Chemical Engineering_Set2

Topic:- Mathematics_Set2

If
$$A+B=\begin{bmatrix}1 & -1\\3 & 0\end{bmatrix}$$
 and $A-B=\begin{bmatrix}3 & 1\\1 & 4\end{bmatrix}$, then $AB=\begin{bmatrix}1 & 1\\1 & 4\end{bmatrix}$

[Question ID = 13593]

$$\begin{bmatrix} -2 & 2 \\ 0 & -6 \end{bmatrix}$$

$$\begin{bmatrix} -2 & -2 \\ 2 & -4 \end{bmatrix}$$

$$\begin{bmatrix} -2 & -2 \\ 0 & -6 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Correct Answer :-

$$\begin{bmatrix} -2 & -2 \\ 0 & -6 \end{bmatrix}$$

If
$$A = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}$$
; $B = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 2 & 3 \\ 4 & 0 & -1 \end{bmatrix}$, then $A^T B A = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 2 & 3 \\ 4 & 0 & -1 \end{bmatrix}$

[Question ID = 13594]

2. [0]

$$\begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & 0 \\ 0 & 6 & -2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -1 & 0 \\ 0 & 2 & 3 \\ 4 & 0 & -1 \end{bmatrix}$$

Correct Answer :-

[5]

3) $\begin{vmatrix} x-y & p-q & a-b \\ y-z & q-r & b-c \\ z-x & r-p & c-a \end{vmatrix} =$

[Question ID = 13595]

1. 1

2. 2

3. xyz- pqr+ abc

4.0

Correct Answer :-

• (

The solution of the equation $\begin{vmatrix} 5-x & 4 & 3 \\ 1-3x & 7 & 6 \\ 1-x & 6 & 5 \end{vmatrix} = 0 \text{ is}$

[Question ID = 13596]

 $_{1.}$ x = 1

 $_{2}$. x = 2

3. x = 0

$$x = 5$$

$$x=1$$

The inverse of the matrix $A = \begin{bmatrix} a+ib & c+id \\ -c-id & a-ib \end{bmatrix}$.

if
$$a^2 + b^2 + c^2 + d^2 = 1$$
 is

[Question ID = 13597]

$$\begin{bmatrix} a-ib & c-id \\ c+id & a-ib \end{bmatrix}$$

$$\begin{bmatrix} a-ib & -c-id \\ c-id & a+ib \end{bmatrix}$$

$$\begin{bmatrix} c - id & a - ib \\ a + ib & c + id \end{bmatrix}$$

$$\begin{bmatrix} a-ib & c-id \\ -c-id & a+ib \end{bmatrix}$$

Correct Answer :-

$$\begin{bmatrix} a-ib & -c-id \\ c-id & a+ib \end{bmatrix}$$

$$\frac{x^2}{x^2 - 3x + 2} =$$

[Question ID = 13598]

$$\frac{1}{x-1} + \frac{2}{x-2}$$

$$1 - \frac{1}{1 - x} + \frac{3}{x - 2}$$

$$1 + \frac{1}{1 - x} + \frac{4}{x - 2}$$

$$1 - \frac{1}{x - 1} + \frac{2}{x - 2}$$

$$1 + \frac{1}{1-x} + \frac{4}{x-2}$$

If
$$Sin\theta + Cosec\theta = 2$$
, then the value of $Sin^3\theta + Cosec^3\theta =$

[Question ID = 13599]

- 1. 0
- 2. 1
- 3. 2
- 4.8

Correct Answer :-

• 2

The value of
$$Sin^2 \left(\frac{\pi}{8} + \frac{\theta}{2} \right) - Sin^2 \left(\frac{\pi}{8} - \frac{\theta}{2} \right) =$$

[Question ID = 13600]

$$\frac{1}{\sqrt{2}}$$

$$\frac{1}{2}\sin\theta$$

$$\frac{1}{\sqrt{2}}\sin\theta$$

$$\sin(\frac{\theta}{2})$$

$$\frac{1}{\sqrt{2}}\sin\theta$$

9) 7 4

If x, y are in first quadrant, $tan(x - y) = \frac{7}{24}$ and $tan(x) = \frac{4}{3}$, then $x + y = \frac{1}{3}$

[Question ID = 13601]

$$\frac{3}{4}$$

$$\frac{\pi}{2}$$

$$\frac{\pi}{4}$$

Correct Answer :-

$$\frac{\pi}{2}$$

If $A - B = \frac{3\pi}{4}$, then $(1 - \tan A)(1 + \tan B) =$

[Question ID = 13602]

Correct Answer :-

. 2

11)
$$\sec^2(\tan^{-1} 3) + \cos ec^2(\cot^{-1} 3) =$$

[Question ID = 13603]

- 1. 1
- 2. 10
- 3. 20
- 4.30

Correct Answer :-

• 20

12)
$$3Co\sec x = 4Sinx \Rightarrow x =$$

[Question ID = 13604]

$$n\pi \pm \frac{\pi}{2}; n \in z$$

$$n\pi \pm \frac{\pi}{3}; n \in z$$

$$2n\pi \pm \frac{\pi}{2}; n \in z$$

$$n\pi \mp \frac{\pi}{4}$$
; $n \in z$

Correct Answer :-

$$n\pi \pm \frac{\pi}{3}; n \in z$$

13) If $x = \log_{\epsilon} \left(5 + \sqrt{26}\right)$, then Sinhx =

[Question ID = 13605]

- 1. 5
- , 1
- 3

4. log_e 5

Correct Answer :-

_ 5

14)

If a, b and c are the lengths of the sides opposite to the angles A,B and C of a triangle ABC, then

$$(b-c)^{2} Cos^{2} \frac{A}{2} + (b+c)^{2} Sin^{2} \frac{A}{2} =$$

[Question ID = 13606]

- 1. a
- 2. b
- 3. b^2
- 4. *a*²

Correct Answer :-

 a^2

15) If $z = 2 - i\sqrt{7}$, then $2z^2 - 8z + 22 =$

[Question ID = 13607]

- 1. 0
- 2.1
- 3. 2
- 4.4

Correct Answer :-

• (

The least positive integer n, satisfying $\left(\frac{1+i}{1-i}\right)^n = 1$ is

[Question ID = 13608]

1. 2

- 2. 1
- 3. 4
- 4.8

- 4
- The distance between the parallel straight lines 3x-4y-3=0 and 6x+8y-1=0 is

[Question ID = 13609]

- $\frac{1}{2}$
- $\frac{1}{4}$
- 3. l
- $\sqrt{2}$

Correct Answer :-

- $\frac{1}{2}$
- Angle between the lines 3x-5y-9=0; 4x-y+7=0 is

[Question ID = 13610]

- $\theta = 30^{\circ}$
 - $\theta = 45^{\circ}$
- 3. $\theta = 60^{\circ}$
- 4. $\theta = 15^{\circ}$

$$\theta = 45^{\circ}$$

19)

Equation of the circle passing through (3,-4) and concentric with $x^2 + y^2 + 4x - 2y + 1 = 0$ is

[Question ID = 13611]

$$x^2 + y^2 + 4x - 2y - 15 = 0$$

$$x^2 + y^2 + 4x - 2y - 30 = 0$$

$$x^2 + y^2 + x - 2y - 45 = 0$$

$$x^2 + y^2 + 4x - 2y - 45 = 0$$

Correct Answer :-

$$x^2 + y^2 + 4x - 2y - 45 = 0$$

The eccentricity of Ellipse $9x^2 + 16y^2 = 144$ is

[Question ID = 13612]

$$\frac{7}{4}$$

$$\frac{\sqrt{7}}{4}$$

$$\frac{5}{4}$$

$$\frac{3}{3}$$

4

$$\frac{\sqrt{7}}{4}$$

$$\lim_{x \to 0} \frac{8^x - 2^x}{x} =$$

[Question ID = 13613]

- 1. log 2
- 2.0
- 3. log 4
- 4. 1

Correct Answer :-

log 4

22) If
$$y = \cos^{-1}(4x^3 - 3x)$$
, then $\frac{dy}{dx} =$

[Question ID = 13614]

$$\frac{-3}{\sqrt{1-x^2}}$$

2.
$$\frac{4}{\sqrt{1-x^2}}$$
3.
$$\frac{1}{\sqrt{1+x^2}}$$
4.
$$\frac{-4}{3\sqrt{1-x^2}}$$

3.
$$\frac{1}{\sqrt{1+x^2}}$$

$$\frac{-4}{3\sqrt{1-x^2}}$$

$$\frac{-3}{\sqrt{1-x^2}}$$

If
$$y = (\sin x)^{\log x}$$
, then $\frac{dy}{dx} =$

[Question ID = 13615]

