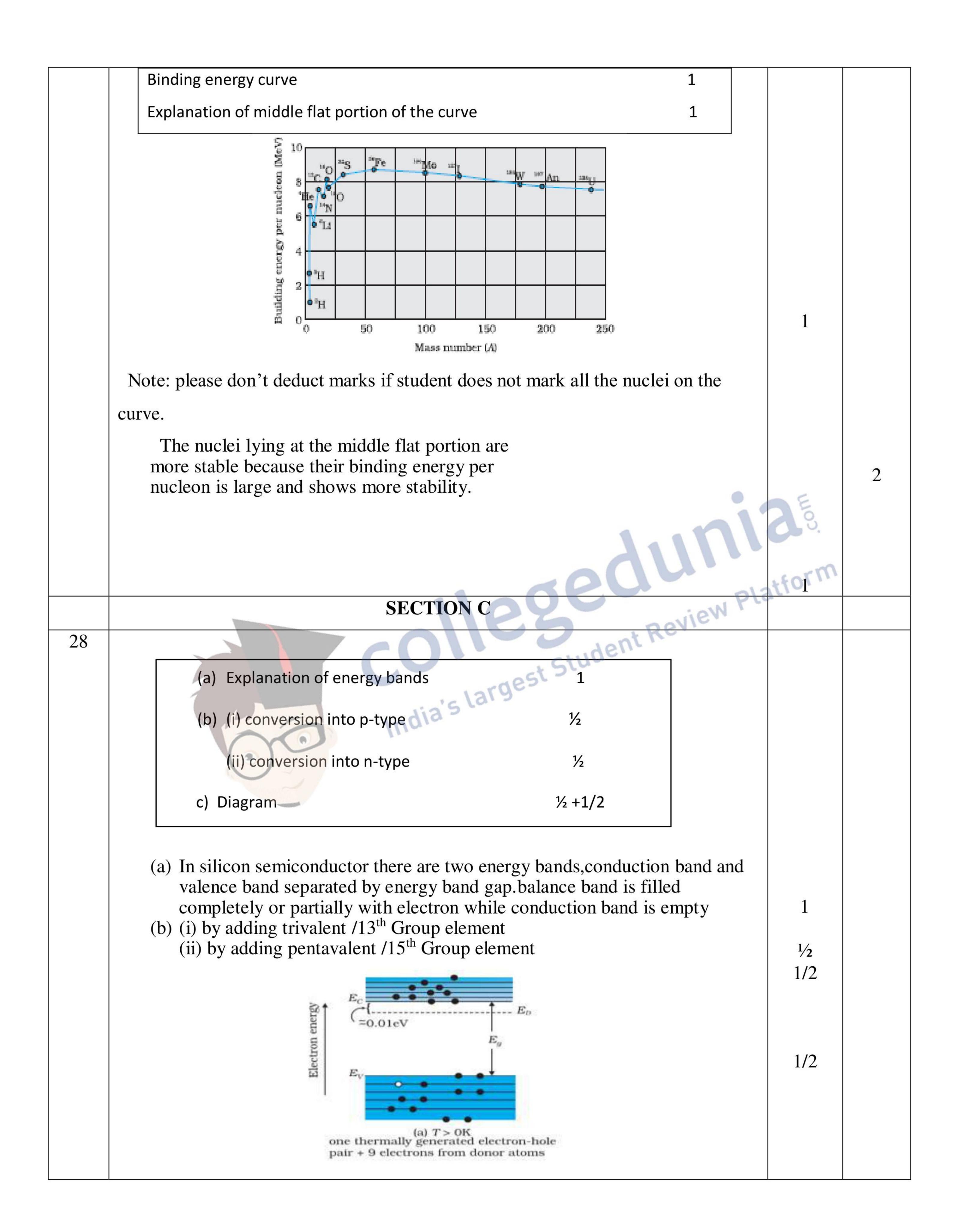
	Marking Scheme: Physics (042)		
	Code :55/C/3		
Q. No.	VALUE POINTS/ EXPECTED ANSWERS	Mark	Tot al Ma rks
	SECTION A		
	(D) Number of both the free electrons and holes increases equally.		
1		1	1
2	(C) III	1	1
3	$(c)\frac{F}{2}$	1	1
4	$(A) + \frac{d}{4}$	3. E.	1
5	(C) 1	tform.	1
6	(C) $(\frac{r_1}{r_2})^2$	1	1
7	(A) charge on the capacitor will increase	1	1
8	(A) Linear momentum	1	1
9	(D) 2:1	1	1
10	$(A) \pi: 4$	1	1
11	90°	1	1
12	2π	1	1 1
13	$\frac{\pi}{\pi}$.1	1
	OR		
	$9 \times 10^{14} \text{J}$		
14	Red	1	1
15	electrons	1	1
16	Potential Potential Resistance R		

