CAT 1999 Answer Key

	2	1-1	0	04	0	+04	4	161
	3		2	оı. 00	2	121.	4	4
2.	3	4 Z .	1	62.	3	122.	1	102. 3
3.	3	43.	2	83.	1	123.	4	163. 3
4	2	44	2	84.	3	124.	4	164. 3
5.	1	45.	3	85.	2	125.	2	165. 4
	•							
6.	2	46.	1	86.	4	126	4	
7	3	47.	1	87.	1	127	1	
8.	2	48.	4	88,	2	128	2	
9.	1	49.	3	89.	1	129.	1	
10,	1	50.	3	90.	4	130.	4	
							•	
11.	4	51.	2	91.	4	131	2	
12,	3	52	4	92.	2	132	1	
.13.	3	53.	2	93.	3	133	4	
14.	1	54	2	94,	3	134	1	
15.	2	55.	3	95,	2	135.	3	
	•	-					0	
16.	2	56.	1	96.	4	136	2	
17.	1	57.	4	97.	1	137.	1	
18,	4	58.	2	98.	1	138	1	
19.	1	59.	1	99.	4	139.	2	
20.	4	60.	3	100.	2	140	2	
	<u> </u>		_		_		4	
21.	3	01.	3	101.	2	141.	1	
22.	3	62	1	102.	1	142	3	
23.	4	63.	3	103	4	143	4	
24.	1	64.	2	104	3	144	2	
:25,	3	65.	3	105	4	145.	4	
06	-	aa	2	106	0	1/6	4	
29. 57	1	67	1	107	3	147	+	
- 21. - 50		0/. CO		107.	2	4 4 10	2	
20.	2	00.	4	108.	4	146.	4	
29.	4	09.	1	109	1	149.	<u>১</u>	
30.	4	70.	3	110	1	150.	2	
24	1	71	3	111	З	151	3	
20	1	70	4	110	1	159	1	
94. 00	4	70	4	114.	2	150	1	
33.	2	7.0	2	110.	2	194.	4	
34.	1	19.	2	114.	3	104.	1	
39.	2	75.	3	115.	2	195.	3	
36	3	76	2	116	1	156	4	
37	1	77	1	117	3	157	4	
98	1	78	1	118	3	158	2	
20,	+	70	4	110	3	160	1	
38.	2	13.	4	119.	2	13%.	1	
40.	4	6U.	3	120.	4	100.	4	

CAT 1999 Solutions

1.	Consider the case when we choose the box with
	label red or white.
	Even if we know what is actually in the box, we
	If we choose the red and white box and say the
	hox actually contains white – then you know
	that the box labelled white contains the red ball:
	and the last one the white ball.
2.	We know that the lower limiting perimeter of
	any polygon S_1 is the circumference of the
	inscribed circle $(2^*\pi)$.
	The upper limiting perimeter of any polygon S_2
	is the circumference of the circumscribed circle:
	$2^{\pi}\pi$ This difference of perimeter reduces as the
	number of sides increase Breaking up the
	expression into L1(13)/L2(17) + $2*\pi/L2(17)$
	Both the individual terms will be very close to
	1, but greater than one.
3.	A triangle can be formed by choosing 3 points,
	2 from one line and the third from the other.
	This can be done in ${}^{11}C_2$ and ${}^{10}C_1$ ways OR ${}^{11}C_1$
	and ${}^{10}C_2$ ways. So required number of ways
	$= 55 \times 10 + 11 \times 45$
4	= 530 + 495 = 1045.
4.	$40 \times 0.75 = 50\%$ of men earning > 25,000 a year.
	= 45 - 30 = 15%.
	Total % ge of women = 60% .
	So fraction earning > $25000 = 15/60 = 1/4$
5.	Area will be maximized with a right isosceles
	triangle, whose diagonal is equal to fence length
	= 100 m. So sides will be
	$100/\sqrt{2}$. So area = $\frac{1}{2} \times (100/\sqrt{2}) \times (100/\sqrt{2}) =$ 10.000 / 4 - 2500
6	The algorithm will be to check a pair of $\frac{1}{2}$
0.	numbers for GCD, and then use this GCD along
	with the next number to find out the new GCD.
	This will require one less iteration than the total
	numbers in the set.
-	So $n-1$ is the right answer.
7.	This is an interesting property of squares of 111.
	square root should have 8 digits
8.	$342 = 7^3 - 1$. When we divide 7^{84} by this
0.	number, at the end of all the divisions, we will
	be left with a remainder of 1.
9.	The only number that fits in is $21^2 = 441$. So
	value of <i>b</i> is 1.
10.	Equation will be of the form:
	$700 \times 25 = F + 25V$ and $600 \times 50 = F + 50V$.
	Solving we get $v = 500$, $F = 5000$.
	= 5000 + 50000 = 55000.
	Average / student = 55000 / 100 = 550.
11.	17y = 4x - 1.
	So $17y \le 4000; y \le 235.$
	$x \operatorname{can} \operatorname{have} 235/4 = 58.75 \text{ values.}$
10	Since it is an integer it will be 58 values.
12.	Use a Venn diagram – $A \cup B \cup C = 7/8$; What is
	asked 18: (A \cap B + B \cap C + C \cap A - 2×A \cap B \cap C), which is simply 27 = 10 - 17
13	Let side $AB = 1$ perimeter = 4
10.	Then BD = PO = $\sqrt{2}$.
	Diagonal PR = diameter PQ = 2. Circumference

	of outside circle = 2π Ratio = $2\pi/4 = \pi/2$
14	Number of ways in which we can select at least
17.	one student out of r is
	$^{2n+1}C + ^{2n+1}C + ^{2n+1}C + ^{2n+1}C$, which
	is given as 63 .
	Plug in the options: it works only for $n = 3$.
15	At 7.30 am the distance between the 2 trains is
10.	100 - (50 + 20) = 30 km
	Relative speed is $60 + 30 = 90$ km/h.
	So time remaining is $30/90 = 1/3$ hr = 20 min.
16.	The equation is $42 - v = k \times \sqrt{n}$
10.	Using data in the question we get $42 - 24 =$
	by $k = 6$
	For the wagon to just move speed $= 0$
	So $42 - 3\sqrt{n}$ Solving we get $n - 49$
	With 49 compartments the train will not move
	so we need to reduce by 1. Hence the answer is
	48
17	Substitute values of r as $r = 2 \times 3 \times 4 \times 5 = 120$
1/.	and check the options Both A and C are correct
18	Ear solving modulus questions, use $r_{-}6 = 1/$
10.	10 solving modulus questions, use $r = -5$ or 17
	Similarly $2a - 12 = \pm -8$ So $a = 10$ or 2
	Min. value of $a/r = 10/-5 = -2$ i e 4 th ontion
19.	Going by options, we see that 2^{nd} option is not
	possible. Also since Mrs. B is two places to the
	left of Mrs. E, so it cannot be to the right of Mr.
	A. So 3^{rd} and 4^{th} options are out.
	Hence answer is 1 st option.
20.	F(f(x,y)) = - x + y G(f(x,y)) = x + y .
	Substitute this in all options and check. Option 4
	will read as $ x + y - x + y + x + y = x + y $
	= -x - y .
21.	
	f(G(f(1,0)), f(F(f(1,2)), G(f(1,2)))
	$f(\mathcal{O}(f(1,0)),f(0,0))$
	$= \int (G(f(1,0)), f(3,-3))$
	-f(C(f(1,0)), 0)
	= f(G(f(1,0)), 0)
	-f(-1, 0) - 1
	= f(-1, 0) = 1.