 $(\sin x)^{\log x} \left\{ \tan x \cdot \log x + \log(\sin x) \right\}$

$$\log x \left\{ \cot x \cdot \sin x + \frac{1}{x} \log(\sin x) \right\}$$
2.

$$(\sin x)^{\log x} \left\{ \cot x . \log x + \frac{1}{x} \log(\sin x) \right\}$$
3.

$$\left(\cos x\right)^{\log x} \left\{ \tan x \cdot \log x + \frac{1}{x} \log(\cos x) \right\}$$

Correct Answer :-

$$(\sin x)^{\log x} \left\{ \cot x \cdot \log x + \frac{1}{x} \log(\sin x) \right\}$$

If
$$y = \log(x + \sqrt{1 + x^2})$$
, then $(1 + x^2)\frac{d^2y}{dx^2} + x\frac{dy}{dx} =$

[Question ID = 13616]

- 1.
- 2. ⁽⁾
- 3. X

$$\frac{1}{\sqrt{1+x^2}}$$

Correct Answer :-

. 0

At $\theta = \frac{\pi}{4}$, the slope of the normal to the curve $x = a \cos^3 \theta$; $y = a \sin^3 \theta$ is

[Question ID = 13617]

- 1. -1
- 2. -2
- 3. 2
- 4.1

Correct Answer :-

0

· .

If
$$x^y = e^{x-y}$$
, then $\frac{dy}{dx} =$

[Question ID = 13618]

$$\frac{\log x}{(1+\log x)^2}$$

$$\frac{1}{(1+\log x)^2}$$

$$\frac{\log x}{1 + \log x}$$

$$4. \frac{\left(\log x\right)^2}{\left(1 + \log x\right)^2}$$

Correct Answer :-

$$\frac{\log x}{(1+\log x)^2}$$

Equation of the tangent to the curve $y = 5x^4$ at the point (1.5) is

[Question ID = 13619]

$$y = 15(x-1)$$

$$y = 20x - 15$$

$$x = 15y - 20$$

$$y = 20(x-1)$$

$$y = 20x - 15$$

If
$$u = \sin^{-1} \left(\frac{x^2 + y^2}{x + y} \right)$$
, then $x \frac{\partial u}{\partial y} + y \frac{\partial u}{\partial y} =$

[Question ID = 13620]

- 1. cot u
- 2. tan u
- 3. 1
- 4. sin u

Correct Answer :-

• tan u

$$\int \frac{a}{b + ce^x} dx =$$

[Question ID = 13621]

$$\frac{a}{b} \log \left(\frac{e^x}{b + ce^x} \right) + C$$

$$\frac{b}{a} \log \left(\frac{e^{-x}}{b + e^{-x}} \right) + C$$

$$\frac{a}{b}\log\left(\frac{1}{be^x + ce^{-x}}\right) + C$$

$$\frac{b}{a}e^{(b+ce^{\epsilon})} + C$$

$$\frac{a}{b} \log \left(\frac{e^x}{b + ce^x} \right) + C$$

$$\int \frac{1}{(1+x^2)\tan^{-1}x} dx =$$

[Question ID = 13622]

1.
$$tan^{-1}x + C$$

4.
$$\log (\tan^{-1} x) + C$$

Correct Answer :-

•
$$\log (\tan^{-1}x) + C$$

$$\int \frac{\cos(\log x^2)}{x^4} dx =$$

[Question ID = 13623]

$$\frac{1}{x^3} \cos \left[\log x^2 + \tan^{-1} (\frac{3}{2}) \right] + C$$

$$\int_{2}^{\frac{x^3}{\sqrt{13}}} Cos \left[\log x^2 + \cot^{-1}(\frac{2}{3}) \right] + C$$

$$\int_{3}^{1} \frac{-1}{2 x^3} \cos \left[\log x^2 + \tan^{-1} \left(\frac{2}{3} \right) \right] + C$$

$$\frac{1}{x^3 \sqrt{13}} Cos \left[log x^2 + cot^{-1} (\frac{3}{2}) \right] + C$$

$$\frac{1}{x^3} \cos \left[\log x^2 + \tan^{-1}\left(\frac{3}{2}\right)\right] + C$$

$$\int \frac{dx}{e^x - 1} =$$

[Question ID = 13624]

$$\log\left(\frac{1-e^x}{e^x}\right) + C$$

 $\log(e^x - 1) + C$

$$\log\left(\frac{e^x-1}{e^x}\right) + C$$

$$\log \left(\frac{e^{-x} - 1}{e^{-x}} \right) + C$$

Correct Answer :-

$$\log\left(\frac{e^x-1}{e^x}\right) + C$$

$$\int \frac{\sin^3 x + \cos^3 x}{\sin^2 x \cos^2 x} dx =$$

[Question ID = 13625]

1.
$$\sec x + \cot x$$

$$\cos ecx - \cot x$$

$$\cos ecx + \tan x$$

$$\sec x - \cos ecx$$

 $\sec x - \cos ecx$

$$\int_{0}^{\pi/4} \frac{e^{\tan x}}{\cos^2 x} dx$$

[Question ID = 13626]

- e-1
- $e^{-1} 1$
- $e^{-1} +$
- $e^{-2} \frac{1}{2}$

Correct Answer :-

e-1

,........

35)
$$\int_{0}^{\pi} \sin^{3} x (1 - \cos x)^{2} dx =$$

[Question ID = 13627]

- 1.5/3
- 2.8/5
- 3. 1
- 4.0

Correct Answer :-

8/5

36)

The volume generated by the revolution of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ about its major axis is

[Question ID = 13628]

$$\frac{4}{3}\pi ab^2$$

$$\frac{4}{3}\pi a^2 b$$

$$\frac{8}{3}\pi a^2b^2$$

$$\frac{4}{3}\pi ab^2$$

The general solution of
$$x \frac{dy}{dx} = y[\log y - \log x + 1]$$
 is

[Question ID = 13629]

$$y = Ce^x$$

$$y = Ce^{y}$$

$$y = xe^{cx}$$

$$x = Ce^{y/x}$$

Correct Answer :-

$$y = xe^{cx}$$

A and B are arbitrary constants, the differential equation having $xy = Ae^x + Be^{-x} + x^2$ as its general solution is

[Question ID = 13630]

$$y'' + 2xy' - xy + x^2 = 0$$

$$xy'' + y' - xy - 2 = 0$$

$$xy'' + 2y' - 2xy + 3x^2 - 2 = 0$$

$$xy'' + 2y' - xy + x^2 - 2 = 0$$

$$xy'' + 2y' - xy + x^2 - 2 = 0$$

The solution of
$$(e^{-2\sqrt{x}} - y)\frac{dx}{dy} = \sqrt{x}$$

[Question ID = 13631]

$$y = e^{-2\sqrt{x}} \left(2\sqrt{x} + C \right)$$

$$y = e^{-2\sqrt{x}} + \sqrt{x} + C$$

$$y = e^{-2\sqrt{x}} + e^{\sqrt{x}} \sqrt{x} + C$$

$$y = e^{2\sqrt{x}} + \log x + C$$

Correct Answer :-

$$y = e^{-2\sqrt{x}} \left(2\sqrt{x} + C \right)$$

The solution of Cosx dy = (Sinx - y)ydx

[Question ID = 13632]

$$y = \sec x \tan x + C$$

$$y^{-1}Co\sec x = \cot x + C$$

$$y^{-1} \sec x = \tan x + C$$

$$y = \log \sin x + C$$

$$y^{-1}\sec x = \tan x + C$$

The solution of $\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 5y = 0$ satisfying y(0) = 1 and y'(0) = 0 is

[Question ID = 13634]

$$y = e^{-2x} [\cos x + 2\sin x]$$

$$y = e^{-x} \left[2\cos x + \sin x \right]$$

$$y = e^{2x} [2\cos x + 3\sin x]$$

$$y = e^x [\cos x + 2\sin x]$$

Correct Answer :-

$$y = e^{-2x} [\cos x + 2\sin x]$$

42)
$$\frac{d^2y}{dx^2} - 5\frac{dy}{dx} + 6y = 2e^x$$
; with $y(0) = 1$; $y'(0) = 1$ satisfies

[Question ID = 13635]

$$y = c_1 e^{2x} + c_2 e^{3x} + e^x$$

$$y = 2e^{2x} + 3e^{3x} + e^{x}$$

$$y = e^{2x} + 2e^{3x} + e^{-x}$$

4.
$$y = e^{x}$$

$$y = e^x$$

The solution of $(y \log x - 2) y dx = x dy$

[Question ID = 13636]

$$y = x(\log x + C)$$

$$y = \frac{1}{x} \log x + x - C$$

$$\frac{1}{y} = x \log x + x + Cx$$

$$\frac{1}{y} = x^2 \log x + x + C$$

Correct Answer :-

$$\frac{1}{y} = x^2 \log x + x + C$$

44) Mean deviation about the median for the data 4,6,9,3,10,13,2 is [Question ID = 13641]