	Alternatively		
	V=E-Ir		
	$V=E - \left(\frac{E}{R+r}\right)r$ (Award half mark of this question to the student		
0)	(Award half mark of this question to the student if he/she write just formula.)		1
17	X is α-particle	1	
	(Note: Award half mark when a child finds out the correct atomic number and		
	mass		
	number of D ₂ i.e 70 & 176)		
	OR		1
	curves 1 & 2		
18	Virtual	1	
	(Note: Award half mark if a child shows that focal length will become negative		
	using		
	Lens maker formula and does not conclude about	3 5	1
10	nature of image.)	CLÖ.	1
19		I	
	Alternatively	ttoi	
	Slope = $\frac{1}{R}$		
	$R = \rho \frac{l}{r}$		
	i argest		
	$R_x > R_y$		
	(Award half mark of this question, if a student writes the correct answer in terms of		
	Resistance.)		1
20		4	4
20	When a charge of one coulomb develop potential of one volt between the plates of capacitor its capacity is said to be one farad.	1	1
	SECTION B		
21	(a) Identification 1/2		
	One Application 1/2		
	(b) Identification		
	(c) One Application 1/2		
	(0) V \mathbf{r}_{0}	1/2	
	(a) X-rays Application:1. To detect fracture in the bone	1/2	
	2. To study crystal structure		


	3. In the treatment of cancer(Any one application)		
	Give full credit to any other correct application.		
	(b) Gamma rays Application: Used in cancer and tumor treatment	1/2 1/2	2
22	Definition of quality factor 1 Two methods to double the quality factor 1/2 + 1/2		
	It is the ratio of resonant angular frequency to the bandwidth of a series LCR circuit Alternatively	1	
	Anternatively		
	$Q-factor = \frac{\omega o}{2\Delta \omega}$		
	Alternatively		
	It is the ratio of potential difference across inductor or capacitor to the		
	potential difference across resistor at resonance.	3 8	
	Alternatively	C. J.	
	Q-factor $=\frac{1}{R}\sqrt{\frac{L}{C}}$ Alternatively Alternatively	tform	
	It is the factor which determines the sharpness/ selectiveness of series LCR		
	circuit.		
	Methods	1 10	
	1. By reducing the resistance to half its initial value	1/2 1/2	
	2. By doubling the value of inductance and reducing the value of capacitance to half		2
23			
	(a) Depiction of equipotential surfaces 1		
	(b) Finding the amount of work done 1		
	(a)		
		1	
	(b) $W=q_0 \Delta V$		

	As a small test charge q_o is moving along x-axis which is equipotential line for a given system, therefore $\Delta V = 0$ Hence W=0	1/ ₂ 1/ ₂	
			2
24			
	(a) Sequence of color bands		
	(b) Two properties of wire $(\frac{1}{2} + \frac{1}{2})$		
	(a) Yellow, Violet, Orange and Silver	1	
	(Note: if student does not write silver award half mark of this part.)	1	
	(b) (1) Low temperature coefficient of Resistivity.	1/2	
	(2) High Resistivity	1/2	
		3 5	2
25		Ch.	
	Reason for part (a)	maga	
	Reason of part (b)	J.C.I.O.	
	dent Revio		
	(a) Zener diode is fabricated by heavy doping of both p-side, and n-side of the	1	
	junction.	1	
	Due to this, depletion region formed is very thin and the electric field of the		
	junction is extremely high.	1	
	(b) It is easier to observe the change in the current with change in the light		
	intensity, if reverse bias is applied.		
	OR		
	Circuit Diagram ¹ / ₂		
	Working of p-n junction 1		
	I-V Characteristics 1/2		
		1/2	