22.	= f(-1, 0) = 1. Substitute in option 3 and check.
22.	= f(-1, 0) = 1. Substitute in option 3 and check. We get $2x \times 2x / 4 = x^2$
22. 23 -	= f(-1, 0) = 1. Substitute in option 3 and check. We get $2x \times 2x / 4 = x^2$ If the positions from left to right are 1 to 7
22. 23 - 24	= f(-1, 0) = 1. Substitute in option 3 and check. We get $2x \times 2x / 4 = x^2$ If the positions from left to right are 1 to 7 A and G take up positions 6 and 7
22. 23 - 24	= f(-1, 0) = 1. Substitute in option 3 and check. We get $2x \times 2x / 4 = x^2$ If the positions from left to right are 1 to 7 A and G take up positions 6 and 7 B takes up position 4
22. 23 - 24	= f(-1, 0) = 1. Substitute in option 3 and check. We get $2x \times 2x / 4 = x^2$ If the positions from left to right are 1 to 7 A and G take up positions 6 and 7 B takes up position 4 C and D are in places 1 and 5, so that
22. 23 - 24	= f(-1, 0) = 1. Substitute in option 3 and check. We get $2x \times 2x / 4 = x^2$ If the positions from left to right are 1 to 7 A and G take up positions 6 and 7 B takes up position 4 C and D are in places 1 and 5, so that they are as far
22. 23 - 24	= f(-1, 0) = 1. Substitute in option 3 and check. We get $2x \times 2x / 4 = x^2$ If the positions from left to right are 1 to 7 A and G take up positions 6 and 7 B takes up position 4 C and D are in places 1 and 5, so that they are as far as possible. E and C are in positions 2 and 2
22. 23 - 24	f(-1, 0) = 1. Substitute in option 3 and check. We get $2x \times 2x / 4 = x^2$ If the positions from left to right are 1 to 7 A and G take up positions 6 and 7 B takes up position 4 C and D are in places 1 and 5, so that they are as far as possible. E and F are in positions 2 and 3.
22. 23 - 24	= f(-1, 0) = 1. Substitute in option 3 and check. We get $2x \times 2x / 4 = x^2$ If the positions from left to right are 1 to 7 A and G take up positions 6 and 7 B takes up position 4 C and D are in places 1 and 5, so that they are as far as possible. E and F are in positions 2 and 3. I 2 3 4 5 6 7 a get for the set of t
22. 23 - 24	= f(-1, 0) = 1. Substitute in option 3 and check. We get $2x \times 2x / 4 = x^2$ If the positions from left to right are 1 to 7 A and G take up positions 6 and 7 B takes up position 4 C and D are in places 1 and 5, so that they are as far as possible. E and F are in positions 2 and 3. I 2 3 4 5 6 7 C e f b d a g
22. 23 - 24 25.	= f(-1, 0) = 1. Substitute in option 3 and check. We get $2x \times 2x / 4 = x^2$ If the positions from left to right are 1 to 7 A and G take up positions 6 and 7 B takes up position 4 C and D are in places 1 and 5, so that they are as far as possible. E and F are in positions 2 and 3. I 2 3 4 5 6 7 C e f b d a g Total distance covered = $35 \times 2 + 45 \times 2 = 160$
22. 23 - 24 25.	f(-1, 0) = 1. Substitute in option 3 and check. We get $2x \times 2x / 4 = x^2$ If the positions from left to right are 1 to 7 A and G take up positions 6 and 7 B takes up position 4 C and D are in places 1 and 5, so that they are as far as possible. E and F are in positions 2 and 3. I 2 3 4 5 6 7 c e f b d a g Total distance covered = $35 \times 2 + 45 \times 2 = 160$ km. Petrol consumption by Addit (160/2)(16 + (160/2)) = 24 + (160/2) = 20
22. 23 - 24 25.	= f(-1, 0) = 1. Substitute in option 3 and check. We get $2x \times 2x / 4 = x^2$ If the positions from left to right are 1 to 7 A and G take up positions 6 and 7 B takes up position 4 C and D are in places 1 and 5, so that they are as far as possible. E and F are in positions 2 and 3. I 2 3 4 5 6 7 c e f b d a g Total distance covered = $35 \times 2 + 45 \times 2 = 160$ km. Petrol consumption by Aditi = $(160/3) / 16 + (160/3) / 24 + (160/3) / 30 =$
 22. 23 - 24 25. 	= f(-1, 0) = 1. Substitute in option 3 and check. We get $2x \times 2x / 4 = x^2$ If the positions from left to right are 1 to 7 A and G take up positions 6 and 7 B takes up position 4 C and D are in places 1 and 5, so that they are as far as possible. E and F are in positions 2 and 3. I 2 3 4 5 6 7 c e f b d a g Total distance covered = $35 \times 2 + 45 \times 2 = 160$ km. Petrol consumption by Aditi = $(160/3) / 16 + (160/3) / 24 + (160/3) / 30 =$ (160/3) /6 = $80/9 = 8.9$ litres.
 22. 23 - 24 25. 26. 27. 	= f(-1, 0) = 1. Substitute in option 3 and check. We get $2x \times 2x / 4 = x^2$ If the positions from left to right are 1 to 7 A and G take up positions 6 and 7 B takes up position 4 C and D are in places 1 and 5, so that they are as far as possible. E and F are in positions 2 and 3. I 2 3 4 5 6 7 c e f b d a g Total distance covered = $35 \times 2 + 45 \times 2 = 160$ km. Petrol consumption by Aditi = (160/3) / 16 + (160/3) /24 + (160/3) /30 = (160/3) /6 = 80/9 = 8.9 litres. Min. petrol = 160/24 = 6.67 litres.
 22. 23 - 24 25. 26. 27- 20. 	= f(-1, 0) = 1. Substitute in option 3 and check. We get $2x \times 2x / 4 = x^2$ If the positions from left to right are 1 to 7 A and G take up positions 6 and 7 B takes up position 4 C and D are in places 1 and 5, so that they are as far as possible. E and F are in positions 2 and 3. I 2 3 4 5 6 7 c e f b d a g Total distance covered = $35 \times 2 + 45 \times 2 = 160$ km. Petrol consumption by Aditi = (160/3) / 16 + (160/3) /24 + (160/3) /30 = (160/3) /6 = 80/9 = 8.9 litres. Min. petrol = $160/24 = 6.67$ litres. In the first round, G gets 8 and pays 16ve
 22. 23 - 24 25. 26. 27- 29. 	= f(-1, 0) = 1. Substitute in option 3 and check. We get $2x \times 2x / 4 = x^2$ If the positions from left to right are 1 to 7 A and G take up positions 6 and 7 B takes up position 4 C and D are in places 1 and 5, so that they are as far as possible. E and F are in positions 2 and 3. I 2 3 4 5 6 7 c e f b d a g Total distance covered = $35 \times 2 + 45 \times 2 = 160$ km. Petrol consumption by Aditi = $(160/3) / 16 + (160/3) / 24 + (160/3) / 30 =$ (160/3) / 6 = 80/9 = 8.9 litres. Min. petrol = $160/24 = 6.67$ litres. In the first round, G gets 8 and pays 16. –ve balance of 8.