- 1.4.31
- 2. 5.253
- 3.3.285
- 4. 3.785

Correct Answer :-

- 3.285
- **45)** If E_1 , E_2 are any two events of a random experiment and P is a probability function then

[Question ID = 13642]

$$P(E_1 \cap E_2) = P(E_1) + P(E_2) - P(E_1 \cap E_2)$$

$$P(E_1 \cup E_2) = P(E_1) + P(E_2) - P(E_1 \cap E_2)$$

$$P(E_1 \cap E_2) = P(E_1) + P(E_2) + P(E_1 \cup E_2)$$

$$_{\mathbf{4}} P(E_1 \cup E_2) = P(E_1) + P(E_2) - P(E_1 \cup E_2)$$

$$P(E_1 \cup E_2) = P(E_1) + P(E_2) - P(E_1 \cap E_2)$$

The solution of the initial value problem
$$\frac{d^2x}{dt^2} - 3\frac{dx}{dt} - 2x = 0;$$

with $x(0) = 2$; $x'(0) = 0$ is

[Question ID = 23975]

$$x(t) = Ae^t + Be^{2t}$$

$$x(t) = 2e^t - 4e^{2t}$$

$$x(t) = 4e^t - 2e^{2t}$$
3.

$$x(t) = e^{t} - 2e^{2t}$$

Correct Answer :-

$$x(t) = 4e^t - 2e^{2t}$$

The Laplace transform of
$$\left\{\frac{e^{-at}t^{n-1}}{(n-1)!}\right\} =$$

[Question ID = 23976]

$$\frac{e^{-at}}{(s-a)^n}$$

$$\frac{1}{(s+a)^n}$$

$$\frac{1}{\left(s-a\right)^{n}}$$
3.

$$\frac{e^{at}}{(s-a)^n}$$

$$\frac{1}{(s+a)^n}$$

The inverse Laplace transform of
$$\left\{\frac{1}{(8s-27)^{1/3}}\right\} =$$

[Question ID = 23977]

$$\frac{e^{(3/2)t}t^{-2/3}}{\Gamma\left(\frac{1}{3}\right)}$$

$$\frac{e^{(8/27)t}t^{-3/2}}{2\Gamma\left(\frac{1}{3}\right)}$$

$$\frac{e^{(2/3)t} t^{-3/2}}{2\Gamma\left(\frac{1}{2}\right)}$$

$$\frac{e^{(27/8)r}t^{-2/3}}{2\Gamma\left(\frac{1}{3}\right)}$$

$$\frac{e^{(27/8)t}t^{-2/3}}{2\Gamma\left(\frac{1}{3}\right)}$$

49) If $f(x) = \begin{cases} 0 & ; -\pi \le x \le 0 \\ \sin x ; & 0 \le x \le \pi \end{cases}$, $f(x+2\pi) = f(x)$ and

 $f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx), \text{ then } a_n =$

[Question ID = 23978]

 $\frac{1}{\pi}$

2.

3. 0

2

4. π

Correct Answer :-

 $\frac{2}{\pi}$

The inverse Laplace transform of $\left\{ \frac{s+3}{s^2+6s+25} \right\} =$

[Question ID = 23979]

 $e^{-3t}\cos 4t$

 $e^{3t}\sin 4t$

$$e^{3t}\cos 4t$$

$$e^{-3t}\cos 3t$$

$$e^{-3t}\cos 4t$$

Topic:- Physics_set2

The physical quantity having the dimension [ML²T⁻³] is

[Question ID = 34198]

- 1. work
- 2. power
- 3. pressure
- 4. impulse

Correct Answer :-

- power
- Force F is given by $F=at+bt^2$ where t is time. The dimensions of a and b are

[Question ID = 34199]

$$[MLT^{-3}]$$
 and $[MLT^{-4}]$

[MLT
$$^{-1}$$
] and [MLT 0]

Correct Answer :-

[MLT⁻³] and [MLT⁻⁴]

The magnitudes of two vectors are 4 and 5 and their scalar product is 10. Then the angle between the two vectors is [Question ID = 34200]
1. 30°
2. ^{45°}
3. 60°
0° 4.
Correct Answer :-
60°
4) If $\bar{a} + \bar{b} = \bar{c}$ and $\bar{a}^2 + \bar{b}^2 = \bar{c}^2$, then the angle between the vectors \bar{a} and \bar{b} is
[Question ID = 34201]
1. 0°
2. 20°
3. 45°
90° 4.
Correct Answer :-
• 90°
5) \bar{a} and \bar{b} are two vectors and θ is the angle between them. If $ \bar{a} \times \bar{b} = \sqrt{3} (\bar{a} \cdot \bar{b})$, the value of θ is

[Question ID = 34202]

- 1. 30°
- 2. 45°

3. 60°

, 90°

Correct Answer :-

30°

6) A body under action of five forces can be in equilibrium [Question ID = 34203]

- 1. if all forces are equal
- 2. sum of resolved components along x-axis is zero
- 3. sum of resolved components along y-axis is zero
- 4. sum of resolved components along x-axis and y-axis, individually zero

Correct Answer :-

• sum of resolved components along x-axis and y-axis, individually zero

7) Two vibrating systems are said to be in resonance, if their [Question ID = 34204]

- 1. amplitudes are equal
- 2. temperatures are equal
- 3. frequencies are equal
- 4. phase values are equal

Correct Answer :-

frequencies are equal

8)

A balloon is ascending at the rate of 9.8 ms⁻¹ at a height of 39.2 m above the ground when a food packet is dropped from the balloon. The velocity with which the food packet reach the ground is

[Question ID = 34205]

- 29.4 ms⁻¹

9)	The	walls	of hal	l built for	music	concerts	should	[Question	ID =	34206]	
----	-----	-------	--------	-------------	-------	----------	--------	-----------	------	--------	--

- 1. amplify sound
- 2. reflect sound
- 3. transmit sound
- 4. absorb sound

Correct Answer :-

· absorb sound

10) When a star approaches the earth , the waves are shifted towards [Question ID = 34207]

- 1. green colour
- 2. yellow colour
- 3. blue end
- 4. red end

Correct Answer :-

blue end

11)

A body of mass m is placed on a rough surface with coefficient of friction μ inclined at θ . If the mass is in equilibrium, then the value of θ is

[Question ID = 34208]

3.

4.

Correct Answer :-

Tan ⁻¹μ

collegedunia

If water falls from a dam into a turbine wheel	19.6 m below, then the velocity of water at the
turbine is (given g=9.8 ms ⁻²)	

[Question	ID	=	342097
-----------	----	---	--------

220
ns

19.6 ms⁻¹

13) Two springs of spring constants 1000 N/m and 1500 N/m respectively are stretched with a same force. Their potential energies will be in the ratio of

[Question ID = 34210]

- 1. 2:3
- 2.1:3
- 3.3:2
- 4. 2:1

Correct Answer :-

• 3:2

14) The mass of a body at the centre of earth is

[Question ID = 34211]

- 1. less than that at the surface
- 2. remain constant
- 3. more than that at the surface
- 4. zero

· remain constant

15)

The maximum velocity of a particle executing simple harmonic motion with an amplitude 7 mm is 4.4 ms⁻¹. The period of oscillation is

[Question ID = 34212]

- 1. 0.01 s
- 2. 0.1 s
- 3. 10 s
- 4. 100 s

Correct Answer :-

• 0.01 s

16) In a simple harmonic oscillator, at the mean position [Question ID = 34213]

- 1. both kinetic energy and potential energies are minimum
- 2. kinetic energy is maximum, potential energy is minimum
- 3. kinetic energy is minimum, potential energy is maximum
- 4. both kinetic energy and potential energies are maximum

Correct Answer :-

- kinetic energy is maximum, potential energy is minimum
- 17) The intensity of sound produced by thunder is 0.1Wm⁻². The intensity level in decibels is

[Question ID = 34214]

- 1. 110 dB
- 2. 100 dB
- 3. 90 dB
- 4. 140 dB

Correct Answer :-

- 110 dB
- 18) A classroom has dimensions 20 x 15 x 5 m³. The reverberation time is 3.5 s. The average absorption coefficient is

[Question ID = 34215]

- 1.0.05
- 2.0.09
- 3. 0.03
- 4. 0.07

C		A			20
COIT!	rect	AI	15 W	wer.	-

0.07

19) Which of the following is not a characteristic of musical sound? [Question ID = 34216]