	T	1
In the forward bias the width of depletion layer decreases and barrier height is	1	
reduced.		
It supports the movement of majority charge carriers across the junction.		
As soon as supply voltage exceeds barrier potential instantaneously current		
begins to		
flow through junction and increases exponentially with forward biasing voltage.		
(Note: Accept any other relevant explanation for working)		
I-V characteristics I-V characteristics	atform	2
26		
Formula for half life		
Calculation of half life Calculation of Critical mass $1/2$		
$N = N_o \left(\frac{1}{2}\right)^n$	1/2	
$\frac{1}{16} N_o = N_o \left(\frac{1}{2}\right)^n$		
n = 4	$\frac{1}{2}$	
t= n x T _{1/2}		
$T_{1/2} = \frac{t}{-} = \frac{4}{1} = 1 \text{ day}$	1/2	
n 4		

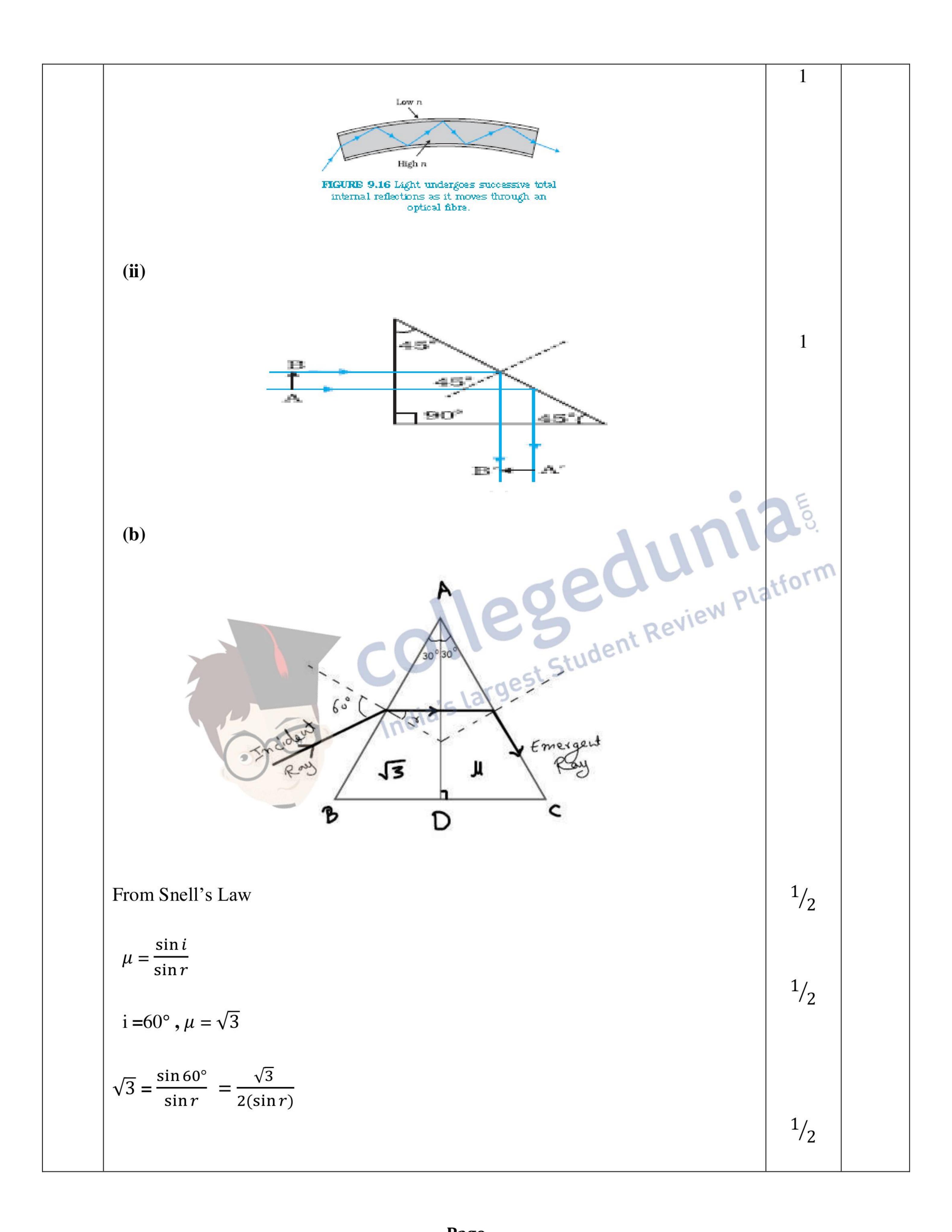
$N = N_o \left(\frac{1}{2}\right)^n = N_o \left(\frac{1}{2}\right)^{\frac{t}{T_1}}$	1/2	
$4 = N_o \left(\frac{1}{2}\right)$		
$N_o = 256 g$		
Alternative Method	$^{1}/_{2}$	
$N = N_o e^{-\lambda t}$		
$\frac{1}{16} N_o = N_o e^{-\lambda 4}$		
$16 = e^{4\lambda}$		
$4 \log_{\rm e} 2 = 4 \lambda$	1/_	
$4x 2.303 \times 0.3010 = 4 \lambda$	/2	
λ = 0.693 per day		
Half life		
_ 0.693 0.693	$^{1}/_{2}$	
$T_{1/2} = \frac{1}{\lambda} = \frac{1}{0.693} = 1 \text{ day}$	1 ,	
$4 = N_0 e^{-\lambda t}$	$^{1}/_{2}$	
$N_o = 256 \text{ g}$	3 8	
	CS.	
(Note: Give full credit of this part, if student substitutes values correctly		
and is not able to calculate final answer.)	tfoliv	
aview "		
OR dent Rev		
et Stude		
Formula $1/2$		
Conversible of this etile and in India 3		
Conversion of kinetic energy in Joule $^{1}/_{2}$		
Finding the distance of closest approach	1 ,	
	$^{1}/_{2}$	
q_1q_2		
$d = \frac{1112}{4\pi\epsilon_0 K}$	1/_	
	/2	
kinetic energy= 5.12 MeV		
$= 5.12 \times 1.6 \times 10^{-13} \text{ J}$	1.	
= 8.192×10 ⁻¹³ J	$^{1}/_{2}$	
$d = \frac{q_1 q_2}{1} = \frac{9 \times 10^9 \times 2e \times 79e}{1} \text{ m}$	1 /	
$d = \frac{1}{4\pi\epsilon_0 K} = \frac{1}{8.192 \times 10^{-13}} m$	72	
$= 4.443 \times 10^{-14} \text{ m}$		
$=44.4 \times 10^{-15}$ m		2
ZI		

