be some wastage of heat |
|-----|-----|--------------------------------------------------------------|
|     | ene | rgy, this is in accordance with:                             |
|     | (1) | Zeroth law of thermodynamics                                 |
|     | (2) | First law of thermodynamics                                  |
|     | (3) | Second law of thermodynamics                                 |

- 122.A sample of 100 gm of water is slowly heated from 27 °C to 87 °C. If the specific heat capacity of water is 4200 J/kg K then the change in the entropy of the water is:
  - (1) 7.6 J/K (2) 36 J/K (3) 42 J/K (4) 65 J/K
- 123. Newton's law of cooling is a special case of:

(4) Third law of thermodynamics

- (1) Stefan's law (2) Kirchhaff's law
- (3) Rayleigh Jean's law (4) Joule's law
- 124. The temperature below which a gas must be cooled to be liquiefied by pressure alone is called:
  - (1) Boyle temperature (2) Critical temperature
  - (3) Curie temperature (4) Inversion temperature





- 125. If a particle is projected at an angle 30° to the horizontal with kinetic energy E then the kinetic energy at the highest point of its trajectory will be:
  - (1) E/4

- (2) E/2 (3) 3E/4 (4)  $\frac{E}{\sqrt{2}}$
- 126. A bird alights on a telephone wire stretched between two poles. The additional tension produced in the wire will be:
  - Equal to the weight of the bird
  - less than the weight of the bird (2)
  - Greater than the weight of the bird (3)
  - (4)Zero
- 127. The length of a metal wire is  $l_1$  when the tension in it is  $T_1$  and is  $l_2$ when the tension is T2. The natural length of the wire is:
  - $(1) \quad \frac{l_1 l_2 l_2 l_1}{T_2 T_1}$
- (2)  $\frac{l_1 T_2 + l_2 T_1}{T_1 + T_2}$
- (3)  $\frac{l_1 T_2 l_2 T_1}{T_1 + T_2}$
- (4)  $\frac{l_1 T_2 + l_2 T_1}{T_1 T_2}$
- 128. A shell fired from a canon with a velocity v m/sec at an angle  $\theta$  with the horizontal. It explodes into two pieces of equal masses at highest point of its path. One of the pieces retraces its path to the canon. The speed of the other piece immediately after the explosion is :
  - $3 v \cos \theta m/sec$ (1)
- $4 v \cos \theta m / \sec$ (2)
- 2 v cos θ m/sec (3)
- $v\cos\theta m/\sec$ (4)



129. Two uniform circular discs A and B of equal masses and thickness are made of materials of densities d<sub>A</sub> and d<sub>B</sub> respectively. If their moments of inertia about an axis passing through the center and normal to the circular surface are I<sub>A</sub> and I<sub>B</sub> respectively then:

$$(1) \quad \frac{I_A}{I_B} = \frac{d_A}{d_B}$$

$$(2) \quad \frac{I_A}{I_B} = \frac{d_{A^2}}{d_{B^2}}$$

$$(3) \quad \frac{I_A}{I_B} = \frac{d_B}{d_A}$$

(4) 
$$\frac{I_A}{I_B} = \frac{d_{B^2}}{d_{A^2}}$$

130. In the half life time of radon (222Rn) is 3.8 days then how long does it take for 60% of sample of radon to decay?

(1) 4 days

(2) 4.5 days

(3) 5 days

(4) 6.5 days

131. A particle is executing simple harmonic motion with time period  $T = \frac{2\pi}{3}$  and amplitude A=2 meters. What is its maximum acceleration during its motion:

(1) 6 m/sec<sup>2</sup>

(2) 18 m/sec<sup>2</sup>

(3) 9 m/sec<sup>2</sup>

(4) 36 m/sec<sup>2</sup>

132. A pure Ge crystal has intrensic carrier concent ration N<sub>i</sub>=10<sup>13</sup> /cm<sup>3</sup> at room temperature when it is doped with antimony the hole density is found to be 10<sup>11</sup> /cm<sup>3</sup> at room temperature the doping density, assuming that all impurity atoms are ionized, is:

(1) 10<sup>11</sup> /cm<sup>3</sup>

(2) 10<sup>13</sup> /cm<sup>3</sup>

(3) 10<sup>15</sup> /cm<sup>3</sup>

(4) 1012 /cm3

P.T.O.