- 1. pitch
- 2. loudness
- 3. frequency
- 4. quality

Correct Answer :-

frequency

20) In a simple harmonic motion, the particle is [Question ID = 34217]

- 1. always accelerated
- 2. alternately accelerated and retarded
- 3. always retarded
- 4. neither accelerated nor retarded

Correct Answer :-

· alternately accelerated and retarded

21)

100 g of water is heated from 30°C to 50°C. Ignoring the slight expansion of water, the change in its internal energy is (specific heat of water is 4200 J kg⁻¹K⁻¹)

[Question ID = 34218]

- 1. 4.2 kJ
- 2.84 kJ
- 3. 2.1 kJ
- 4. 8.4 kJ

Correct Answer :-

• 8.4 kJ

22) Which of the following is correct [Question ID = 34219]

1.
$$(T_1/H_2) + (T_2/H_1) = 0$$

2.
$$(H_1/T_1) = (H_2/T_2)$$

3.
$$H_1 T_1 = H_2 T_2$$

4.
$$H_1T_1 + H_2T_2 = 0$$

23) An ideal gas in a cylinder is compressed adiabatically to one-third its original volume. During the process 50J of work is done on the gas by the compressing agent. The change in the internal energy of the gas in the process is [Question ID = 34220] 1. 50 J
2. 50/3 J 3. 150 J 4. 45 J
Correct Answer :- • 50 J
24) The maximum kinetic energy of photoelectrons ejected from a potassium surface by ultraviolet light of wavelength 200 nm is (photoelectric threshold wavelength for potassium is 440 nm) [Question ID = 34221]
1. 2.82 eV 2. 4.40 eV 3. 6.20 eV 4. 3.38 eV
Correct Answer :- • 3.38 eV
25) For a light wave to undergo total internal reflection ('i _e ' is critical angle, 'i' is incident angle)
[Question ID = 34222]
light moves from rarer to denser medium and $i > i_c$ 1.
light moves from denser to rarer medium and $i > i_c$ 2.
light moves from rarer to denser medium and $i < i_c$
light moves from denser to rarer medium and $i < i_c$
Correct Answer :-
light moves from denser to rarer medium and i >i _c

Topic:- Chemistry_Set2

 $(H_1/T_1) = (H_2/T_2)$

1) For an f-orbital, the values of 'm' are [Question ID = 23999]

Correct Answer :-

2) Among LiCl, BeCl₂, BCl₃ and CCl₄, the covalent character follows the order:

[Question ID = 24000]

- 1. LiCl>BeCl₂>BCl₃>CCl₄
- 2. LiCl<BeCl2<BCl3<CCl4
- 3. LiCl>BeCl2<BCl3>CCl4
- 4. LiCl<BeCl2<BCl3>CCl4

Correct Answer :-

LiCl<BeCl2<BCl3<CCl4

3) Lowest oxidation state in its compound is exhibited by

[Question ID = 24001]

- 1. N
- 2.0
- 3. C
- 4. F

Correct Answer :-

• F

4) Which of the following contains ionic, covalent and coordinate covalent bonds

[Question ID = 24002]

- 1. NH₄Cl
- 2. $K_3[Fe(CN)_6]$
- 3. CuSO₄
- 4. NH4Cl, CuSO4 and K3[Fe(CN)6]

5) Mola	rity of 4% (W/V) solution of NaOH is [Question ID = 24003]
1. 0.1	
2. 0.5	
3. 0.001	
4. 1	
Correct	Answer :-
• 1	
6) The	weight of H ₂ C ₂ O ₄ . 2H ₂ O required to prepare 500mL of 0.2 N solution is
[Questi	on ID = 24004]
1. 1.26 g	
2. 6.3g	
3. 1.575	l.
4. 3.15g	
Correct	Answer :-
• 6.3g	
7) The	conjugate base of hydrogen molecule is [Question ID = 24005]
1. Electro	
Hydric	
3. Protor	
4. Hydro	
26	
Correct	Answer :-
 Hydric 	e ion
8) p ^H C	f a solution is 1. It is diluted by 1×10^{3} times. The p^{H} of the resulting solution will b
[Question	on ID = 24006]
1. 1	
2. 3	
3. 4 4. 5	

[Question ID = 24007]
$Na_{2}B_{4}O_{7}$ 1.
2. CaO
3. SiO ₂
4. P_2O_5
Correct Answer :-
- CaO
10) Roasting of a metal oxide is carried out in which of the following furnaces
[Question ID = 24008]
1. Blast furnace
2. Reverberatory furnace
3. Both reverbaratory furnace and blast furnace
4. Muffle furnace
Correct Answer :-
Reverberatory furnace
11) Three faradays of electricity was passed through an aqueous solution of Ferrous chloride. The weight of iron metal (at Wt = 56) deposited at the cathode in grams is [Question ID = 24009]
1. 56
2. 84 3. 112
4. 168
Correct Answer :-
■ 84
12) Which one of the following could not be liberated from a suitable electrolyte by the passage of 0.25 Faraday of electricity through the electrolyte [Question ID = 24010]
[Ancountry - 54010]

9) Which of the following is a basic flux

1. 0.25 mole of Ag

2. 16 gms of Cu

- 3. 2gms of O₂ (g)
- 4. 2.8 lit of H₂ at STP

• 16 gms of Cu

13) . Given standard electrode potentials

Fe³⁺ + 3e³ ----> Fe
$$E^0 = -0.036 \text{ V}$$

Fe²⁺ + 2e⁻ ----> Fe
$$E^0 = -0.440 \text{ V}$$

The standard electrode potential E^{+} for $Fe^{-3+} + e^{-} - ---> Fe^{2+}$ is

[Question ID = 24011]

- 1. 0.476 V
- 2. -0.404 V
- 3. 0.40 V
- 4. 0.772 V

Correct Answer :-

- 0.772 V
- 14) Water acts as an excellent solvent, due to which property among the following:

[Question ID = 24012]

- 1. High viscosity
- 2. High Entholpy of formation
- 3. High dielectric constant
- 4. High density

Correct Answer :-

• High dielectric constant

15) A sample of water has $Mg(HCO_3)_2 = 73 \text{ mg/L}$, $Ca(HCO_3)_2 = 162 \text{ mg/L}$, $MgCl_2 = 95 \text{ mg/L}$ and $CaSO_4 = 136 \text{ mg/L}$. Temporary hardness in ppm is

[Question ID = 24013]

1. 150

2. 350
3. 500
4. 200
Correct Answer :-
• 150
16) The process which removes all ionic, colloidal and high molecular weight organic matter in water is [Question ID = 24014]
1. Ion exchange process
2. zeolite process
3. Reverse osmosis
4. Lime soda process
Correct Answer :-
 Reverse osmosis
17) The monomer used in PVC preparation is [Question ID = 24015]
1. Ethene
2. Chloroethene
3. Dichloroethene
4. Tetrachloroethene
Correct Answer :-
• Chloroethene
18) The chemical used for accelerating Vulcanization is
[Question ID = 24016]
1. ZnO
2. SiO ₂
3. Sulphur
4. Zinc sterate
Correct Answer :-
• Sulphur

- 19) Which one of the following type of forces are present in Nylon-6,6 [Question ID = 24017]
- 1. Electrostatic forces of attraction
- 2. Hydrogen bonding
- 3. Three dimensional network of bonds
- 4. Metallic bonding

Correct Answer :-
 Hydrogen bonding
20) Which one of the following is a primary pollutant
[Question ID = 24018]
1. CO
2. PAN
3. Aldehyde
4. H ₂ SO ₄
Correct Answer :-
• co
21) Ozone layer of upper atmosphere is being destroyed by
[Question ID = 24019]
Photochemical oxidants like O_2 and CO_2 1.
2. Chloro fluorocarbon
3. Smog
SO ₂ 4.
Correct Answer :-
- Chloro fluorocarbon
22) Eutrophication causes reduction in [Question ID = 24020]
 Dissolved salts Dissolved hydrogen Dissolved oxygen Dissolved solids
Correct Answer :-

Dissolved oxygen

	CH ₄ 1.
	C_2H_6
	3. H ₂
	CO+CO ₂ 4.
	Correct Answer :-
_	CH. ₄
	24) Which one of the following metals could provide cathodic protection to iron [Question ID = 24022]
	 Cu and Ni Zn and Cu Al and Zn Al, Zn and Ni
	Convert Amount 18
-	Correct Answer :- • Al and Zn
-	Al and Zn
	 Al and Zn 25) Rusting of iron is catalysed by which of the following
-	 Al and Zn 25) Rusting of iron is catalysed by which of the following [Question ID = 24023]
	 Al and Zn 25) Rusting of iron is catalysed by which of the following [Question ID = 24023] 1. Fe
	 Al and Zn 25) Rusting of iron is catalysed by which of the following [Question ID = 24023] 1. Fe 2. Zn
	 Al and Zn 25) Rusting of iron is catalysed by which of the following [Question ID = 24023] 1. Fe 2. Zn 3. O₂ H⁺
-	25) Rusting of iron is catalysed by which of the following [Question ID = 24023] 1. Fe 2. Zn 3. O_2 H ⁺ 4.