	E_{V} E_{A} $\approx 0.01 - 0.05 \text{ eV}$ (b) $T > 0$ K	1/2	3
Q29			
	(a) Ray Diagram $1^{1/2}$		
	(b) Expression of magnifying power $1^{1/2}$		
	Ray diagram Note: deduct half mark, if a student does not mark the direction of propagation of the rays) Expression for magnification	as tform 1 ¹ / ₂	
	$m_0 = \frac{h'}{h} = \frac{L}{fo}$	1/2	
	where we have used the result		
	$\tan \beta = (\frac{h}{fo}) = \frac{h'}{L}$		
	$m_e = (1 + \frac{D}{fe})$	1/2	
	Magnifying power of microscope at near point.		
	$m = m_o m_e$		

	T 1		
	$m = \frac{L}{fo} \left(1 + \frac{D}{fe} \right)$	1/2	
			3
Q30	a) Diagram 1 Diagram 2 $\frac{1}{f} = \frac{1}{v} + \frac{1}{u}$ For formula $\frac{v}{u} = m$ $\frac{1}{2}$ $\frac{v}{u} = m$ $\frac{1}{2}$		
	Calculation of distance of object for two cases ½ + ½ Calculation of distance ½		
	a) COLES Eduling Plant Review P		
	B' C S F P	1/2	
	For three times enlarged virtual image		
	f = -12 cm		
	m = 3		
	$m = -\frac{v}{u}$ $v = -3u$	1/2	