 22. 23 - 24 25. 26. 27- 29. 	= f(-1, 0) = 1. Substitute in option 3 and check. We get $2x \times 2x / 4 = x^2$ If the positions from left to right are 1 to 7 A and G take up positions 6 and 7 B takes up position 4 C and D are in places 1 and 5, so that they are as far as possible. E and F are in positions 2 and 3. I 2 3 4 5 6 7 c e f b d a g Total distance covered = $35 \times 2 + 45 \times 2 = 160$ km. Petrol consumption by Aditi = $(160/3) / 16 + (160/3) / 24 + (160/3) / 30 =$ (160/3) / 6 = 80/9 = 8.9 litres. Min. petrol = $160/24 = 6.67$ litres. In the first round, G gets 8 and pays 16ve balance of 8. In the second round he gets Rs. 20. Balance = 12 Let $the 2^{M}$ count the second round he gets Rs. 20. Balance =
 22. 23 - 24 25. 26. 27- 29. 	= f(-1, 0) = 1. Substitute in option 3 and check. We get $2x \times 2x / 4 = x^2$ If the positions from left to right are 1 to 7 A and G take up positions 6 and 7 B takes up position 4 C and D are in places 1 and 5, so that they are as far as possible. E and F are in positions 2 and 3. I 2 3 4 5 6 7 c e f b d a g Total distance covered = $35 \times 2 + 45 \times 2 = 160$ km. Petrol consumption by Aditi = $(160/3) / 16 + (160/3) / 24 + (160/3) / 30 =$ (160/3) / 6 = 80/9 = 8.9 litres. Min. petrol = $160/24 = 6.67$ litres. In the first round, G gets 8 and pays 16ve balance of 8. In the second round he gets Rs. 20. Balance = 12. In the 3 rd round he gets 6 & pays 6. Balance
 22. 23 - 24 25. 26. 27- 29. 	= f(-1, 0) = 1. Substitute in option 3 and check. We get $2x \times 2x / 4 = x^2$ If the positions from left to right are 1 to 7 A and G take up positions 6 and 7 B takes up position 4 C and D are in places 1 and 5, so that they are as far as possible. E and F are in positions 2 and 3. I 2 3 4 5 6 7 c e f b d a g Total distance covered = $35 \times 2 + 45 \times 2 = 160$ km. Petrol consumption by Aditi = $(160/3) / 16 + (160/3) / 24 + (160/3) / 30 =$ (160/3) / 6 = 80/9 = 8.9 litres. Min. petrol = $160/24 = 6.67$ litres. In the first round, G gets 8 and pays 16ve balance of 8. In the second round he gets Rs. 20. Balance = 12. In the 3 rd round he gets 6 & pays 6. Balance = 12. In the 4 th round he gets 8 & regular 16 Balance
 22. 23 - 24 25. 26. 27- 29. 	= f(-1, 0) = 1. Substitute in option 3 and check. We get $2x \times 2x / 4 = x^2$ If the positions from left to right are 1 to 7 A and G take up positions 6 and 7 B takes up position 4 C and D are in places 1 and 5, so that they are as far as possible. E and F are in positions 2 and 3. I 2 3 4 5 6 7 c e f b d a g Total distance covered = $35 \times 2 + 45 \times 2 = 160$ km. Petrol consumption by Aditi = $(160/3) / 16 + (160/3) / 24 + (160/3) / 30 =$ (160/3) / 6 = $80/9 = 8.9$ litres. Min. petrol = $160/24 = 6.67$ litres. In the first round, G gets 8 and pays 16ve balance of 8. In the second round he gets Rs. 20. Balance = 12. In the 3 rd round he gets 8 & pays 16. Balance = 4

	in which case his gain would be 12.
28.	The min G has to have is the lowest negative
	balance = 8.
29.	Since he made a net gain of 4 at the end of the
	game, he must have started of with $100 - 4 = 96$.
30.	If all of $S1$ and $S2$ are +ve, then the greatest
	number will be in S2. If all are -ve, then the
	greatest number will continue to be in S1.
	No definite conclusion possible.
31.	All elements of S1 are smaller than the smallest
	element of S2. In the given situation, the
	smallest element of S2 is A25. Even by
	exchanging it with the greatest element of S1,
	the ascending order will still remain.
32.	The addition will be maximum for the lowest
	element of $S1 - which is L$. The sum that will
	have to be added will be such that it becomes
	equal to the greatest number of $52 -$ which is G.
22	The number to be added will here be $O = L$.
55.	The average speed will be $2\times43\times55/100$
34	-47.5 Kilvii.
57.	time $(100 \pm x)/61.875 = \sqrt{(100^2 \pm x^2)}/49.5$
	Solving this quadratic for x we get $x = 40$ or $x = -40$
	Solving this quadratic for x , we get $x = 40$ or $x = 300$
	We know that $x < 100$. So $x = 40$.
	So distance AC = $\sqrt{(100^2 + 40^2)} = 105$ (approx.)
35.	BD will be having the same length as AD
	(which is $105/2 = 52.5$) as D is the diameter of
	the circumcircle – and B will lie on the
	circumference of this circle.
36.	Glucose on being sweetened by 100 times will
	have a sweetness of 74.
	Sweetness of a saccharin-sucrose mixture of
	ratio 1: x is
	$(1 \times 675 + x \times 1) / (1 + x) = 74.$
27	$(1 \times 675 + x \times 1) / (1 + x) = 74.$ Solving for x we get, x = 9.
37.	$(1 \times 675 + x \times 1) / (1 + x) = 74.$ Solving for x we get, x = 9. 1 g of glucose, 2 g of sucrose and 3 g of fructose will have a sweatness of
37.	$(1 \times 675 + x \times 1) / (1 + x) = 74.$ Solving for x we get, x = 9. 1 g of glucose, 2 g of sucrose and 3 g of fructose will have a sweetness of $(1 \approx 0.74 + 2 \approx 1 + 3 \approx 1.7) / 6 = 1.3$
37.	$(1 \times 675 + x \times 1) / (1 + x) = 74.$ Solving for x we get, x = 9. 1 g of glucose, 2 g of sucrose and 3 g of fructose will have a sweetness of $(1^{*}0.74 + 2^{*}1 + 3^{*}1.7) / 6 = 1.3.$ In the best case scenario all <i>m</i> containers are
37. 38.	$(1 \times 675 + x \times 1) / (1 + x) = 74.$ Solving for x we get, x = 9. 1 g of glucose, 2 g of sucrose and 3 g of fructose will have a sweetness of (1*0.74 + 2*1 + 3*1.7) / 6 = 1.3. In the best case scenario, all <i>m</i> containers are nearly having the same volume y_1 . So each time
37. 38.	$(1 \times 675 + x \times 1) / (1 + x) = 74.$ Solving for x we get, x = 9. 1 g of glucose, 2 g of sucrose and 3 g of fructose will have a sweetness of (1*0.74 + 2*1 + 3*1.7) / 6 = 1.3. In the best case scenario, all <i>m</i> containers are nearly having the same volume v_I . So each time we fill a white container, volume $1 - v_I$ will
37. 38.	$(1 \times 675 + x \times 1) / (1 + x) = 74.$ Solving for x we get, x = 9. 1 g of glucose, 2 g of sucrose and 3 g of fructose will have a sweetness of (1*0.74 + 2*1 + 3*1.7) / 6 = 1.3. In the best case scenario, all <i>m</i> containers are nearly having the same volume v_I . So each time we fill a white container, volume $1 - v_I$ will remain.