133. For a transistor the current gain  $\alpha$  =0.98. If the transistor is used as an amplifier in common emitter configuration and the base current changes by 0.1 mA on applying the input signal then the collector current will changes by:

(1)5 mA

4.8 mA

9.8 mA (3)

4.9 mA

134. Which of the following statement is wrong:

- Voltmeter should have very high resistance (1)
- Ammeter should have very high resistance (2)
- Voltmeter should be connected parallel to the device across which voltage isto be measured
- Ammeter should be connected in series with the electric circuit

135. If two electric heaters rated P<sub>1</sub> and P<sub>2</sub> watts of voltage are connected in parallel across a power supply of V volts then the total power drown would be:

- (1)  $\frac{P_1 P_2}{P_1 + P_2}$  (2)  $\frac{P_1 + P_2}{P_1 P_2}$  (3)  $P_1 + P_2$  (4)  $\sqrt{P_1 P_2}$

136. If the frame around which wire is wound in a moving cell galvanecemeter is metallic then its:

- damping is increased (1)
- damping is decreased (2)
- hysterisis loss is decreased (3)
- sensitivity is increased (4)



| 35 P.T.O.                                                                   |                                                                        |                                                  |     |                            |  |  |  |
|-----------------------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------|-----|----------------------------|--|--|--|
|                                                                             |                                                                        |                                                  |     | or water                   |  |  |  |
|                                                                             | (3)                                                                    | The buayancy of water                            |     | The stream energy of water |  |  |  |
| 100                                                                         | (1)                                                                    | The surface tension of water                     | (2) | The viscosity of water     |  |  |  |
|                                                                             | by:                                                                    |                                                  |     |                            |  |  |  |
| water without any external support because its weight is balanced           |                                                                        |                                                  |     |                            |  |  |  |
| 140. A thin needle of steel can be made to float in a bowl filled with pure |                                                                        |                                                  |     |                            |  |  |  |
|                                                                             | (0)                                                                    | interierence                                     | (4) | Bifringence                |  |  |  |
|                                                                             | (3)                                                                    | Interference                                     | (2) | Refraction                 |  |  |  |
|                                                                             | (1) D:00                                                               |                                                  |     |                            |  |  |  |
|                                                                             | passes through calcite crystal is known as:                            |                                                  |     |                            |  |  |  |
| 139. The decomposition of a ray of light into two different rays when it    |                                                                        |                                                  |     |                            |  |  |  |
|                                                                             | (3)                                                                    | Linear polarization                              | (4) | Unpolarized light          |  |  |  |
|                                                                             | (1)                                                                    | Circular polarization                            | (2) | elleptical polarization    |  |  |  |
|                                                                             | right angles two each other give rise to:                              |                                                  |     |                            |  |  |  |
| 130                                                                         | 8. Two linearly polarized light waves with their polarization planes a |                                                  |     |                            |  |  |  |
| 130                                                                         | Тиго                                                                   | linearly polarized light ways                    |     | h thair malarination of    |  |  |  |
|                                                                             | (4) Potential drop per unit length must be large                       |                                                  |     |                            |  |  |  |
|                                                                             | (3)                                                                    | (3) Potential drop per unit length must be small |     |                            |  |  |  |
|                                                                             | (2)                                                                    | Wire must be small                               |     |                            |  |  |  |
|                                                                             | (1)                                                                    | Wire must be long                                |     |                            |  |  |  |
|                                                                             |                                                                        |                                                  |     |                            |  |  |  |

137. For a polentiometer to be very sensitive the :



- 141. Sterm-Gerlach experiment shows:
  - (1) Discrete values for the physical quantities
  - (2) Continuous values for the physical quantities
  - (3) Uncertainty in simultaneous measurement of position and momentum of electron
  - (4) Wave nature of electron
- 142. Which of the following combinations of three identical capacitors will store maximum energy for the same voltage:
  - (1) Two in series and one in parallel across them
  - (2) Two in parallel and one in series
  - (3) All three in series
  - (4) All three in paralle
- 143. For a medium the response of conduction electrons to an electromagnetic field is determined by the relation  $\vec{J} = \sigma \vec{E}$  where symbols have their usual meaning. If  $\sigma$  increases with temperature the medium is:
  - (1) A conductor

(2) A semiconductor

(3) An insulator

(4) A dielectric



- 144. In a full-wave rectifier circuit being operated from 50H<sub>z</sub> A.C. mains frequency the second harmonic frequency in the repple would be:
  - (1) 25 H,