			1
	$\frac{1}{-12} = \frac{1}{-3u} + \frac{1}{u}$	1/2	
	3u = -24	, <u>~</u>	
	u = -8 cm		
	For three times enlarged real image		
	f = -12 cm		
	m = -3		
	$\mathbf{m} = -\frac{v}{u}$		
	v = 3u		
	$\frac{1}{f'} = \frac{1}{v'} + \frac{1}{u'}$		
	$\frac{1}{-12} = \frac{1}{3u'} + \frac{1}{u'}$		
	$3u^1 = -48$		
	u' = -48	E .	
	u' = -16 cm	2.	
	Distance between two positions of objects		
	d = u' - u = 8 cm	110/2	
Q31	Circuit diagram Working for comparing e.m.f Preference potentiometer over voltmeter (Reason) 1/2		3
	$\begin{array}{c} E_1 \\ E_2 \\ \end{array}$	1	
	Working:- A current I flows through wire which can be varied by a variable Resistance (Rheostat ,R) in the circuit. Since the wire is uniform, the potential difference between A and any point at a distance I from A is $E_1 = \phi \ l$ Where ϕ is the potential drop per unit length Circuit shows an application of the potentiometer to compare the emf of the two cells of emf E_1 and E_2 . The points marked 1,2,3 form a two way key. Consider first a position of key where 1 and 3 are connected so that the galvanometer is	1/2	

	connected to E_1 . The jockey is moved along the wire till at a points N_1 , at a distance l_1 from A , there is no deflection in the galvanometer. We can apply Kirchhoff's loop rule to the closed loop AN_1G31A and get $\Phi l_1 + 0 - E_1 = 0$ (1) Similarly, if another emf E_2 is balanced against l_2 (AN_2) $\Phi l_2 + 0 - E_2 = 0$ (2) From last two equation $\frac{E_1}{E_2} = \frac{l_1}{l_2}$ We prefer potentiometer because it does not draw any current from the voltage source being used.	1/2 1/2	3
Q32	(a) Labeled diagram Explanation of Working 1 (b) Explanation of motion on ions 1		
	Working: The charged particle is allowed to move under the influence of crossed	Ais.	
	electric and magnetic field, the magnetic field provides the circular path to the particle		
	and magnetic field, the magnetic field provides the circular path to the particle	1	
	Rotate it inside two semi circular discs, when it jumps from one disc to another disc	1	
	particle is accelerated by the electric field and each time the acceleration		
	increases the		
	energy of the particle.		2
O22	(b) Ions will not get accelerated.		3
Q33	(a) Working Principle of ac generator		
	(a) Working Principle of ac generator Derivation of expression for induced emf 1		
	(b) Function of Slip Rings		


	(a) It is based upon the principle of electromagnetic induction.		
	Magnetic Flux $\Phi = NBA \cos \theta$	1	
	$\Phi = NBA \cos \omega t$	1/2	
	According to Faradays law	, 2	
	$\operatorname{Emf} e = \frac{-d\Phi}{dt} = \frac{-d(\operatorname{NBA}\cos\omega t)}{dt}$		
	$e = NBA \omega \sin \omega t$	1/2	
	(b) it helps current to change its direction after every half rotation.		
	OR	1	
	Explanation of parts (a),(b) & (c) (1+1+1)		
	(a) As power P=V I, In step-up voltage transformer output voltage (V) is more		
	than the	1	
	input voltage. Hence output current is less than the input current.	F =	
	(b) To minimize the eddy currents.	C 3.	
	(c) Input power is more than the output power because in actual transformer small	· sorm	
	energy loses occur due to flux leakage, resistance of winding, eddy current and	JELO.	3
2. ()	hysteresis etc.		
Q34	a) Expression for stopping potential b) Graph c) Determination of Planck's constant Determination of work function 1 1 2 1 2 1 2		
	a) $V_s = \frac{hc}{e} \left(\frac{\lambda o - \lambda}{\lambda \lambda o} \right)$	1	
	b) V_s	1	
	c) $h = \frac{e}{c} \times Slope \ of \ line$		