37. 38.	$(1 \times 675 + x \times 1) / (1 + x) = 74.$ Solving for x we get, x = 9. 1 g of glucose, 2 g of sucrose and 3 g of fructose will have a sweetness of (1*0.74 + 2*1 + 3*1.7) / 6 = 1.3. In the best case scenario, all <i>m</i> containers are nearly having the same volume v_I . So each time we fill a white container, volume $1 - v_I$ will remain. Since there are <i>m</i> such containers having
37. 38.	$(1 \times 675 + x \times 1) / (1 + x) = 74.$ Solving for x we get, $x = 9.$ 1 g of glucose, 2 g of sucrose and 3 g of fructose will have a sweetness of (1*0.74 + 2*1 + 3*1.7) / 6 = 1.3. In the best case scenario, all <i>m</i> containers are nearly having the same volume v_I . So each time we fill a white container, volume $1 - v_I$ will remain. Since there are <i>m</i> such containers having volume v_I , empty space will be $m(1 - v_I)$.
37. 38. 39.	$(1 \times 675 + x \times 1) / (1 + x) = 74.$ Solving for x we get, x = 9. 1 g of glucose, 2 g of sucrose and 3 g of fructose will have a sweetness of (1*0.74 + 2*1 + 3*1.7) / 6 = 1.3. In the best case scenario, all <i>m</i> containers are nearly having the same volume v_I . So each time we fill a white container, volume $1 - v_I$ will remain. Since there are <i>m</i> such containers having volume v_I , empty space will be $m(1 - v_I)$. Let m = 1 and n = 1. Option (a) gives the answer as
37. 38. 39.	$(1 \times 675 + x \times 1) / (1 + x) = 74.$ Solving for x we get, x = 9. 1 g of glucose, 2 g of sucrose and 3 g of fructose will have a sweetness of (1*0.74 + 2*1 + 3*1.7) / 6 = 1.3. In the best case scenario, all m containers are nearly having the same volume v_I . So each time we fill a white container, volume $1 - v_I$ will remain. Since there are m such containers having volume v_I , empty space will be $m(1 - v_I)$. Let m = 1 and n = 1. Option (a) gives the answer as 4
37. 38. 39.	$(1 \times 675 + x \times 1) / (1 + x) = 74.$ Solving for x we get, x = 9. 1 g of glucose, 2 g of sucrose and 3 g of fructose will have a sweetness of (1*0.74 + 2*1 + 3*1.7) / 6 = 1.3. In the best case scenario, all m containers are nearly having the same volume v_1 . So each time we fill a white container, volume $1 - v_1$ will remain. Since there are m such containers having volume v_1 , empty space will be $m(1 - v_1)$. Let m = 1 and n = 1. Option (a) gives the answer as 4 and option (d) gives the answer as 'greatest
37. 38. 39.	$(1 \times 675 + x \times 1) / (1 + x) = 74.$ Solving for x we get, x = 9. 1 g of glucose, 2 g of sucrose and 3 g of fructose will have a sweetness of (1*0.74 + 2*1 + 3*1.7) / 6 = 1.3. In the best case scenario, all m containers are nearly having the same volume v_1 . So each time we fill a white container, volume $1 - v_1$ will remain. Since there are m such containers having volume v_1 , empty space will be $m(1 - v_1)$. Let m = 1 and n = 1. Option (a) gives the answer as 4 and option (d) gives the answer as 'greatest integer
37. 38. 39.	$(1 \times 675 + x \times 1) / (1 + x) = 74.$ Solving for x we get, x = 9. 1 g of glucose, 2 g of sucrose and 3 g of fructose will have a sweetness of (1*0.74 + 2*1 + 3*1.7) / 6 = 1.3. In the best case scenario, all m containers are nearly having the same volume v_1 . So each time we fill a white container, volume $1 - v_1$ will remain. Since there are m such containers having volume v_1 , empty space will be $m(1 - v_1)$. Let m = 1 and n = 1. Option (a) gives the answer as 4 and option (d) gives the answer as 'greatest integer
37. 38. 39.	$(1\times675 + x\times 1) / (1 + x) = 74.$ Solving for x we get, x = 9. 1 g of glucose, 2 g of sucrose and 3 g of fructose will have a sweetness of (1*0.74 + 2*1 + 3*1.7) / 6 = 1.3. In the best case scenario, all m containers are nearly having the same volume v_1 . So each time we fill a white container, volume $1 - v_1$ will remain. Since there are m such containers having volume v_1 , empty space will be $m(1 - v_1)$. Let m = 1 and n = 1. Option (a) gives the answer as 4 and option (d) gives the answer as 'greatest integer less than or equal to 2'. So, both of these cannot be
37. 38. 39.	$(1 \times 675 + x \times 1) / (1 + x) = 74.$ Solving for x we get, x = 9. 1 g of glucose, 2 g of sucrose and 3 g of fructose will have a sweetness of (1*0.74 + 2*1 + 3*1.7) / 6 = 1.3. In the best case scenario, all m containers are nearly having the same volume v_1 . So each time we fill a white container, volume $1 - v_1$ will remain. Since there are m such containers having volume v_1 , empty space will be $m(1 - v_1)$. Let m = 1 and n = 1. Option (a) gives the answer as 4 and option (d) gives the answer as 'greatest integer less than or equal to 2'. So, both of these cannot
37. 38. 39.	$(1 \times 675 + x \times 1) / (1 + x) = 74.$ Solving for x we get, x = 9. 1 g of glucose, 2 g of sucrose and 3 g of fructose will have a sweetness of (1*0.74 + 2*1 + 3*1.7) / 6 = 1.3. In the best case scenario, all m containers are nearly having the same volume v_1 . So each time we fill a white container, volume $1 - v_1$ will remain. Since there are m such containers having volume v_1 , empty space will be $m(1 - v_1)$. Let m = 1 and n = 1. Option (a) gives the answer as 4 and option (d) gives the answer as 'greatest integer less than or equal to 2'. So, both of these cannot be the answer. Option (b) gives the answer as
37. 38. 39.	$(1 \times 675 + x \times 1) / (1 + x) = 74.$ Solving for x we get, x = 9. 1 g of glucose, 2 g of sucrose and 3 g of fructose will have a sweetness of (1*0.74 + 2*1 + 3*1.7) / 6 = 1.3. In the best case scenario, all m containers are nearly having the same volume v_1 . So each time we fill a white container, volume $1 - v_1$ will remain. Since there are m such containers having volume v_1 , empty space will be $m(1 - v_1)$. Let m = 1 and n = 1. Option (a) gives the answer as 4 and option (d) gives the answer as 'greatest integer [less than or equal to 2'. So, both of these cannot be the answer. Option (b) gives the answer as 'smallest
37. 38. 39.	$(1 \times 675 + x \times 1) / (1 + x) = 74.$ Solving for x we get, x = 9. 1 g of glucose, 2 g of sucrose and 3 g of fructose will have a sweetness of (1*0.74 + 2*1 + 3*1.7) / 6 = 1.3. In the best case scenario, all m containers are nearly having the same volume v_1 . So each time we fill a white container, volume $1 - v_1$ will remain. Since there are m such containers having volume v_1 , empty space will be $m(1 - v_1)$. Let m = 1 and n = 1. Option (a) gives the answer as 4 and option (d) gives the answer as 'greatest integer [less than or equal to 2'. So, both of these cannot be the answer. Option (b) gives the answer as 'smallest