(2) 50 H<sub>z</sub>

(3) 100 H<sub>z</sub>

- (4) 200 H<sub>z</sub>
- 145. The width of the depletion layer of a P-N jucntion diode:
  - (1) Is increased under reverse bias
  - (2) Is increased under forward bias
  - (3) Is independent of applied bias
  - (4) Is increased with high doping
- 146. The moderator in a nuclear reactor is used for:
  - (1) Absorting neutrons
- (2) Absorting thermal energy
- (3) Slowing down neutrons
- (4) Accelerating neutrons
- 147. A measurement establishes the position of a proton with an accuracy of  $\pm 1.0 \times 10^{-11}$  m. The uncertainty in the proton's position 1.00 sec later will be (Assume velocity of proton to be very-very less than velocity of light and h =  $1.054 \times 10^{-34}$  J.sec)
  - (1) 2.35 × 10<sup>-12</sup> m
  - (2) 1.15 ×10<sup>-13</sup> m
  - (3) 3.15 ×10<sup>-19</sup> m
  - (4) 3.25 ×10<sup>-16</sup> m



- 148. Ultraviolet light of wave length 350 nm and intensity 1.00 w/m2 is directed at a potassium surface. If the work function for potassium surface is 2.2 eV then the maximum K.E of the photoelectrons emitted from the surface will be:
  - (1) 1.2 eV
- (2) 1.3 eV (3) 1.4 eV
- (4) 1.5 eV
- 149. An electron collides with a hydrogen atom in its ground state and excites it to a state of n=3. How much energy was given to the hydrogen atom in this collision (Given that ionization energy of hydrogen atom is 13.6 eV)
  - (1) 10.4 eV
- (2) 9.5 eV
- (3) 12.1 eV
- 150. Which of the following statement is not correct about LASER light beams:
  - (1) The light is very nearly monochromatic
  - (2)All the waves in the light are exactly in phase with each other
  - A LASER beam courages hardly at all (3)
  - The beam is extremely intense



#### (iii) GEOLOGY

#### (Optional)

| 151. As per the principle of cirs-cross cutting | tting | cu | -cross | cirs | of | nciple | prir | the | per | As | 151. |  |
|-------------------------------------------------|-------|----|--------|------|----|--------|------|-----|-----|----|------|--|
|-------------------------------------------------|-------|----|--------|------|----|--------|------|-----|-----|----|------|--|

- (1) Intruded rock is older than intruding rock
- (2) Intruded rock is younger than intruding rock
- (3) Both are of same age
- (4) There is no time relationship between them
- 152. Which of the following physical divisions of India is represented by a triangular plateau?
  - (1) Extra peninsular
- (2) Peninsular
- (3) Indo-gangetic Plains
- (4) None of these
- 153. "Structural highs" in Indo-gangetic plains are:
  - (1) Thrust faults
- (2) Flysch zone
- (3) Buried hills
- (4) Synclinorium
- 154. Siwalik rocks are present in:
  - (1) Outer Himalaya zone
  - (2) Lasser Himalaya zone
  - (3) Central crystalline axis
  - (4) Tethyan Himalaya zone



P.T.O.



| 155. Indus suture zone has characteristic rock type known as:              |         |                                  |       |                 |  |  |  |  |
|----------------------------------------------------------------------------|---------|----------------------------------|-------|-----------------|--|--|--|--|
|                                                                            | (1)     | Ophiolite                        | (2)   | Gondite         |  |  |  |  |
|                                                                            | (3)     | Charnockite                      | (4)   | Khondalite      |  |  |  |  |
|                                                                            |         |                                  |       |                 |  |  |  |  |
| 130                                                                        | . Selec | ct a lithostratigraphic unit fro | m th  | e following:    |  |  |  |  |
|                                                                            | (1)     | System                           | (2)   | Lithodeme       |  |  |  |  |
|                                                                            | (3)     | Formation                        | (4)   | Biozone         |  |  |  |  |
| 157. Which of the following eras has three periods?                        |         |                                  |       |                 |  |  |  |  |
|                                                                            | (1)     | Hadean                           | (2)   | Mesozoic        |  |  |  |  |
|                                                                            | (3)     | Palaeozoic                       | (4)   | Cenozoic        |  |  |  |  |
| 158. Mesozoic Era is also known as :                                       |         |                                  |       |                 |  |  |  |  |
|                                                                            | (1)     | Age of Mammals                   | (2)   | Age of reptiles |  |  |  |  |
|                                                                            | (3)     | Age of birds                     | (4)   | Age of fishes   |  |  |  |  |
|                                                                            |         |                                  | 1 6   | t ampagrad 3    |  |  |  |  |
| 159.                                                                       | .Whe    | n the most primitive fishes di   | a nrs | t appeared ?    |  |  |  |  |
|                                                                            | (1)     | Devonian                         | (2)   | Permian         |  |  |  |  |
|                                                                            | (3)     | Ordovician                       | (4)   | Cambrian        |  |  |  |  |
| 160. In which type of preservation, the hard parts of the organism becomes |         |                                  |       |                 |  |  |  |  |
|                                                                            | hear    | vier and denser?                 |       |                 |  |  |  |  |
|                                                                            | 2000    | Replacement                      | (2)   | Petrifaction    |  |  |  |  |
|                                                                            | (1)     |                                  | (4)   | Carbonisation   |  |  |  |  |
|                                                                            | (3)     | Recrystallisation                | (')   |                 |  |  |  |  |