	$\phi_o = hc \times intercept$ of the line on X –axis or $\phi_o = e \times intercept$ of the line on y –axis	1/2 1/2	3
	SECTION -D		
Q35	(a) Diagram of moving coil galvanometer 1 Working 1 Justification for using radial magnetic field $\frac{1}{2}$ (b) Calculation of Resistance $\frac{1}{2}$		
	Working: when a current flow through the coil, a torque acts on it. T=NIAB Where symbols have their usual meaning. since the field is radial by design, we	a sorm	
	have taken $\sin\theta=1$ in the above expression for torque. The magnetic torque NIAB tends to rotate the coil. A spring provide a counter torque kØ that balances the magnetic torque NIAB; resulting in a steady angular deflection Ø. In equilibrium $k \neq NIAB$		
	Where k is the tensional constant of the spring. The deflection \emptyset is indicated on the scale by a pointer attached to the spring. We have $\emptyset = (\frac{NAB}{k})I$	1/2	
	To calibrate the scale of galvanometer/to make scale linear (b) $R = \frac{V}{I_g} - G$ $R_1 = \frac{V}{I_g} - G = 2000 = \frac{V}{I_g} - G$ (1)	1/ ₂ 1/ ₂	

$R_2 = \frac{V}{I_g} - G = 5000 = \frac{2V}{I_g} - G$ (2)	
$R = \frac{V}{2I_g} - G \qquad \dots (3)$	1/2
from equation 1 & 2	1/2
$3000 = \frac{V}{I_g}$	1/2
From equation (1)	
2000=3000-G	
$G=1000 \Omega$	
$R = \frac{3000}{2} - 1000$	1 1
R = 1500 - 1000	1/2
$R=500 \Omega$	
OR	
(a) (i) Expression for emf induced and polarity $1 \frac{1}{2} +$	$\frac{1}{2}$
(ii) Magnitude and direction $1/2$ +	1/2
(b) Calculation of mutual inductance	tform
(a) (i) Magnetic flux linked with the loop at any instant of time is	iew Pra
$\left \frac{d\phi_B}{dx}\right = Bl\frac{dx}{dx}$	
dt dt mdia's	$1/_2$
$\left \frac{d\phi_B}{dt} \right = Bl_v \qquad \because \left(\frac{dx}{dt} = v \right)$	
According to Faradays Law of Electromagnetic induction	1,
$\left \frac{d\phi_B}{d\phi_B} \right = e$	1/2
$\mid \mid \mid dt \mid$	
Hence $e=Blv$	
Alternative Method	
(i) When rod moves outwards, according to Lorentz magnetic force	1/2
$\overrightarrow{F_m} = \mathbf{q}(\overrightarrow{V} \times \overrightarrow{B})$	
Free electrons inside the conductor experience force towards the end X. to	he
positive charge moves towards end y of the conductor due to accumulation	n of $1/2$
charges emf is developed across the conductor. Consider a charge 'q' at the	ne end X,
work done by magnetic field in moving it through the length 'l' of the con-	iductor is
$W = F_m l$	

	$= (qvB \sin\theta) l$		
	$W = qvBl \ (:: \theta = 90^{\circ})$	1,	
	According to definition of emf	1/2	
	$e = \frac{W}{q} = vBl$		
	Hence, emf e= vBl		
	The end X of coil be at lower potential and Y will be at higher potential.		
	(ii) $I = \frac{e}{r}$	1/2	
	$I = \frac{Bvl}{r}$	1/2	
	Direction of induced current is from end X to end Y		
	(b)	$\frac{1}{2}$	
	$\mu_0\pi r_1^2$	1/2	
	$M = \frac{1}{2r_2}$		
	$= \frac{4\pi \times 10^{-7} \times \pi \times 0.5^{2} \times 10^{-4}}{2 \times 11 \times 10^{-2}} \text{ H}$	1/2	
	Device of the second se		
	$= 2 \times (0.25) \times 10^{-9} \times \frac{\pi^2}{11} H$	$\frac{1}{2}$	
	$= 4.49 \times 10^{-10} \text{ H}$	1/2	
	India	1,	
		1/2	5
Q36			<i>J</i>
	(a) (i) Ray diagram of TIR in optical fiber		
	(ii) Ray diagram for TIR in prism		
	(b) Calculation for value of μ		
	(a) (i)		