37. 38. 39.	$(1 \times 675 + x \times 1) / (1 + x) = 74.$ Solving for x we get, x = 9. 1 g of glucose, 2 g of sucrose and 3 g of fructose will have a sweetness of (1*0.74 + 2*1 + 3*1.7) / 6 = 1.3. In the best case scenario, all m containers are nearly having the same volume v_1 . So each time we fill a white container, volume $1 - v_1$ will remain. Since there are m such containers having volume v_1 , empty space will be $m(1 - v_1)$. Let m = 1 and n = 1. Option (a) gives the answer as 4 and option (d) gives the answer as 'greatest integer [less than or equal to 2'. So, both of these cannot be the answer. Option (b) gives the answer as 'smallest integer greater than or equal to 2' and option (c)
37.38.39.	$(1 \times 675 + x \times 1) / (1 + x) = 74.$ Solving for x we get, x = 9. 1 g of glucose, 2 g of sucrose and 3 g of fructose will have a sweetness of (1*0.74 + 2*1 + 3*1.7) / 6 = 1.3. In the best case scenario, all m containers are nearly having the same volume v_I . So each time we fill a white container, volume $1 - v_I$ will remain. Since there are m such containers having volume v_I , empty space will be $m(1 - v_I)$. Let m = 1 and n = 1. Option (a) gives the answer as 4 and option (d) gives the answer as 'greatest integer [less than or equal to 2'. So, both of these cannot be the answer. Option (b) gives the answer as 'smallest integer greater than or equal to 2' and option (c)
37.38.39.	$(1 \times 675 + x \times 1) / (1 + x) = 74.$ Solving for x we get, x = 9. 1 g of glucose, 2 g of sucrose and 3 g of fructose will have a sweetness of (1*0.74 + 2*1 + 3*1.7) / 6 = 1.3. In the best case scenario, all m containers are nearly having the same volume v_I . So each time we fill a white container, volume $1 - v_I$ will remain. Since there are m such containers having volume v_I , empty space will be $m(1 - v_I)$. Let m = 1 and n = 1. Option (a) gives the answer as 4 and option (d) gives the answer as 'greatest integer [less than or equal to 2'. So, both of these cannot be the answer. Option (b) gives the answer as 'smallest integer greater than or equal to 2' and option (c) gives the answer as 1. But the actual answer can be
37.38.39.	(1×675 + xx 1) / (1 + x) = 74. Solving for x we get, $x = 9$. 1 g of glucose, 2 g of sucrose and 3 g of fructose will have a sweetness of (1*0.74 + 2*1 + 3*1.7) / 6 = 1.3. In the best case scenario, all m containers are nearly having the same volume v_1 . So each time we fill a white container, volume $1 - v_1$ will remain. Since there are m such containers having volume v_1 , empty space will be $m(1 - v_1)$. Let $m = 1$ and $n = 1$. Option (a) gives the answer as 4 and option (d) gives the answer as 'greatest integer [less than or equal to 2'. So, both of these cannot be the answer. Option (b) gives the answer as 'smallest integer greater than or equal to 2' and option (c) gives the answer as 1. But the actual answer can be greater than 1 as the volume of the vessel is
37.38.39.	(1×675 + xx 1) / (1 + x) = 74. Solving for x we get, $x = 9$. 1 g of glucose, 2 g of sucrose and 3 g of fructose will have a sweetness of (1*0.74 + 2*1 + 3*1.7) / 6 = 1.3. In the best case scenario, all m containers are nearly having the same volume v_1 . So each time we fill a white container, volume $1 - v_1$ will remain. Since there are m such containers having volume v_1 , empty space will be $m(1 - v_1)$. Let $m = 1$ and $n = 1$. Option (a) gives the answer as 4 and option (d) gives the answer as 'greatest integer [less than or equal to 2'. So, both of these cannot be the answer. Option (b) gives the answer as 'smallest integer greater than or equal to 2' and option (c) gives the answer as 1. But the actual answer can be greater than 1 as the volume of the vessel is 2 1.
37.38.39.	(1×675 + xx 1) / (1 + x) = 74. Solving for x we get, $x = 9$. 1 g of glucose, 2 g of sucrose and 3 g of fructose will have a sweetness of (1*0.74 + 2*1 + 3*1.7) / 6 = 1.3. In the best case scenario, all m containers are nearly having the same volume v_1 . So each time we fill a white container, volume $1 - v_1$ will remain. Since there are m such containers having volume v_1 , empty space will be $m(1 - v_1)$. Let $m = 1$ and $n = 1$. Option (a) gives the answer as 4 and option (d) gives the answer as 'greatest integer less than or equal to 2'. So, both of these cannot be the answer. Option (b) gives the answer as 'smallest integer greater than or equal to 2' and option (c) gives the answer as 1. But the actual answer can be greater than 1 as the volume of the vessel is 2 l. Hence, (b) is the answer.
37. 38. 39.	$(1 \times 675 + x \times 1) / (1 + x) = 74.$ Solving for x we get, x = 9. 1 g of glucose, 2 g of sucrose and 3 g of fructose will have a sweetness of (1*0.74 + 2*1 + 3*1.7) / 6 = 1.3. In the best case scenario, all m containers are nearly having the same volume v_1 . So each time we fill a white container, volume $1 - v_1$ will remain. Since there are m such containers having volume v_1 , empty space will be $m(1 - v_1)$. Let m = 1 and n = 1. Option (a) gives the answer as 4 and option (d) gives the answer as 'greatest integer less than or equal to 2'. So, both of these cannot be the answer. Option (b) gives the answer as 'smallest integer greater than or equal to 2' and option (c) gives the answer as 1. But the actual answer can be greater than 1 as the volume of the vessel is 21. Hence, (b) is the answer.

	Then S, R are not equal to 2	2.		
	Choices for S, R are 1,3; 3.4	4.		
<i>4</i> 1	P > 2 + S If $S = 1$ $P = 3$ A	If $S = 2$	$\mathbf{P} = 1$	
71,	Max of S is 2, then as $Q > H$	$P_{1} = 0 = 2$, $P_{2} = 0$, $P_{2} =$	$\mathbf{K} = \mathbf{T}$	
42.	If $Q < R$, then $R = 3$ or 4. A	rrangemei	nts for	
	PQRS are 1243 or 1342 or 2	2341.		
12	Now check with options.		the low	104
43- 44	As F is not the housewife s	D, SO A 18 To E has to	he lawy	/er.
	architect. As B has to be the	e other hou	isewife,	so
	A, C and E are males and B	, D and F	are	
	females.	2 (1 (
45.	The equation would be $x + 2$	2 = 6, y + 1	4 = 6,	
46.	The two instructions will be	WALK(-	x) and	
	WALK(-y)) und	
47.	The max distance that can e	xist betwe	en C, D)
	and E is 5×5^2 (diagonal) – t	his is less	than	
	$10 \times \sqrt{3}$ (given in question as	distance l	between	l
	So closest pair).	C		
48.	No idea about absolute coor	c. rdinates if	points i	s
	given by the distances – so	we cannot	conclu	de
	anything.			
49.	After putting x flowers in the	ie pond, w	e get $2x$	
	Roopa. In round 2, these be	ang 2x - y come $4x - y$	· 2v. afte	er
	offering		,	
	4x - 3y. In round 3, these be	ecome 8x -	– 6y, aft	er
	offering $8x - 7y$. In the last	round, the	se beco	me
	16x - 14y and after offering This has to be equated to 0.	For this a	0x - 15 uestion	у.
	we know that $x = 30$, so we	get $y = 16$	×30/1	5 =
				-
	32.			