THE STATE OF

1) The reversible hydrogen electrode potential is given by: [Question ID = 13067]

- 1. $E_H = 0.0592 \text{ pH}$
- 2. $E_H = 0.0592 \text{ pOH}$
- $E_{\rm H} = -0.0592 \text{ pH}$
- 4. $E_H = -0.0592 \text{ pOH}$

 $E_{H} = -0.0592 \text{ pH}$

2) Presence of manganese in alloy steel improves its: [Question ID = 13068]

- 1. corrosion resistance
- 2. cutting ability
- 3. abrasion resistance and toughness
- 4. elasticity and creep resistance

Correct Answer :-

• abrasion resistance and toughness

3) Hydrochloric acid is stored in: [Question ID = 13069]

- 1. lead lined steel vessel
- 2. rubber lined steel vessel
- 3. stainless steel
- 4. cast iron vessel

Correct Answer :-

· rubber lined steel vessel

4) Bronze is an alloy of: [Question ID = 13070]

- 1. lead and copper
- 2. copper and tin
- 3. nickel and copper
- 4. copper and zinc

Correct Answer :-

· copper and tin

5) Chalcopyrite is an ore of: [Question ID = 13071]

- 1. lead
- 2. aluminium
- 3. copper
- 4. zinc

Co	rrect Answer :-
= (copper
6)	Copper, iron, cobalt, nickel are examples of metals that form oxide films of a type on the
935	faces at room temperature: [Question ID = 13072]
1. l	inear
2.	parabolic
3. 1	ogarithmic
4.	cubic
Со	rrect Answer :-
•]	parabolic
7)	The weight percent of toluene in an equimolar solution of benzene-toluene is: [Question ID =
····	073]
1. !	50%
2. 4	46%
3. !	54%
4.	75%
Co	rrect Answer :-
	54%
1. l 2. _l 3. d 4. t	called: [Question ID = 13074] poiling point plait point critical point tripple point rrect Answer :- plait point
9)	A producer gas has the following composition by volume:
	CO : 22% ; CO ₂ : 5.5% ; O ₂ : 0.5% ; N ₂ : 72%
	If the combustion is 96% complete, the moles of CO in products are:
[Q	uestion ID = 13075]
1.	21.12
2	10.56

4. 0.44

10)	have lowest hydrogen content. [Question ID = 13076]
1. paraffins	
2. naphthene	es e
3. olefins	
4. aromatics	
Correct Ans	swer :-
aromatics	
	er the four types of coals, namely, anthracite, semi-anthracite, semi-bituminous,
bituminous.	Write them in the increasing order of fuel ratio: [Question ID = 13077]
120 (100 (100)	, semi-anthracite, semi-bituminous, bituminous
	racite, anthracite, semi-bituminous, bituminous
	s, semi-bituminous, semi-anthracite, anthracite
4. semi-bitur	ninous, bituminous, semi-anthracite, anthracite
Correct Ans	swer :-
12) Consid	er the four gases: Ethylene, propylene, butylene, amylene. Write them in the increal heating value. [Question ID = 13078]
12) Consid order of tot 1. ethylene, p	er the four gases: Ethylene, propylene, butylene, amylene. Write them in the incr al heating value. [Question ID = 13078] propylene, butylene, amylene
12) Consid order of tot 1. ethylene, p 2. amylene, p	er the four gases: Ethylene, propylene, butylene, amylene. Write them in the increal heating value. [Question ID = 13078] propylene, butylene, amylene putylene, propylene, ethylene
12) Considorder of tot 1. ethylene, plants, p	er the four gases: Ethylene, propylene, butylene, amylene. Write them in the increal heating value. [Question ID = 13078] propylene, butylene, amylene putylene, propylene, ethylene propylene, ethylene, amylene
12) Considorder of tot 1. ethylene, plants, p	er the four gases: Ethylene, propylene, butylene, amylene. Write them in the increal heating value. [Question ID = 13078] propylene, butylene, amylene putylene, propylene, ethylene
12) Consider of total conder of total conder of total conder of total condens of the condens of	er the four gases: Ethylene, propylene, butylene, amylene. Write them in the increal heating value. [Question ID = 13078] propylene, butylene, amylene putylene, propylene, ethylene propylene, ethylene, amylene ethylene, propylene, butylene
12) Consider of total content of total c	er the four gases: Ethylene, propylene, butylene, amylene. Write them in the increal heating value. [Question ID = 13078] propylene, butylene, amylene putylene, propylene, ethylene propylene, ethylene, amylene ethylene, propylene, butylene
12) Consider of total content of total c	er the four gases: Ethylene, propylene, butylene, amylene. Write them in the increal heating value. [Question ID = 13078] propylene, butylene, amylene putylene, propylene, ethylene propylene, ethylene, amylene ethylene, propylene, butylene ethylene, propylene, butylene
12) Consider of total content of total c	er the four gases: Ethylene, propylene, butylene, amylene. Write them in the increal heating value. [Question ID = 13078] propylene, butylene, amylene propylene, propylene, ethylene propylene, ethylene, amylene ethylene, propylene, butylene swer:- propylene, butylene, amylene as analysis is done using: [Question ID = 13079]
12) Consider of total order or	er the four gases: Ethylene, propylene, butylene, amylene. Write them in the increal heating value. [Question ID = 13078] propylene, butylene, amylene putylene, propylene, ethylene propylene, ethylene, amylene ethylene, propylene, butylene swer :- propylene, butylene, amylene as analysis is done using: [Question ID = 13079] nt apparatus
12) Consider of total corder o	er the four gases: Ethylene, propylene, butylene, amylene. Write them in the increal heating value. [Question ID = 13078] propylene, butylene, amylene putylene, propylene, ethylene propylene, ethylene, amylene ethylene, propylene, butylene swer:- propylene, butylene, amylene as analysis is done using: [Question ID = 13079] nt apparatus II pratus
12) Consider of total conder o	er the four gases: Ethylene, propylene, butylene, amylene. Write them in the increal heating value. [Question ID = 13078] propylene, butylene, amylene putylene, propylene, ethylene propylene, ethylene, amylene ethylene, propylene, butylene swer:- propylene, butylene, amylene as analysis is done using: [Question ID = 13079] nt apparatus II pratus
12) Consider of total conder o	er the four gases: Ethylene, propylene, butylene, amylene. Write them in the increal heating value. [Question ID = 13078] propylene, butylene, amylene propylene, propylene, ethylene propylene, propylene, butylene ethylene, propylene, butylene swer :- propylene, butylene, amylene as analysis is done using: [Question ID = 13079] Int apparatus Il Bratus Unit
12) Consider of total conder o	er the four gases: Ethylene, propylene, butylene, amylene. Write them in the increal heating value. [Question ID = 13078] propylene, butylene, amylene propylene, ethylene, amylene propylene, propylene, butylene pethylene, propylene, butylene propylene, butylene, amylene propylene, ethylene, amylene propylene, ethylene, amylene propylene, propylene, ethylene propylene, butylene, amylene propylene, ethylene, amylene propylene, butylene, amylene pro

[Question ID = 13080]

1. 0.3

2. 0.35

Correct Answer:- • 0.35 15) The partial pressure of ethanol in a hydrogen - ethanol mixture at 50 °C and 1 atm is 100 m. The vapor pressure of ethanol at 50 °C is 235 m Hg. The relative saturation of ethanol is: [Question ID = 13081] 1. 38.65 2. 42.55 3. 49.25 4. 51.45
• 0.35 The partial pressure of ethanol in a hydrogen - ethanol mixture at 50 °C and 1 atm is 100 r. The vapor pressure of ethanol at 50 °C is 235 m Hg. The relative saturation of ethanol is: [Question ID = 13081] 1. 38.65 2. 42.55 3. 49.25
15) The partial pressure of ethanol in a hydrogen - ethanol mixture at 50 °C and 1 atm is 100 °C. The vapor pressure of ethanol at 50 °C is 235 m Hg. The relative saturation of ethanol is: [Question ID = 13081] 1. 38.65 2. 42.55 3. 49.25
The partial pressure of ethanol in a hydrogen - ethanol mixture at 50 °C and 1 atm is 100 r. The vapor pressure of ethanol at 50 °C is 235 m Hg. The relative saturation of ethanol is: [Question ID = 13081] 1. 38.65 2. 42.55 3. 49.25
The partial pressure of ethanol in a hydrogen - ethanol mixture at 50 °C and 1 atm is 100 r. The vapor pressure of ethanol at 50 °C is 235 m Hg. The relative saturation of ethanol is: [Question ID = 13081] 1. 38.65 2. 42.55 3. 49.25
[Question ID = 13081] 1. 38.65 2. 42.55 3. 49.25
1. 38.65 2. 42.55 3. 49.25
2. 42.553. 49.25
3. 49.25
4. 51.45
Correct Answer :-
• 42.55
16) The density of a liquid is 1200 kg/m ³ . Its value in g/litre is: [Question ID = 13082] 1. 1200 2. 120 3. 1.2
4. 12000 Correct Answer :-

