	Notation
$\mathbb{Z}=$ the set of integers	
$\mathbb{N}=\{n \in \mathbb{Z}: n \geq 1\}$	
$\mathbb{R}=$ the set of real numbers	
$\mathbb{Q}=$ the set of rational numbers	
$\mathbb{C}=$ the set of complex numbers	

(1) Let X be a compact topological space. Suppose that for any $x, y \in X$ with $x \neq y$, there exist open sets U_{x} and U_{y} containing x and y, respectively, such that

$$
U_{x} \cup U_{y}=X \quad \text { and } \quad U_{x} \cap U_{y}=\emptyset
$$

Let $V \subseteq X$ be an open set. Let $x \in V$. Show that there exists a set U which is both open and closed and $x \in U \subseteq V$.
(2) Let $C[0,1]$ denote the set of all real-valued continuous functions on $[0,1]$. Consider the normed linear space

$$
X=\left\{f \in C[0,1]: f\left(\frac{1}{2}\right)=0\right\},
$$

with the sup-norm, $\|f\|=\sup \{|f(t)|: t \in[0,1]\}$. Show that the set

$$
P=\{f \in X: f \text { is a polynomial }\}
$$

is dense in X.
(3) Let $g:\left[0, \frac{1}{2}\right] \rightarrow \mathbb{R}$ be a continuous function. Define $g_{n}:\left[0, \frac{1}{2}\right] \rightarrow \mathbb{R}$ by $g_{1}=g$ and

$$
g_{n+1}(t)=\int_{0}^{t} g_{n}(s) d s
$$

for all $n \geq 1$. Show that

$$
\lim _{n \rightarrow \infty} n!g_{n}(t)=0
$$

for all $t \in\left[0, \frac{1}{2}\right]$.
(4) Let $\sum_{n \geq 1} a_{n}$ be an absolutely convergent series of complex numbers. Let

$$
b_{n}= \begin{cases}a_{n} & \text { if } 1 \leq n<100 \\ \frac{n+1}{n^{2}} a_{n}^{2} & \text { if } n \geq 100\end{cases}
$$

Prove that $\sum_{n \geq 1} b_{n}$ is an absolutely convergent series.
(5) Let $f:[0,1] \times[0,1] \rightarrow[0, \infty)$ be a continuous function. Suppose that

$$
\int_{0}^{1}\left(\int_{0}^{1} f(x, y) d y\right) d x=0
$$

Prove that f is the identically zero function.
(6) Let m denote the Lebesgue measure on $[0,1]$. Give an example of a sequence of continuous functions $\left\{f_{n}\right\}_{n \geq 1} \subseteq L^{1}[0,1]$ such that

$$
\sup _{t \in[0,1]}\left|f_{n}(t)\right|=1
$$

for all n and

$$
\int_{0}^{1}\left|f_{n}\right| d m \rightarrow 0
$$

as $n \rightarrow \infty$.
(7) Let Γ denote the positively oriented circle of radius 2 with center at the origin. Let f be an analytic function on $\{z \in \mathbb{C}:|z|>1\}$, and let

$$
\lim _{z \rightarrow \infty} f(z)=0
$$

Prove that

$$
f(z)=\frac{1}{2 \pi i} \int_{\Gamma} \frac{f(\zeta)}{z-\zeta} d \zeta
$$

for all $z \in \mathbb{C}$ with $|z|>2$.
(8) Prove that there is no sequence of complex polynomials that converges to $\frac{1}{z^{2}}$ uniformly on the annulus $A=\{z \in \mathbb{C}: 1<|z|<2\}$.
(9) Consider the differential equation

$$
\dot{x}=x(1-x)-\frac{1}{4}
$$

where $\dot{x}=\frac{d x}{d t}$. For any solution $x(t)$, find the limit of $x(t)$ as $t \rightarrow \infty$.
(10) Consider the system

$$
\dot{X}=\left(\begin{array}{ll}
\lambda & 1 \\
0 & \lambda
\end{array}\right) X
$$

where $X(t)=\binom{x(t)}{y(t)}, \dot{X}:=\frac{d X}{d t}=\binom{\dot{x}(t)}{\dot{y}(t)}$ and λ is a fixed real number. Show that if $\lambda<0$ then $X(t) \rightarrow\binom{0}{0}$ and $X(t)$ is asymptotic to the line $y=0$ in the $x y$-plane, as $t \rightarrow \infty$.

