MTA

Notations:

$\mathbb{Z}=$ Set of integers.
$\mathbb{N}=$ Set of natural numbers $=\{n \in \mathbb{Z}: n \geq 1\}$.
$\mathbb{Q}=$ Set of rationals.
$\mathbb{R}=$ Set of real numbers.
$\mathbb{C}=$ Set of complex numbers.

1. Prove that the following limit exists and find the limit:

$$
\lim _{n \rightarrow \infty}\left(\left(1+\frac{1}{2}+\cdots+\frac{1}{n}\right)-\ln n\right) .
$$

2. Suppose $f:[a, b] \rightarrow \mathbb{R}$ is continuous. Then for any $r_{1}, r_{2}, \cdots, r_{n} \in f[a, b]$, prove that there exists $x \in[a, b]$ such that $f(x)=\frac{r_{1}+r_{2}+\cdots+r_{n}}{n}$.
3. Suppose $y(x)=x^{2}$ is a solution of $y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0$ on $(0,1)$ where P and Q are continuous functions on $(0,1)$. Can both P and Q be bounded functions. Justify your answer.
4. For each $\alpha>0$, find all pairs of $\left(x_{0}, y_{0}\right) \in \mathbb{R}^{2}$ such that the following initial value problem has a unique solution in the neighbourhood of (x_{0}, y_{0})

$$
y^{\prime}=y^{\alpha} ; y\left(x_{0}\right)=y_{0} .
$$

5. Let $B=\left\{x=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}:\|x\| \leq 1\right\}$, and let

$$
f(x)=\inf \{\|x-y\|: y \in B\}, \quad \forall \quad x=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} .
$$

If $F(x)=\max \{1-f(x), 0\}, x=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$, then prove that

$$
\lim _{n \rightarrow \infty} \iint_{\mathbb{R}^{2}} F^{n}\left(x_{1}, x_{2}\right) \mathrm{d} x_{1} \mathrm{~d} x_{2}=\pi .
$$

6. Let $f: X \rightarrow Y$ be a function from a metric space $\left(X, d_{1}\right)$ to a compact metric space $\left(Y, d_{2}\right)$. Let $G_{f}:=\{(x, y): y=f(x)\} \subset X \times Y$ denote the graph of f. Show that f is continous iff G_{f} is closed in $X \times Y$. The metric d on $X \times Y$ is the product metric which is defined as $d\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right):=\sqrt{d_{1}\left(x_{1}, x_{2}\right)^{2}+d_{2}\left(y_{1}, y_{2}\right)^{2}}$.
7. Let $f: \mathbb{R} \rightarrow[0, \infty)$ be a Borel measurable function. Show that

$$
\sum_{n=1}^{\infty} m(\{f \geq n\}) \leq \int f \mathrm{~d} m \leq \sum_{n=1}^{\infty} m(\{f>n\})
$$

where m denotes the Lebesgue measure.
8. Let (a_{n}) be a sequence of real numbers and m be the Lebesgue measure. Suppose $\frac{1}{n} \sum_{k=1}^{n} f\left(a_{k}\right) \rightarrow \int_{\mathbb{R}} f d m$ for all Lebesgue integrable functions f on \mathbb{R}. Prove that $\left(a_{n}\right)$ is dense in \mathbb{R}.
9. Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be an entire function i.e., analytic everywhere in \mathbb{C}. Suppose

$$
\lim _{|z| \rightarrow \infty} \frac{f(z)}{z}=0
$$

Prove that f is a constant function.
10. What are the holomorphic functions f on an open connected subset $\Omega \subset$ \mathbb{C} such that $g: \Omega \rightarrow \mathbb{C}$ defined by $g(z)=\operatorname{Re}(z) f(z)$ is also holomorphic.