| 161. Which of the following is a pseudofossil?                              |                                                      |                                  |        |                       |  |  |  |
|-----------------------------------------------------------------------------|------------------------------------------------------|----------------------------------|--------|-----------------------|--|--|--|
| - (                                                                         | 1)                                                   | Dendrites                        | (2)    | Chondrites            |  |  |  |
| (                                                                           | 3)                                                   | Graptolite                       | (4)    | Trilobite             |  |  |  |
|                                                                             |                                                      |                                  |        |                       |  |  |  |
| 162. The impression produced in the sediments due to behavioural activities |                                                      |                                  |        |                       |  |  |  |
| C                                                                           | oi ai                                                | ncient organisms is known as     | •      |                       |  |  |  |
| (                                                                           | (1)                                                  | Body fossils                     | (2)    | Leaked fossil         |  |  |  |
| (                                                                           | (3)                                                  | Psuedofossil                     | (4)    | Trace fossil          |  |  |  |
| 163.\                                                                       | Wha                                                  | at is meaning of extinction in f | ossil  | record ?              |  |  |  |
| (                                                                           | (1)                                                  | It has suddenly disappeared      | and 1  | never recur           |  |  |  |
| (                                                                           | (2)                                                  | It has suddenly disappeared      | but r  | ecurs again           |  |  |  |
| (                                                                           | (3)                                                  | It number has suddenly incre     | eased  | and then decreased    |  |  |  |
| (                                                                           | (4)                                                  | Its number has suddenly dec      | rease  | ed and then increased |  |  |  |
| 164 V                                                                       | 164. Which is the greatest period of coal formation? |                                  |        |                       |  |  |  |
|                                                                             | 62101                                                |                                  | u iori | mation ?              |  |  |  |
| (                                                                           | (1)                                                  | Permian                          | (2)    | Carboniferous         |  |  |  |
| (                                                                           | (3)                                                  | Eocene                           | (4)    | Miocene               |  |  |  |
| 165. Which of the following horizons of Lower Gondwana is devoid of coal    |                                                      |                                  |        |                       |  |  |  |
| seams?                                                                      |                                                      |                                  |        |                       |  |  |  |
| (                                                                           | 1)                                                   | Barakar Formation                |        |                       |  |  |  |
| (2                                                                          | 2)                                                   | Raniganj Formation               |        |                       |  |  |  |
| (3                                                                          | 3)                                                   | Karharbari Formation             |        |                       |  |  |  |
| (4                                                                          | 4)                                                   | Barren Measure Formation         |        |                       |  |  |  |
|                                                                             |                                                      | 41                               |        | P.T.O.                |  |  |  |



| 166. The lignite coalfield of Tamil Nadu is known as:       |                                                    |                                  |       |                           |  |  |  |
|-------------------------------------------------------------|----------------------------------------------------|----------------------------------|-------|---------------------------|--|--|--|
|                                                             | (1)                                                | Panadhro Lignite                 | (2)   | Neyveli Lignite           |  |  |  |
| •                                                           | (3)                                                | Palna Lignite                    | (4)   | None of these             |  |  |  |
| 167. Which of the following oilfields is situated in Assam? |                                                    |                                  |       |                           |  |  |  |
|                                                             | (1)                                                | Digboi                           | (2)   | Nawagam                   |  |  |  |
|                                                             | (3)                                                | Ankleshwar                       | (4)   | Nagapatinam               |  |  |  |
| 168.                                                        | In B                                               | ombay High, the age of hydro     | carbo | on bearing liomestone is: |  |  |  |
|                                                             | (1)                                                | Oligocene                        | (2)   | Eocene                    |  |  |  |
|                                                             | (3)                                                | Miocene                          | (4)   | Palaeocene                |  |  |  |
| 169                                                         | . Whi                                              | ch of the following areas is fan | nous  | for iron ore deposits?    |  |  |  |
|                                                             | (1)                                                | Malanjkhand                      | (2)   | Kudremukh                 |  |  |  |
|                                                             | (3)                                                | Zawar                            | (4)   | Sukinda                   |  |  |  |
| 170                                                         | 170. Find a copper-ore mineral from the following: |                                  |       |                           |  |  |  |
|                                                             | (1)                                                | Chamosite                        | (2)   | Chalcopyrite              |  |  |  |
|                                                             | (3)                                                | Pyrite                           | (4)   | Galena                    |  |  |  |
| 171                                                         | . Mag                                              | ganite is a mineral of:          |       |                           |  |  |  |
|                                                             | (1)                                                | Carbon                           | (2)   | Magnesium                 |  |  |  |
|                                                             | (3)                                                | Iron                             | (4)   | Manganese                 |  |  |  |
|                                                             | CES SI                                             |                                  |       |                           |  |  |  |