50.	32. Minimum number of flower	rs is such t	hat valu	ies
50.	32. Minimum number of flower of x and y are integers. Sinc multiples of ratio 16:15, mi	rs is such the these are $x = 1$	hat valu e in 5 and v	ies =
50.	32. Minimum number of flower of x and y are integers. Sinc multiples of ratio 16:15, min 16.	The these are n for $x = 1$	hat valu e in 5 and y	ies =
50. 51.	32. Minimum number of flower of <i>x</i> and <i>y</i> are integers. Sinc multiples of ratio 16:15, min 16. Refer above.	The second seco	hat valu e in 5 and y	ies =
50. 51. 52.	 32. Minimum number of flower of <i>x</i> and <i>y</i> are integers. Sinc multiples of ratio 16:15, min 16. Refer above. For solving these problems 	rs is such the these are n for $x = 1$	hat value in 5 and y ble as	ies =
50. 51. 52.	32. Minimum number of flower of x and y are integers. Sinc multiples of ratio 16:15, min 16. Refer above. For solving these problems below:	rs is such t e these are n for $x = 1$ create a ta	hat value in 5 and y ble as	1es =
50. 51. 52. - 55.	32. Minimum number of flower of x and y are integers. Sinc multiples of ratio 16:15, min 16. Refer above. For solving these problems below: x -2 -1 F(x) -2 1	rs is such t e these are n for $x = 1$ create a ta	hat value in 5 and y ble as	1es = 2 2
50. 51. 52. - 55.	32.Minimum number of flowerof x and y are integers. Sincemultiples of ratio 16:15, min16.Refer above.For solving these problemsbelow: $x -2 -1$ $F(x) 2 1$ $Fl(x) 2 1$	rs is such t e these arc n for $x = 1$ create a ta 0 0 0	hat value in 5 and y ble as 1 1 -1	1es = 2 2 -
50. 51. 52. - 55.	32.Minimum number of flowerof x and y are integers. Sincemultiples of ratio 16:15, min16.Refer above.For solving these problemsbelow: $x -2 -1$ $F(x) 2 1$ $F1(x) 2 1$ 2	rs is such the these are n for $x = 1$ create a ta	hat value in 5 and y ble as 1 1 -1	1es = 2 2 -
50. 51. 52. - 55.	32.Minimum number of flowerof x and y are integers. Sincemultiples of ratio 16:15, min16.Refer above.For solving these problemsbelow: $x -2 -1$ $F(x) 2 1$ $F(x) 2 1$ $F(-x) 2 1$ $F(-x) 2 1$	rs is such the these are and for $x = 1$ create a target of the target of the target of the target of tar	that value in 5 and y ble as 1 -1 1	2 2 2 - 2
50. 51. 52. - 55.	32.Minimum number of flowerof x and y are integers. Sincemultiples of ratio 16:15, min16.Refer above.For solving these problemsbelow: $x -2 -1$ $F(x) 2 1$ $F(x) 2 1$ $F(-x) 2 1$ $F(-x) 2 1$ $-F(-x) -2 -1$ 2	rs is such the these are and for $x = 1$ create a target of the target of targe	that value in 5 and y ble as 1 -1 -1 -1	11es = 2 2 - 2 - 2 -
50. 51. 52. - 55.	32.Minimum number of flowerof x and y are integers. Sincemultiples of ratio 16:15, min16.Refer above.For solving these problemsbelow: $x -2 -1$ $F(x) 2 1$ $F(x) 2 1$ $F(-x) 2 1$ $F(-x) 2 1$ $-F(-x) -2 -1$ 2We see that $FI(x)$ is not me	rs is such the these are an for $x = 1$ create a tar 0 0 0 0 0 eting any 0	that value in 5 and y 5 ble as 1 1 -1 1 -1 0 f the	2 2 2 - 2
50. 51. 52. - 55.	32.Minimum number of flowerof x and y are integers. Sincemultiples of ratio 16:15, min16.Refer above.For solving these problemsbelow: $x -2 -1$ $F(x) 2 1$ $F(-x) 2 1$ $F(-x) 2 1$ $-F(-x) 2 1$ $-F(-x) 2 -1$ 2We see that $F1(x)$ is not mecriteria, so we mark 4.	rs is such the these are and for $x = 1$ create a tail of 0 0 0 0 0 0 0 0 0 0 0 0	that value in 5 and y ble as 1 -1 1 -1 0 f the	2 2 2 - 2
50. 51. 52. - 55.	32.Minimum number of flowerof x and y are integers. Sincemultiples of ratio 16:15, min16.Refer above.For solving these problemsbelow: x x -2 -1 $F(x)$ 2 $F(-x)$ 2 1 $-F(-x)$ 2 $-F(-x)$ -2 -1 2 We see that $FI(x)$ is not mecriteria, so we mark 4.Option 2 means that a 40%	rs is such the these are and for $x = 1$ create a tail of the tail of tai	that value in 5 and y 5 and y ble as 1 -1 1 -1 of the hould h	= 2 2 - 2 -
50. 51. 52. - 55. 69.	32.Minimum number of flowerof x and y are integers. Sincemultiples of ratio 16:15, min16.Refer above.For solving these problemsbelow: $x -2 -1$ $x -2 -1$ $F(x) 2 1$ $F(x) 2 1$ $F(-x) 2 1$ $F(-x) 2 1$ $-F(-x) -2 -1$ 2We see that $F1(x)$ is not mecriteria, so we mark 4.Option 2 means that a 40%been ruled out. Option 3 woroption 4 contradicte data the	rs is such t e these are n for $x = 1$ create a ta 0 0 0 0 eting any increase s	that value in 5 and y 5 and y ble as 1 -1 -1 of the hould h vays and	1es = 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - - - - - - - - - - - - - - - - - - -
50. 51. 52. - 55. 69.	32.Minimum number of flowerof x and y are integers. Sincmultiples of ratio 16:15, min16.Refer above.For solving these problemsbelow: $x -2 -1$ $x -2 -1$ $F(x) 2 1$ $F(x) 2 1$ $F(-x) 2 1$ $F(-x) 2 1$ $-F(-x) -2 -1$ 2We see that $FI(x)$ is not mecriteria, so we mark 4.Option 2 means that a 40%been ruled out. Option 3 wcoption 4 contradicts data thatbefore time.	rs is such the these are an for $x = 1$ create a tar	that value in 5 and y 5 and y ble as 1 -1 -1 of the hould h vays and as reach	1es = 2 2 - 2 - 2 - 2 - 2 - 2 - - 2 - - 2 - - 2 - -
50. 51. 52. 55. 69.	32.Minimum number of flowerof x and y are integers. Sincmultiples of ratio 16:15, min16.Refer above.For solving these problemsbelow: $x -2 -1$ $x -2 -1$ 1 $F(x) 2 1$ 1 2 1 $F(-x) 2 1$ 2 $F(-x) 2 -1$ 2We see that $FI(x)$ is not mecriteria, so we mark 4.Option 2 means that a 40%been ruled out. Option 3 weoption 4 contradicts data thatbefore time.Profitability and revenues a	rs is such the these are an for $x = 1$ create a tar	that values in 5 and y 5 and y ble as 1 -1 1 -1 of the hould h vays and as reach	1es = 2 2 - 2 - 2 - 2 - 2 - ave d ned
 50. 51. 52. 55. 69. 70. 	32.Minimum number of flowerof x and y are integers. Sincmultiples of ratio 16:15, min16.Refer above.For solving these problemsbelow: x x -2 1 $F(x)$ 2 1 $F(x)$ 2 1 $F(-x)$ 2 2 1 $F(-x)$ 2 1 2 2 We see that $FI(x)$ is not mecriteria, so we mark 4.Option 2 means that a 40%been ruled out. Option 3 wcoption 4 contradicts data thatbefore time.Profitability and revenues alinked. Extension of scheme	rs is such the these are and for $x = 1$ create a tar and a create a tar a ta	that value in 5 and y 5 and y ble as 1 1 -1 1 -1 of the hould h vays and as reach ctly routes	1es = 2 2 - 2 - 2 - 2 - ave d hed