• alkyl benzene sulphonate

18) The main product of high temperature carbonization is: [Question ID = 13084]

- 1. coke
- 2. ammonia
- 3. tar
- 4. phenol

CC	ske

19) Poly vinyl chloride is: [Question ID = 13085]

- 1. thermosetting
- 2. thermoplastic
- 3. a fibrous material
- 4. chemically active

Correct Answer :-

thermoplastic

20) Nylon 6-6 is manufactured from: [Question ID = 13086]

- 1. hexamethylene diamine and adipic acid
- 2. hexamethylene diamine and maleic anhydride
- 3. caprolactum
- 4. dimethyl terephthalate and ethylene glycol

Correct Answer :-

· hexamethylene diamine and adipic acid

21) Salt is added in the kettle during soap manufacture to separate: [Question ID = 13087]

- 1. soap from lye
- 2. glycerine from lye
- 3. the metallic soap
- 4. the unsaponified fat from soap

Correct Answer :-

soap from lye

22) The most economical pulp for production of news print would be: [Question ID = 13088]

- 1. groundwood pulp
- 2. sulphate pulp
- 3. sulphite pulp
- 4. semi-chemical pulp

Correct Answer :-

groundwood pulp

23) Teflon is: [Question ID = 13089]

- 1. phenol formaldehyde
- 2. an inorganic polymer
- 3. poly tetraflouroethylene (PTFE)
- 4. a monomer

Correct Answer :-

• poly tetraflouroethylene (PTFE)

24) Oil is : [Question ID = 13090]

- 1. a mixture of esters
- 2. a mixture of glycerides of fatty acids
- 3. solid at normal temperature
- 4. esters of alcohols other than glycerin

Correct Answer :-

• a mixture of glycerides of fatty acids

25) Widely used method for conditioning of boiler feed water is: [Question ID = 13091]

- 1. cold lime soda process
- 2. coagulation
- 3. hot lime soda process
- 4. sequestration

Correct Answer :-

hot lime soda process

26) Carborundum consists mainly of: [Question ID = 13092]

- 1. bauxite
- 2. silicon carbide
- 3. boron carbide
- 4. calcium carbide

Correct Answer :-

silicon carbide

27) Which of the following is an yellow pigment? [Question ID = 13093]

- 1. titanium dioxide
- 2. ferrous sulphate
- 3. lead chromates
- 4. zinc sulphides

Correct Answer :-

· lead chromates

28) Sulphuric acid is used mainly in: [Question ID = 13094]

- 1. fertiliser industry
- 2. steel industry
- 3. paper making
- 4. paint industry

Correct Answer :-

fertiliser industry

29) In the production of soda ash by Solvay process, the by-product formed is:

[Question ID = 13095] 1. CaCl₂ 2. NH₂Cl 3. NH₃ 4. NaOH Correct Answer:CaCl₂ 30) Triple superphosphate is made by reacting phosphate rock with: [Question ID = 13096] 1. phosphoric acid 2. nitric acid 3. sulphuric acid 4. hydrochloric acid Correct Answer:-

- · phosphoric acid
- 31) The most adverse factor challenging the mercury electrolytic cell process for the manufacture of caustic soda is: [Question ID = 13097]
- 1. high cost of mercury
- 2. high specific gravity of mercury
- 3. non-availability of mercury of high purity
- 4. pollution of water stream by mercury

Correct Answer :-

- pollution of water stream by mercury
- 32) Which of the following contains least amount of nitrogen? [Question ID = 13098]
- 1. coke oven gas
- 2. blast furnace gas
- 3. producer gas
- 4. water gas

- coke oven gas
- 33) A liquid which does not flow at all, till a threshold shear stress is attained is: [Question ID = 13099]
- 1. pseudoplastic
- 2. bingham plastic

- 3. dilatant
- 4. rheopectic

· bingham plastic

34) For a pump, the relation between inlet pressure, vapor pressure and NPSH is: [Question ID = 13100]

- 1. inlet pressure = vapor pressure + NPSH
- 2. inlet pressure = vapor pressure NPSH
- 3. inlet pressure = vaor pressure X NPSH
- 4. inlet pressure = vapor pressure/NPSH

Correct Answer :-

• inlet pressure = vapor pressure + NPSH

35) A jet ejector is a: [Question ID = 13101]

- 1. compressor
- 2. blower
- 3. vacuum pump
- 4. positive displacement pump

Correct Answer :-

vacuum pump

36) In the Stokes law regime, drag coefficient, C_D is given by:

[Question ID = 13102]

$$C_D = 16/Re_p$$

$$C_D = 24/Re_p$$

$$C_D = 18.5/Re_p$$

$$C_D = 0.079/Re_p^{-0.25}$$

Correct Answer :-

$$C_D = 24/Re_p$$

37) Check valves are used: [Question ID = 13103]

- 1. at high pressure
- 2. in bends

for controlling water flow description of the second of the sec
Correct Answer :-
for unidirectional flow
38) For pumping slurry, one can use a pump of the type: [Question ID = 13104]
 reciprocating diaphragm centrifugal pneumatic
Correct Answer :- diaphragm
39) Assuming the flow to be laminar, if the diameter of the pipe is halved then the pressure drop will: [Question ID = 13105]
1. increase
2. decrease
3. remain same
4. be quadrupled
Correct Answer :-
• increase
40) Which of the following is not a dimensionless parameter? [Question ID = 13106]
1. pressure coefficient
2. Froude number
2. Froude number 3. kinematic viscosity
2. Froude number
 Froude number kinematic viscosity Weber number Correct Answer:-
 Froude number kinematic viscosity Weber number Correct Answer:- kinematic viscosity
 Froude number kinematic viscosity Weber number Correct Answer:-
 Froude number kinematic viscosity Weber number Correct Answer:- kinematic viscosity 41) Thermal conductivity of a liquid decreases with increase in temperature due to: [Question ID =
 2. Froude number 3. kinematic viscosity 4. Weber number Correct Answer: kinematic viscosity 41) Thermal conductivity of a liquid decreases with increase in temperature due to: [Question ID = 13107]
 2. Froude number 3. kinematic viscosity 4. Weber number Correct Answer: kinematic viscosity 41) Thermal conductivity of a liquid decreases with increase in temperature due to: [Question ID = 13107] 1. decrease in density 2. increase in density 3. decrease in viscosity
 2. Froude number 3. kinematic viscosity 4. Weber number Correct Answer: kinematic viscosity 41) Thermal conductivity of a liquid decreases with increase in temperature due to: [Question ID = 13107] 1. decrease in density 2. increase in density
 2. Froude number 3. kinematic viscosity 4. Weber number Correct Answer: kinematic viscosity 41) Thermal conductivity of a liquid decreases with increase in temperature due to: [Question ID = 13107] 1. decrease in density 2. increase in density 3. decrease in viscosity
 2. Froude number 3. kinematic viscosity 4. Weber number Correct Answer: kinematic viscosity 41) Thermal conductivity of a liquid decreases with increase in temperature due to: [Question ID = 13107] 1. decrease in density 2. increase in density 3. decrease in viscosity 4. increase in viscosity

42) A composite flat wall of a furnace is made of two materials, A and B. The thermal conductivity of A is twice that of B, while the thickness of layer A is half of that of B. If the temperatures at the

two sides of the walls are 600 K and 1400 K, then the temperature drop (in K) across the material A is:

[Question ID = 13108]

- 1. 130
- 2.140
- 3.150
- 4.160

Correct Answer :-

• 160

43) Grashof number is the ratio of: [Question ID = 13109]

- 1. buoyancy to viscous force
- 2. buoyancy to inertia force
- 3. buoyancy to gravity force
- 4. buoyancy to surface tension force

Correct Answer :-

buoyancy to viscous force

44) Peclet number in heat transfer is a product of: [Question ID = 13110]