| 172. Blue dust is variety of:                                                    |                |                                |       |                             |  |  |  |
|----------------------------------------------------------------------------------|----------------|--------------------------------|-------|-----------------------------|--|--|--|
|                                                                                  | (1)            | Iron ore                       | (2)   | Copper ore                  |  |  |  |
|                                                                                  | (3)            | Manganese ore                  | (4)   | Chromite ore                |  |  |  |
| 173. Which of the following is <b>not</b> mechanically disintegrated sedimentary |                |                                |       |                             |  |  |  |
|                                                                                  | roc            | k ?                            |       |                             |  |  |  |
|                                                                                  | (1)            | Sandstone                      | (2)   | Conglomerate                |  |  |  |
|                                                                                  | (3)            | Shale                          | (4)   | Limestone                   |  |  |  |
| 174                                                                              | <b>4.</b> In t | he clastic sediments, the size | of co | bbles of range in between : |  |  |  |
|                                                                                  | (1)            | 4-64 mm                        | (2)   | 64-256 mm                   |  |  |  |
|                                                                                  | (3)            | 2-4 mm                         | (4)   | 2-1/16 mm                   |  |  |  |
| 175. The sandstones with more feldspar than quartz are called:                   |                |                                |       |                             |  |  |  |
|                                                                                  | (1)            | Arkose                         | (2)   | Greywacke                   |  |  |  |
|                                                                                  | (3)            | Quartz arenite                 | . (4) | None of these               |  |  |  |
| 176. Which of the following is a primary sedimentary structure?                  |                |                                |       |                             |  |  |  |
|                                                                                  | (1)            | Convolute bedding              | (2)   | Concretions                 |  |  |  |
| 10                                                                               | (3)            | Solution structure             | (4)   | Stratification              |  |  |  |
|                                                                                  |                |                                | The   |                             |  |  |  |



| 111                                                                       | 177. The epizone of metamorphism is characterized by : |                           |     |             |  |  |  |
|---------------------------------------------------------------------------|--------------------------------------------------------|---------------------------|-----|-------------|--|--|--|
|                                                                           | (1)                                                    | Low grade metamorphism    |     |             |  |  |  |
|                                                                           | (2)                                                    | Medium grade metamorphism |     |             |  |  |  |
|                                                                           | (3)                                                    | High garde metamorphism   | 2   |             |  |  |  |
|                                                                           | (4)                                                    | Load metamorphism         |     |             |  |  |  |
| 178. Which of the following metamorphic rocks is equivalent of shales and |                                                        |                           |     |             |  |  |  |
|                                                                           | mu                                                     | dstone ?                  |     | 99.0        |  |  |  |
|                                                                           | (1)                                                    | Schist                    | (2) | Geneiss     |  |  |  |
|                                                                           | (3)                                                    | Quartzite                 | (4) | Slate       |  |  |  |
| 179. Select from the following an acidic igeous rock:                     |                                                        |                           |     |             |  |  |  |
|                                                                           | (1)                                                    | Basalt                    | (2) | Granite     |  |  |  |
|                                                                           | (3)                                                    | Syenite                   | (4) | Diorite     |  |  |  |
| 180. Which of the following is considered as quartz free igneous rock?    |                                                        |                           |     |             |  |  |  |
|                                                                           | (1)                                                    | Nephaline Syenite         | (2) | Lamprophyre |  |  |  |
|                                                                           | (3)                                                    | Dolerite                  | (4) | Rhyolite    |  |  |  |
|                                                                           |                                                        |                           |     |             |  |  |  |



### ROUGH WORK रफ़ कार्य





ROUGH WORK एफ कार्य

### ROUGH WORK एफ कार्य



P.T.O.