$\sin r = \frac{1}{2}$	=	sin	30°
------------------------	---	-----	-----

$$r=30^{\circ}$$

 $\frac{1}{2}$

So, ray will go perpendicular to AD For IInd prism

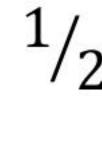
$$i_c = 30^{\circ}$$

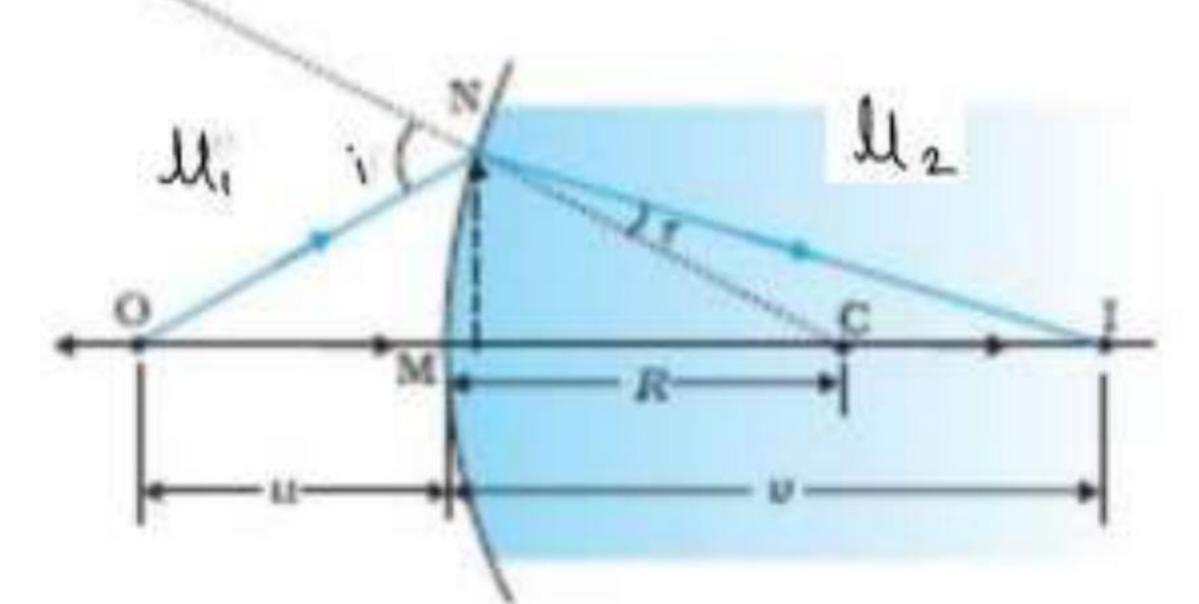
$$^{1}/_{2}$$

$$\therefore \sin i_c = \frac{1}{\mu}$$

$$\frac{1}{2}$$

$$\sin 30^{\circ} = \frac{1}{\mu}$$


$$\mu = 2$$


as.

OR

- (a) Derivation of the relation between $~\mu_1$, $~\mu_2$ and R
- (b) Find the intensity of light transmitted by P₁ and P₂

(a)

 $\frac{1}{2}$

$$\tan \angle NOM = \frac{MN}{OM}$$

$$\tan \angle NCM = \frac{MN}{MC}$$

tan $\angle NIM = \frac{MN}{MI}$ Now, for \triangle NOC, L _i is the exterior angle	1/2	
Therefore, $\angle_i = \angle NOM + \angle NCM$		
$\angle \mathbf{i} = \frac{MN}{OM} + \frac{MN}{MC} \qquad \dots $		
Similarly,	1/2	
$r= \angle NCM - \angle NIM$		
i.e $r = \frac{MN}{MC} - \frac{MN}{MI}$ (2)		
By snells law	250.	
$\mu_1 \sin i = \mu_2 \sin r$	Horm	
For small angle $\mu_1 \text{ i} = \mu_2 \text{ r}$ Substituting i and r from equation 1 & 2, we get $\frac{\mu_1}{OM} + \frac{\mu_2}{MI} = \frac{\mu_2 - \mu_1}{MC} \qquad(3)$	1/2	
Here		
OM=-u, $MI=+v$, $MC=+R$	1/2	
On substituting in equation 3, we get		
$\frac{\mu_2}{v} - \frac{\mu_1}{u} = \frac{\mu_2 - \mu_1}{R}$	1/2	
Note: Give full credit of this part, if a student takes medium of μ_1 as denser and μ_2 as rarer	1/2	