 50. 51. 52. 55. 69. 70. 	32. Minimum number of flower of x and y are integers. Sinc multiples of ratio 16:15, min 16. Refer above. For solving these problems below: x -2 -1 F(x) 2 1 Fl(x) 2 1 F(-x) 2 1 F(-x) 2 1 F(-x) 2 1 F(-x) -2 -1 2 We see that $Fl(x)$ is not me criteria, so we mark 4. Option 2 means that a 40% been ruled out. Option 3 wo option 4 contradicts data that before time. Profitability and revenues a linked. Extension of scheme could have been because of	rs is such t e these are n for $x = 1$ create a ta 0 0 0 0 eting any increase s orks both v at target w re not dire es to other	hat value in 5 and y 5 and y ble as 1 -1 1 -1 of the hould h vays and as reach ctly routes ve facto	1es = 2 2 - 2 - 2 - ave d ned
 50. 51. 52. 55. 69. 70. 	32.Minimum number of flowerof x and y are integers. Sincmultiples of ratio 16:15, min16.Refer above.For solving these problemsbelow: $x -2 -1$ $x -2 -1$ $F(x) 2 1$ $F(x) 2 1$ $F(-x) 2 1$ $F(-x) 2 1$ $-F(-x) -2 -1$ 2We see that $FI(x)$ is not mecriteria, so we mark 4.Option 2 means that a 40%been ruled out. Option 3 weoption 4 contradicts data thatbefore time.Profitability and revenues alinked. Extension of schemecould have been because of3 and 4 are contradictory – argument of increasing circle	rs is such the these are in for $x = 1$ create a tar in for $x = 1$ create a tar in for $x = 1$ create a tar in for $x = 1$ defined as the tar in the tar in the tar in tar in the tar in	that value in 5 and y 5 and y ble as 1 -1 -1 of the nould h vays and as reach ctly routes ve facto l add to use of	ies = 2 2 2 - 2 2 - 2 ave d med
 50. 51. 52. 55. 69. 70. 	32.Minimum number of flowerof x and y are integers. Sincmultiples of ratio 16:15, min16.Refer above.For solving these problemsbelow: $x -2 -1$ $x -2 -1$ $F(x) 2 1$ $F(x) 2 1$ 2 $F(-x) 2 1$ $-F(-x) -2 -1$ 2We see that $FI(x)$ is not mecriteria, so we mark 4.Option 2 means that a 40%been ruled out. Option 3 wcoption 4 contradicts data thatbefore time.Profitability and revenues alinked. Extension of schemecould have been because of3 and 4 are contradictory - argument of increasing air tlowered prices.	rs is such t e these arc n for $x = 1$ create a ta 0 0 0 0 eting any of increase s orks both v at target w re not dire es to other competiti only 3 will ravel beca	that value in 5 and y 5 and y ble as 1 -1 1 -1 0 f the hould h vays and as reach ctly routes ve facto 1 add to use of	ies = 2 2 - 2 - 2 - 2 - ave d ned
 50. 51. 52. 55. 69. 70. 71. 	32.Minimum number of flowerof x and y are integers. Sincmultiples of ratio 16:15, min16.Refer above.For solving these problemsbelow: x -2 -1 $F(x)$ 21 $FI(x)$ 21 2 $F(-x)$ 21F(-x)2We see that $FI(x)$ is not mecriteria, so we mark 4.Option 2 means that a 40%been ruled out. Option 3 wcoption 4 contradicts data thatbefore time.Profitability and revenues alinked. Extension of schemecould have been because of3 and 4 are contradictory – argument of increasing air tlowered prices.The conclusion of the passa	rs is such t e these arc n for $x = 1$ create a ta 0 0 0 0 eting any increase s orks both v at target w re not dire es to other competiti only 3 wil ravel beca	that value in 5 and y 5 and y ble as 1 1 -1 1 -1 of the hould h vays and as reach ctly routes ve factoo 1 add to use of the	ies = 2 2 - 2 - 2 - 2 - ave d ned
 50. 51. 52. 55. 69. 70. 71. 	32.Minimum number of flowerof x and y are integers. Sincmultiples of ratio 16:15, min16.Refer above.For solving these problemsbelow: x x -2 1 $F(x)$ 2 1 $F(x)$ 2 1 2 $F(-x)$ 2 1 $-F(-x)$ -2 2 1 2 2 We see that $F1(x)$ is not mecriteria, so we mark 4.Option 2 means that a 40%been ruled out. Option 3 wcoption 4 contradicts data thatbefore time.Profitability and revenues alinked. Extension of schemecould have been because of 3 and 4 are contradictory –argument of increasing air tlowered prices.The conclusion of the passaworking population should	rs is such t e these are n for $x = 1$ create a ta 0 0 0 0 eting any eting any increase s orks both v at target w re not dire es to other competiti only 3 wil ravel beca ge is that	that value in 5 and y 5 and y ble as 1 -1 1 -1 0 f the hould h vays and as reach ctly routes ve facto 1 add to use of the ing for	ies = 2 2 - 2 - 2 - 2 - ave d ned
 50. 51. 52. 55. 69. 70. 71. 	32.Minimum number of flowerof x and y are integers. Sincmultiples of ratio 16:15, min16.Refer above.For solving these problemsbelow: $x -2 -1$ $x -2 -1$ $F(x) 2 1$ 2 $F(-x) 2 1$ $-F(-x) -2 -1$ 2We see that $F1(x)$ is not mecriteria, so we mark 4.Option 2 means that a 40%been ruled out. Option 3 wooption 4 contradicts data thatbefore time.Profitability and revenues alinked. Extension of schemecould have been because of3 and 4 are contradictory –argument of increasing air tlowered prices.The conclusion of the passaworking population shouldage. Options 1 and 2 are not	rs is such t e these are n for $x = 1$ create a ta 0 0 0 0 eting any of increase s orks both v at target w re not dire es to other competiti only 3 wil ravel beca ge is that t	that value in 5 and y 5 and y ble as 1 -1 1 -1 of the hould h vays and as reach ctly routes ve factoo l add to use of the the ing for to this	ies = 2 2 2 - 2 - 2 - 2 - - ave d ned

	 as either the state or the joint family will take care of this need. But the most weakening aspect is if the government starts providing social security as in the west.
72.	The surmise it that bio-diversity is inversely proportional to education. Only statement 4 gives evidence of that (at all levels of poverty)
73.	The conclusion is that the tax base will increase only option $2 -$ which talks of users of bidi switching over to cigarettes and adding to the tax base.