- 1. Reynolds number and Prandtl number
- 2. Nusselt number and Prandtl number
- 3. Stanton number and Prandtl number
- 4. Grashof number and Prandtl number

Correct Answer :-

Reynolds number and Prandtl number

45) Unsteady state heat conduction occurs when: [Question ID = 13111]

- 1. temperature distribution is independent of time
- 2. temperature distribution varies with time
- 3. heat flows in one direction only
- 4. three dimensional heat flow occurs

Correct Answer :-

· temperature distribution varies with time

46) Pick the correct statement: [Question ID = 13112]

- 1. Rate = driving force X resistance
- 2. Driving force = rate X resistance
- 3. Resistance = driving force X rate
- 4. Rate = resistance / driving force

Correct	Answer	

• Driving force = rate X resistance

47) Maximum heat transfer rate is obtained in: [Question ID = 13113]

- 1. laminar flow
- 2. turbulent flow
- 3. creeping flow
- 4. transition region

Correct Answer :-

turbulent flow

48) The heat transfer coefficient in film type condensation is: [Question ID = 13114]

- 1. higher than that for dropwise condensation
- 2. lower than that for dropwise condensation
- 3. same as that for dropwise condensation
- 4. half that of dropwise condensation

Correct Answer :-

lower than that for dropwise condensation

49) The energy radiated from a surface, Q at absolute temperature, T is related as: [Question ID = 13115]

$$Q \propto T^2$$

1.

$$Q \propto T^4$$

2.

$$Q \propto T^{3}\,$$

3.

$$Q \propto T^{1.5}$$

Correct Answer :-

$$Q \propto T^4$$

•

50) In a feed forward multiple effect evaporator, the pressure is: [Question ID = 13116]

- 1. highest in last effect
- 2. lowest in last effect
- 3. same in all effects
- 4. dependent on the number of effects

· lowest in last effect

51) The critical speed of a ball mill depends on: [Question ID = 13117]

- 1. the density of the feed material
- 2. the size of the feed
- 3. the diameter of the ball
- 4. the length of the ball

Correct Answer :-

the diameter of the ball

52) The overall efficiency of a cyclone is primarily a function of: [Question ID = 13118]

- 1. average particle size of the feed
- 2. particle density of feed
- 3. radial velocity of the fluid
- 4. particle size distribution of the feed

Correct Answer :-

· particle size distribution of the feed

53) Dust laden air can be purified using: [Question ID = 13119]

- 1. cyclone separator
- 2. bag filter
- 3. gravity settler
- 4. tubular centrifuge

Correct Answer :-

· cyclone separator

54) Ultrafine grinders operate by: [Question ID = 13120]

- 1. slow compression
- 2. impact
- 3. attrition
- 4. cutting action

Correct Answer :-

attrition

55) Most efficient equipment for removal of sub-micron dust particles from blast furnace gas is: [Question ID = 13121]

- 1. venturi atomiser
- 2. gravity settling chamber
- 3. electro-static precipitator
- 4. cyclone separator

electro-static precipitator
56) Traces of solids are removed from a liquid in a: [Question ID = 13122]
1. classifier
2. clarifier
3. sparkler filter
4. rotary vacuum filter
Correct Answer :-
- clarifier
57) For preliminary breaking of hard rock, we use: [Question ID = 13123]
1. gyratory crusher
2. ball mill
3. tube mill
4. squirrel cage disintegrator
Correct Answer :-
gyratory crusher
58) For the removal of large amount of solids from liquid, the recommended device is: [Question ID = 13124]
1. cross flow filter
2. cake filter
3. clarifying filter
4. screens
Correct Answer :-
• cake filter
59) Roasting of ores is a: [Question ID = 13125]
1. homogeneous catalytic reaction
2. homogeneous non-catalytic reaction
3. heterogeneous catalytic reaction
4. heterogeneous non-catalytic reaction
Correct Answer :-
heterogeneous non-catalytic reaction

60) According to half life method, a plot of $log(t_{s,i})$ vs $log C_{A0}$ gives a straight line of slope:

[Question ID = 13126]

- 1. (n-1)
- 2. (1-n)
- 3. n
- 4. 1/n

• (1-n)	
	the number of mixed flow reactors in series tends to infinity, the behaviour of the syston: [Question ID = 13127]
1. plug t	flow
2. mixed	
	rsed plug flow
www.recording	egated flow
Carrage	h American i
	t Answer :-
• plug	TIOW
62) Fo	r a steady state mixed flow reactor, the material balance is: [Question ID = 13128]
1. input	= output + disappearance + accumulation
2.0 = 0	utput + disappearance + accumulation
3. input	= disappearance + accumulation
4. input	= output + disappearance
Correc	t Answer :-
input	= output + disappearance
_	
1. B 2. B/RT 3. RT/B	
 B/RT RT/B BRT 	
1. B 2. B/RT 3. RT/B 4. BRT	
1. B 2. B/RT 3. RT/B 4. BRT Correct B 64) In	t Answer :- refrigerators, expansion through throttle valve occurs at: [Question ID = 13130]
 B B/RT RT/B BRT Correct B In const 	t Answer :- refrigerators, expansion through throttle valve occurs at: [Question ID = 13130] ant entropy
1. B 2. B/RT 3. RT/B 4. BRT Correct B 64) In 1. const 2. const	t Answer :- refrigerators, expansion through throttle valve occurs at: [Question ID = 13130] ant entropy ant enthalpy
1. B 2. B/RT 3. RT/B 4. BRT Correct B 64) In 1. const 2. const 3. const	t Answer :- refrigerators, expansion through throttle valve occurs at: [Question ID = 13130] ant entropy
 B B/RT RT/B BRT B B In const const const const const const 	t Answer :- refrigerators, expansion through throttle valve occurs at: [Question ID = 13130] ant entropy ant enthalpy ant temperature ant pressure
1. B 2. B/RT 3. RT/B 4. BRT Correct B 64) In 1. const 2. const 3. const 4. const	t Answer:- refrigerators, expansion through throttle valve occurs at: [Question ID = 13130] ant entropy ant enthalpy ant temperature ant pressure t Answer:-
1. B 2. B/RT 3. RT/B 4. BRT Correct B 64) In 1. const 2. const 3. const 4. const Correct const	t Answer :- refrigerators, expansion through throttle valve occurs at: [Question ID = 13130] ant entropy ant enthalpy ant temperature ant pressure t Answer :- ant enthalpy
 B B/RT RT/B BRT Correct B Const const const const const const const 	t Answer:- refrigerators, expansion through throttle valve occurs at: [Question ID = 13130] ant entropy ant enthalpy ant temperature ant pressure t Answer:- ant enthalpy ichlorotriflouroethane is represented as: [Question ID = 13131]
 B B/RT RT/B BRT Correct B Const const const const const const r const r const const const const r r R-114 	t Answer:- refrigerators, expansion through throttle valve occurs at: [Question ID = 13130] ant entropy ant enthalpy ant temperature ant pressure t Answer:- ant enthalpy ichlorotriflouroethane is represented as: [Question ID = 13131]
 B B/RT RT/B BRT Correct B In const const const const const const Correct const Correct const Correct const Tri Correct const Correct const<!--</td--><td>t Answer:- refrigerators, expansion through throttle valve occurs at: [Question ID = 13130] ant entropy ant enthalpy ant temperature ant pressure t Answer:- ant enthalpy ichlorotriflouroethane is represented as: [Question ID = 13131]</td>	t Answer:- refrigerators, expansion through throttle valve occurs at: [Question ID = 13130] ant entropy ant enthalpy ant temperature ant pressure t Answer:- ant enthalpy ichlorotriflouroethane is represented as: [Question ID = 13131]
1. B 2. B/RT 3. RT/B 4. BRT Correct B 64) In 1. const 2. const 3. const 4. const Correct const Tri 1. R-114	t Answer:- refrigerators, expansion through throttle valve occurs at: [Question ID = 13130] ant entropy ant enthalpy ant temperature ant pressure t Answer:- ant enthalpy ichlorotriflouroethane is represented as: [Question ID = 13131]

- R-113
- 66) In the two phase region of liquid and vapour, the H-S diagram is: [Question ID = 13132]
- 1. linear
- 2. nonlinear
- 3. vertical
- 4. horizontal

Correct Answer :-

- linear
- 67) Consider the quaternary system of components L, M, N and P in the decreasing order of their volatilities. In differential distillation of the mixture, the second cut contains mainly component: [Question ID = 13133]
- 1. L
- 2. M
- 3. N
- 4. P

Correct Answer :-

- M
- **68)** For a binary non-ideal solution of components 1 and 2 with activity coefficients, γ_1 and γ_2 , relative volatility is given by:

[Question ID = 13134]

$$\frac{\gamma_2 P_2^{Sat}}{\gamma_1 P_1^{Sat}}$$

1.