	(b) According to Malus's law, intensity of light transmitted from P ₂	1/2	
	$I_{p_2} = I_o \cos^2 \theta$		5
	Where $I_0 = \frac{2}{2} \text{ mW} = 1 \text{mW}$	1/2	
	Here $\theta = 60^{\circ}$		
	$I_{p_2} = (1 \text{ mW}) \cos^2 60^\circ$		
	$I_{p_2} = \frac{1}{4} \mathrm{mW} = 0.25 \mathrm{mW}$		
Q37	(a) Derivation of expression for Capacitance 2		
	(b) Expression for the Force experienced		
	(a) Electric field believes the plates of parallel plate capacitor.	25.	
	$E = \frac{\delta}{\epsilon_0} = \frac{Q}{A\epsilon_0}$	tfo/2m	
	We know $V = Ed = \frac{\sigma}{A \in 0} d$	1/2	
	As capautance $C = \frac{Q}{V}$	1/2	
	$C = \frac{\epsilon_{0A}}{d}$ India's	1/2	
	(b) Electric Field due to the positive plate on the negative plate $F = \frac{\sigma}{\sigma} = \frac{\sigma}{\sigma}$	1/2	
	$2 \in_0 2A \in_0$		
	Hence Force experienced by negative plate due to positive plate $\mathbf{r} = \mathbf{q} \mathbf{r} - \mathbf{q} \mathbf{r} - \mathbf{q} \mathbf{r} - \mathbf{q} \mathbf{r} \mathbf{r}$		
	$F = -qE = -q \times \frac{q}{2A \in_0} = -\frac{q^2}{2A \in_0}$ -ve sign shows attractive force.	1/2	
	(c) C ₂ , C ₃ and C ₄ are connected in series.		
	$\frac{1}{1}$, $\frac{1}{1}$, $\frac{1}{1}$, $\frac{1}{1}$	$\frac{1}{2}$	
	$Cs = C_2 + C_3 + C_4 + C_4 + C_5$ $Cs = 4 \mu F$	5 ' 2	
	Equivalent capacitance of the Network		
	$C = C_s + C_4$		
	$= 4\mu F + 12 \mu F$ $= 16 \mu F$	1/2	
eŭ.	$= 16 \mu F$		

Total charge Q=CV	1/2
$=16 \times 10^{-16} \times 100$	1,
Q=1600 μC	7/2
OR	
a) Principle of Wheatstone Bridge	1
Circuit Diagram	1
Determination of specific resistance	1
b) Calculation of potential difference between A & C	2
(a) Principle: If four resistors R ₁ , R ₂ , R ₃ and R ₄ are connected	1 in the four
sides of a quadrilateral. The galvanometer is connected in	
diagonal and battery is connected across another diagonal	
conductors.	E S
$\frac{R_1}{R_2} = \frac{R_3}{R_4}$ provides no current flows through the galvanome	eter a la l
$R_2 - R_4$	
	Platfor
R	L Review .
	SUL
A G 100-1	C
thouland and the design of the state of the	
Metre scale	+
E K	1
For specific resistance when no current flows in galvanom	neter
$\frac{R}{C} = \frac{R_{AD}}{R} \qquad \dots $	
S R_{DC} R_{AD} l	
$\frac{R_{AD}}{R_{DC}} = \frac{l}{100-l} \qquad \dots \dots 2$	
	1,
From equation 1 & 2	$\frac{1}{2}$
R = l	
$\overline{S} = \overline{100-l}$	
$R = S\left(\frac{l}{100-l}\right)$	

Resistivity of the wire		
$\rho = \frac{RA}{L} = R \frac{\pi r^2}{L}$		
	1/2	
where L = Length of unknown resistance wire	/ 2	
r = radius of unknown resistance wire		
(b)		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
In loop ACDA	25	
$4I_{1+}2I=8$		
$2I_1 + I_2 = A$	atform	
In loop ABCA $(I-I_1) \times 1 - 4I_1 = -2$ $I-I_1 - 4I_1 = -2$ $I-5I_1 = -2$ $5I_1 - I = 2$ (2)	1/2	
By adding Equation (1) & (2)	1/2	
$5I_1 - I = 2$		
$\underline{2I_1 + I = 4}$		
$7I_1 = 6$	1,	
$I_1 = \frac{6}{7}A$	1/2	
$V = I_1 R = \frac{6}{7} \times 4$		
$V = \frac{24}{-} \text{ volt}$		
7	1,	5
	1/2	