# अभ्यर्थियों के लिए निर्देश

### (इस पुस्तिका के प्रथम आवरण पृष्ठ पर तथा उत्तर-पत्र के दोनों पृष्ठों पर केवल नीली-काली बाल-प्वाइंट पेन से ही लिखे)

- प्रश्न पुस्तिका मिलने के 30 मिनट के अन्दर ही देख लें कि प्रश्नपत्र में सभी पृष्ठ मौजूद हैं और कोई प्रश्न छूटा नहीं है। पुस्तिका दोषयुक्त पाये जाने पर इसकी सूचना तत्काल कक्ष-निरीक्षक को देकर सम्पूर्ण प्रश्नपत्र की दूसरी पुस्तिका प्राप्त कर लें।
- 2. परीक्षा भवन में *लिफाफा रहित प्रवेश-पत्र के अतिरिक्त*, लिखा या सादा कोई भी खुला कागज साथ में न लायें।
- उत्तर-पत्र अलग से दिया गया है। इसे न तो मोड़ें और न ही विकृत करें। दूसरा उत्तर-पत्र नहीं दिया जायेगा। केवल उत्तर-पत्र का ही मूल्यांकन किया जायेगा।
- 4. अपना अनुक्रमांक तथा उत्तर-पत्र का क्रमांक प्रथम आवरण-पृष्ठ पर पेन से निर्धारित स्थान पर लिखें।
- उत्तर-पत्र के प्रथम पृष्ठ पर पेन से अपना अनुक्रमांक निर्घारित स्थान पर लिखें तथा नीचे दिये वृत्तों को गाढ़ा कर दें। जहाँ-जहाँ आवश्यक हो वहाँ प्रश्न-पुस्तिका का क्रमांक तथा सेट का नम्बर उचित स्थानों पर लिखें।
- ओ० एम० आर० पत्र पर अनुक्रमांक संख्या, प्रश्नपुस्तिका संख्या व सेट संख्या (यदि कोई हो) तथा प्रश्नपुस्तिका पर अनुक्रमांक और ओ० एम० आर० पत्र संख्या की प्रविष्टियों में उपरिलेखन की अनुमति नहीं है।
- उपर्युक्त प्रविष्टियों में कोई भी परिवर्तन कक्ष निरीक्षक द्वारा प्रमाणित होना चाहिये अन्यथा यह एक अनुचित साधन का प्रयोग माना जायेगा।
- प्रश्न-पुस्तिका में प्रत्येक प्रश्न के चार वैकल्पिक उत्तर दिये गये हैं। प्रत्येक प्रश्न के वैकल्पिक उत्तर के लिए आपको उत्तर-पत्र की सम्बन्धित पंक्ति के सामने दिये गये वृत्त को उत्तर-पत्र के प्रथम पृष्ठ पर दिये गये निर्देशों के अनुसार पेन से गाढ़ा करना है।
- प्रत्येक प्रश्न के उत्तर के लिए केवल एक ही वृत्त को गाढ़ा करें। एक से अधिक वृत्तों को गाड़ा करने पर अथवा एक वृत्त को अपूर्ण भरने पर वह उत्तर गलत माना जायेगा।
- 10. ध्यान दें कि एक बार स्याही द्वारा अंकित उत्तर बदला नहीं जा सकता है। यदि आप किसी प्रश्न का उत्तर नहीं देना चाहते हैं, तो संबंधित पंक्ति के सामने दिये गये सभी वृत्तों को खाली छोड़ दें। ऐसे प्रश्नों पर शून्य अंक दिये जायेंगे।
- 11. रफ कार्य के लिए प्रश्न-पुस्तिका के मुखपृष्ठ के अंदर वाला पृष्ठ तथा उत्तर-पुस्तिका के अंतिम पृष्ठ का प्रयोग करें।
- 12. परीक्षा के उपरान्त केवल ओ एम आर उत्तर-पत्र परीक्षा भवन में जमा कर दें।
- 13. परीक्षा समाप्त होने से पहले परीक्षा भवन से बाहर जाने की अनुमित नहीं होगी।
- 13. यदि कोई अभ्यर्थी परीक्षा में अनुचित साधनों का प्रयोग करता है, तो वह विश्वविद्यालय द्वारा निर्धारत दंड का/की, भागी होगा/होगी।