74.	Option 1 is not mentioned. McNeills' research area is not mentioned specifically. Option 4 is a direct statement and not an inference.
75.	Only option 3 supports Malthus' thesis.
76.	Option 1 is not mentioned.
	The comparison of option 4 has not been made.
77.	Directly quoted in the passage. (in words like confiding with a wrong sense of timing)
78.	Option 2 is taken out of context. 4 is not relevant and not mentioned while option 3 goes against the grain of his unseasonableness.
79.	Look at the beginning and the subsequent lines of the second para.
80.	This is what the last few lines of the first
	paragraph attest to.
81.	Please refer to the third paragraph. The line if he
	had used " implies that its abstract nature
	alone was responsible for the consequences it
	generated.
82.	Please refer back to the line "For example, through his work "from the third
	paragraph.
83.	The last three-four lines of the third paragraph hold the key to this question
81	Read the line "With each of our acts "from
04.	the second paragraph
85.	Please refer to the first paragraph.
86.	The last few lines of the fourth para hold the key
	to this question.
87.	Please refer back to the second line of the last
88	Second paragraph from the top
89	The very few starting lines of the passage point
0,71	to this idea.
90.	Read the second the subsequent paragraphs.
92.	Please refer to the last few lines of the first
	paragraph for the right answer.
93.	The first paragraph contains the answer.
94.	Please go back to the 9 th paragraph from the top.
95.	In terms of stealth and surprise, both of which
	are essential ingredients of the Asian way of
	war, this proposition certainly does not hold the ground.
96.	Refer to the penultimate passage for the right
	answer.
97.	The opening line of the fourth paragraph says something just opposite to it.
100	Please refer to the second paragraph in totality.
101	"Countries like Canada and other" from the
	second para.
103	" of member states were evaluated against
	'the accomplishment of the most elementary
10-	community goals".
105	Please refer to the penultimate paragraph.

106	<i>Tougher</i> in B obviously is in conjunction with <i>tricky</i> in line 1. DC too gel well. Hence the
	option.
107	AC talk of upsetting and restoring a particular balance. C goes very well with line 6. Did you notice the words <i>queen</i> in D and <i>her</i> in line 6?
108	Note the word they in line B. C explains what has been disc used in D.
109	<i>These</i> in A refers to motors in D only. C obviously contrasts very well with A
110	They of A links up with revolutions of B.
	Besides line C tends to tone down the point
	made by line D by using <i>but</i> in relation with
	unexceptionable.
135	Trade of OPEC = 33% of imports Plus 10% of
	exports, For US the figures are 9 and 19%. So
	is higger
136	Lowest total trade was with Others.
100	Export was 1% of $34 \text{ b} = 340 \text{ m}$
137	Highest trade deficit is $OPEC = 23\%$ of
	41 - 10% of $34 = 6.0$
138	By visual inspection it has to be USA or Asia –
130	ULL A IIIIPOITS IESS Here we need to only see market shares for a
157	relative judgement – the share of Other east
	Europe decreased from 3 to 2.
	US increased from 19 to 23; Increase of 4/19.
	Asia increased from 15 to 18; Increase of 3/15.
1.40	4/19 is bigger than $3/15$ so the answer is USA.
140	Trade deficit in $97-98 = 407/9 - 33979 = 0800$. Trade deficit in $98.99 - (28126-21/36) \times 12/8$
	= 6690 + 3345.
	Increase in deficit = $3345 - 110 / 6800 = 47\%$
141	By visual inspection.
142	Values are for Arhar 800/1900, Pepper
	2000/18000, Sugar 90/1460 and Gold 500/4000.
143	Average all the percentage changes to get the
	answer as 4.3% increase
144	This is the highest for Arhar = $8/19 = 40\%$
145	By visual inspection
146	By visual inspection
14/	4/250 $6/300$ and $8/280$ So highest in 1998
148	Profitability is down in 95-96, up in 96-97, so
	we cannot make any firm conclusions.
149	For drinking it is Bangladesh, for Sanitation it is
150	Philippines Check coverage data for both
150	70% (1 - x) = 14% x = 29%
101	70 - 29 = 70x - 14x = 56 x.
	So <i>x</i> = 41/56 = 73%
152	Philippines is about 50%, since average of 66
	and 88 is 77. For Indonesia it is more than 50%
	70% and China is more like india in Kural (> 70%)
153	India is not on opvorage frontier because
	(i) it is below Bangladesh and Philippines for
	drinking
	water.
	(ii) ior sanitation facilities it is below Philippines, Sri Lanka, Indonesia and Pakistan
154	. For questions 154 and 155:
-	The disparity for the coverage of rural sector is
	as follows.

1.2.2		Dec. and the t	duber d
155		HU rai se ct	Ur ba n se ct
		Or 65	or
	′	00	
			15
	P	50	15
	B	52	20
	C	49	23
	Р	47	5
	Р	20	4
	1	22	6
	S	-5	20
	N	51	30
	Note: Disparity = (F	Percentage denoting	g
	drinking facilities co	overage - Percenta	age
	denoting sanitation	n coverage),	
	For example, rura	I sector of India =	/9 -
	14= 65% Thus, a	s it can be seen fr	om
	the table, in rural s	sector the country	/ With
	most disparity is i	ndia (79 - 14) = 6	5%.
	And the country	with least dispar	
		mippines (92 -	00) =
154	4 /0		
154.	a		
155	C		
156	We need data abo	out the shape and	the regularity
	of the shape		
157	Length of AB and	l BC are not knov	vn
158	If the tangent can	be constructed, the	hen the angle
	with the x-axis ca	n be found out.	
159	Stmt A tells us th	at both the equation	ons boil down
	to $dx + ey = f$. We	e can find any x as	nd will be
	able to get a corre	esponding $y = f - f$	dx/e that will
	now satisfy both	equations.	
160			
	Statement II tells	us that mathema	ticians can
	make mistakes w	nich are always e	errors of +1
	Alco statement Lto	lle ue that mathem	aticiane can
	never add 2 numb	ers correctly but	we know he
	can make mistake	es also.	
	Again he can alwa	ays add 3 number	s correctly.
	Therefore, as mis	stakes can be ma	de here too,
	we cannot decide	as to who is a ma	thematician.
161			
	Statement I gives the	ne weight of the he	aviest and
	lightest members o	f the class but no in	idication as to
	the number of stud	dents in the class	s or the total
	statement is also	inconclusive m	aking our
	answer choice as	(d)	
162	Statement Laives	the thickness of th	e wall which
102	is of no use to find	the volume of the	tank since
	we do not know th	e radius of the sp	here.
	Statement II give	s us the answer a	as the volume
	of		
	water displaced is	equal to the volume	e of the
	immersed		
	tank (from Archim	edes' principle)	
	So to find the exa	ct storage volume	of the tank
	both		
	the statements are	e needed.	
163	From I, we know /	A and B passed	
	the examination.	المعالية ومعالياته ممم مط	
	From II, we know t	ne condition that a	among C and
	Logit one passed	(or both passed)	e falso
	Therefore it is obv	ious that both C a	nd D have
	failed.		
	Thus, both state	ments are neces	sary to find
	the		
	answer		

164	$2^{\sqrt{x}} = x.$ x =4, 16 satisfy this equation. So both statements are required.
165	Statement I gives us the number of white flowers. But we know that a white seed gives both red or white flowers. Thus, proving statement II, gives the number
	give red flowers, again providing no solutions