$$\frac{\gamma_1 P_1^{Sat}}{\gamma_2 P_2^{Sat}}$$

2

$$\frac{\gamma_2 P_1^{Sat}}{\gamma_1 P_2^{Sat}}$$

3.

$$\frac{\gamma_1 P_2^{Sat}}{\gamma_2 P_1^{Sat}}$$

4

$\frac{\gamma_1 P_1^{Sat}}{\gamma_2 P_2^{Sat}}$
69) In a distillation operation with a feed flow rate of 200 moles/h and with q-value of 1.08 and when the liquid flow rate in the enriching section being 75 mole/h, the liquid flow rate in the stripping section is: [Question ID = 13135]
1. 291 moles/h 2. 141 moles/h 3. 183 moles/h 4. 33 moles/h
Correct Answer :- 291 moles/h
70) A wet solid has a moisture content of 70%. The moisture content on dry basis is: [Question ID = 13136]
1. 0.21 2. 1.19 3. 0.412 4. 2.33
Correct Answer :- • 2.33
71) Potato slurry is dried in a to give potato flakes: [Question ID = 13137]
 tray dryer fluidized bed dryer spray dryer drum dryer
Correct Answer :- drum dryer
72) Tannin is removed from tree barks by with water: [Question ID = 13138]
 absorption extraction leaching distillation
Correct Answer :- • leaching
73) In gas absorption, if x is the mole fraction of the solute, the non-volatile solvent rate, $L_{\rm S}$

is given by_____:

[Question ID = 13139] 1. L(1-x) 2. L/(1-x) 3. L(1+x)

Correct Answer :-

• L(1-x)

4. L/(1+x)

74)	In triangular coordinate	system representing	liquid-liquid	extraction d	lata, any	point inside the
tria	ngle represents a	: [Question ID =	13140]			

- 1. binary system
- 2. ternary system
- 3. pure component
- 4. quaternary system

Correct Answer :-

ternary system

75) Lewis number is related to Prandtl number (Pr) and Schmidt number (Sc) as: [Question ID = 13141]

- 1. Sc X Pr
- 2. Sc / Pr
- 3. Pr / Sc
- 4. 1/ (Pr X Sc)

Correct Answer :-

Sc / Pr

76) The diffusivity, D of a binary gas mixture is related to temperature, T as: [Question ID = 13142]

$$D \propto T$$

1.

$$D \propto T^{0.5}$$

2.

$$D \propto T^{1.5}$$

$$D \propto T^2$$

4.

 $D \propto T^{1.5}\,$

77) Steam distillation is used to: [Question ID = 13143]

- 1. reduce the number of plates
- 2. avoid thermal decomposition of a component
- 3. increase the efficiency of separation
- 4. increase the total pressure of distillation

Correct Answer :-

avoid thermal decomposition of a component

78) Among the following, for a given set of conditions, the pressure drop is least in: [Question ID = 13144]

- 1. wetted wall tower
- 2. bubble cap tower
- 3. perforated tray tower
- 4. packed tower

Correct Answer :-

wetted wall tower

79) As damping coefficient increases, for $\xi < 1$, the response of a second order system becomes:

[Question ID = 13145]

- 1. more and more oscillatory
- 2. more and more less oscillatory
- 3. sustained oscillatory
- 4. non-oscillatory

Correct Answer :-

more and more less oscillatory

80) Reset rate is: [Question ID = 13146]

- 1. variation of integral time
- 2. variation of proportional gain
- 3. reciprocal of proportional gain
- 4. reciprocal of integral time

Correct Answer :-

· reciprocal of integral time

81) The controlled variable is returned fast to the original value without oscillations in a: [Question ID = 13147]

- 1. proportional controller
- 2. integral controller
- 3. PI controller
- 4. PID controller

- PID controller
- 82) For a system with transportation lag, the response to a forcing function, $X = A \sin \omega t$ is given by:

[Question ID = 13148]

$$Y = A \sin \omega t$$

1.

$$Y = A \sin \omega (t+\tau)$$

2

$$Y = A \sin \omega(t-\tau)$$

3.

$$Y = A \sin \omega \tau$$

4.

Correct Answer :-

$$Y = A \sin \omega (t-\tau)$$

83) For accurate measurement of temperature of a molten metal at 1500 °C, the measuring

[Question ID = 13149]

device used is:

- 1. resistance thermometer
- 2. thermocouple
- 3. bimetallic thermometer
- 4. optical pyrometer

- optical pyrometer
- 84) Psychrometer determines: [Question ID = 13150]
- 1. humidity of gases

3. water of crystallization
4. hygroscopic nature of solids
Correct Answer :-
humidity of gases
85) Out of the following flow measuring instruments, which is area meter? [Question ID = 13151]
1. venturimeter
2. rotameter
3. pitot tube
4. hot wire anemometer
Correct Answer :-
 rotameter
86) The time constant of a first order system for a step input change is the time for system to reach: [Question ID = 13152]
1. 63.2% of its final value
2. 99.8% of its final value
3. 85.4% of its final value
4. 18.8% of its final value
Correct Answer :-
63.2% of its final value
87) Destruction of Ozone layer is due to: [Question ID = 13153]
1. chloroflorocarbons
2. methane
3. carbon dioxide
4. sulphur dioxide
Correct Answer :-
• chloroflorocarbons
88) Methaemoglobin anemia or The blue baby disease is due to high concentrations of in drinking water: [Question ID = 13154]
1 culphate
 sulphate chloride
3. carbonate
4. nitrate
Title dec
Correct Answer :-
• nitrate

2. moisture content of solids

89) Among the following metals that are of particular concern in industrial waste waters, the most aquatic pollutant is: [Question ID = 13155]

	1. cadmium
	2. mercury
	3. lead
	4. silver
	Correct Answer :-
	• mercury
-	······································
	00) Equipment enerating with contributal force to constate particulate matter is [Question ID =
	90) Equipment operating with centrifugal force to separate particulate matter is: [Question ID =
	13156]
	1. electrostatic precipitator
	2. mist eliminator
	3. gravity settler
	4. cyclone separator
	Correct Answer :-
	 cyclone separator
	- cyclone separator
	91) Venturi scrubber: [Question ID = 13157]
	1. is used for flow measurement
	2. is used to remove fine particles from dirty gas
	3. is used to remove fine particles from dirty gas 3. is used to remove gaseous pollutant by chemical reaction
	4. is used to remove gaseous pollutant by diffusion
	4. Is used to remove gaseous politicant by direction
	Correct Answer :-
	is used to remove fine particles from dirty gas
	• is used to remove time particles from unity gas
	92) Standard method to determine ammonia is: [Question ID = 13158]
	1. Nessler method
	2. colorimetric method
	3. by using flame photometer
	4. by using atomic absorption spectrophotometer
	1. by using atomic absorption spectrophotometer
	Correct Answer :-
	Nessler method
_	• Nessiei metriou
	93) is a primary method for wastewater treatment [Question ID = 13159]
	1. biological treatment
	2. sedimentation
	3. solvent extraction
	4. adsorption by activated carbon
	Correct Answer :-

94) Which of the following is a moderating material used in a nuclear reactor? [Question ID = 13160]

• sedimentation

- 1. graphite
- 2. cadmium
- 3. Zircalloy
- 4. stainless steel

graphite

95) Pick the odd term out: [Question ID = 13161]

- 1. solar power
- 2. wind power
- 3. tidal power
- 4. thermal power

Correct Answer :-

thermal power

96) Which of the following is most poisonous gas? [Question ID = 13162]

- 1. coke oven gas
- 2. producer gas
- 3. blast furnace gas
- 4. L. D. converter gas

Correct Answer :-

· L. D. converter gas

97) Fossil fuels mean: [Question ID = 13163]

- 1. solid fuels
- 2. liquid fuels
- 3. those which are found in the crust of the earth
- 4. premature fuels with low calorific value

Correct Answer :-

• those which are found in the crust of the earth

98) LPG used for household cooking comprises mainly of: [Question ID = 13164]

- 1. propane and butane
- 2. butane and ethane
- 3. methane and ethane
- 4. methane and carbon monoxide

Correct Answer :-

· propane and butane

99) A coal containing high amount of volatile matter will have: [Question ID = 13165]

- 1. low ignition temperature
- 2. very little ash content

- 3. high fusion point of its ash
- 4. low adiabatic flame temperature

• low ignition temperature

100) With increase in carbonization temperature: [Question ID = 13166]

- 1. gas yield increases
- 2. tar yield increases
- 3. hydrogen percentage in coke oven gas decreases
- 4. methane percentage in coke oven gas decreases

Correct Answer :-

gas yield increases

