# **Sample Paper**

#### Time : 90 Minutes

#### **General Instructions**

- 1. The question paper contains three parts A, B and C.
- 2. Section A consists of 20 quesions of 1 mark each. Any 16 quesitons are to be attempted.
- 3. Section B consists of 20 quersions of 1 mark each. Any 16 quesions are to be attempted.
- 4. Section C consists of 10 quesions based two Case Studies. Attempt any 8 questions.
- 5. *There is no negative marking.*

#### SECTION-A

Section A consists of 20 questions of 1 mark each. Any 16 quesions are to be attempted.

1. A boat goes 12 km. upstream and 40 km downstream in 8 hours. It can go 16 km upstream and 32 km downstream in the same time. Find the speed of the boat in still water and the speed of the stream.

(a) 4 km/hr, 5 km/hr (b) 3 km/hr, 1 km/hr (c) 6 km/hr, 2 km/hr (d) 7 km/hr, 2 km/hr

2. Find the distance between the points  $(\sqrt{3}+1,\sqrt{2}-1)$  and  $(\sqrt{3}-1,\sqrt{2}+1)$ .

(a) 
$$\sqrt{3}$$
 (b)  $2\sqrt{3}$  (c)  $\sqrt{2}$  (d)  $2\sqrt{2}$ 

3. If in fig. O is the point of intersection of two chords AB and CD such that OB = OD, then triangles OAC and ODB are



| (a) | equilateral bu | t not similar | (b) | isosceles | but not simila | r |
|-----|----------------|---------------|-----|-----------|----------------|---|
|     |                |               |     |           |                |   |

- (c) equilateral and similar (d) isosceles and similar
- 4. If the H.C.F of 210 and 55 is expressible in the form 210 × 5 + 55y, find y.
  (a) 20
  (b) 19
  (c) -91
  (d) -19
- 5. A child has a die whose six faces show the number as given below:

## 122346

The die is thrown once. What is the probability of getting an even number?

(a)  $\frac{1}{6}$  (b)  $\frac{2}{3}$  (c) 0 (d) 3



Max Marks: 40

6. Which of the following is/are not graph of a quadratic polynomial?



- 7. The two opposite vertices of a square are (-1, 2) and (3, 2). Find the co-ordinates of the other two vertices.
  (a) (1, 0), (1, 2)
  (b) (1, 0), (2, 1)
  (c) (1, 4), (1, 0)
  (d) (4, 1), (1, 0)
- 8. I. If 3x 5y = -1 and x y = -1, then x = -2, y = -1II. 2x + 3y = 9,  $3x + 4y = 5 \Rightarrow x = -21$ , y = 17III.  $\frac{2x}{a} + \frac{y}{b} = 2$ ,  $\frac{x}{a} - \frac{y}{b} = 4 \Rightarrow x = 2a$ , y = 2b

Which is true?(a) I(b) II(c) III(d) None of these

9. In figure given below, O is a point inside

SP-56

 $\Delta$ PQR such that  $\angle$ POR = 90°, OP = 6 cm and OR = 8 cm. If PQ = 24 cm, QR = 26 cm. Then





(d)

10. If the ratio of the areas of the two circles is 25 : 16, then the ratio of their circumferences is

(a)  $\frac{25}{16}$  (b)  $\frac{4}{5}$  (c)  $\frac{5}{4}$  (d)  $\frac{500}{625}$ 

- 11. If  $\frac{p}{2}$  is a terminating decimal, what can you say about q?
  - (a) q must be in the form  $2^n$

(a)  $\angle QRP = 90^{\circ}$ 

- (b) q must be in the form  $5^m$
- (c) q must be in the form  $2^{n}.5^{m}$
- (d) q must be in the form  $2^{n}.5^{m}$ , where n and m are non negative integers.

12. Identify the ratio in which the line joining (4, 5) and (-10, 2) is cut by the Y-axis.

- (a) -5:2 (b) 3:5 (c) -5:3 (d) 2:5
- 13. From a normal pack of cards, a card is drawn at random, find the probability of getting a jack or a king.

|     | (a) $\frac{7}{52}$ (b) $\frac{4}{13}$ | (c) | $\frac{2}{13}$ | (d)           | $\frac{3}{13}$ |
|-----|---------------------------------------|-----|----------------|---------------|----------------|
| 14. | The graph of $y = x^2 - 6x + 9$ is :  |     |                |               |                |
|     | (a) a parabola open upward            | (b) | a parabol      | a open downwa | ırd            |
|     | (c) a straight line                   | (d) | None of t      | these         |                |

#### Sample Paper-8

15. Identify the incorrect statement.

- (a) A right angled triangle may have 1, 1 and 2 as its sides.
- (b) 1, 2,  $\sqrt{3}$  are the sides of a right angled triangle.
- (c) The ratio of corresponding sides of two squares whose areas are in the ratio 4 : 1 is 2 : 1
- (d) 17, 8 and 15 are the sides of a right angled triangle.

16. Two dice are thrown at a time, then find the probability that the difference of the numbers shown on the dice is 1.

|     | (a) $\frac{3}{16}$        | (b) $\frac{5}{18}$     | (c) | $\frac{7}{36}$ | (d) | $\frac{7}{18}$ |
|-----|---------------------------|------------------------|-----|----------------|-----|----------------|
| 17. | Which of the following is | not a rational number? |     |                |     |                |

(a) 
$$\sqrt{2}$$
 (b)  $\sqrt{4}$  (c)  $\sqrt{9}$  (d)  $\sqrt{16}$ 

**18.** If the sector of a circle of diameter 14cm subtends an angle of 30° at the centre, then its area is

|     | (a) <sup>49π</sup>       | (b) $\frac{49\pi}{12}$  | (c)                  | $\frac{242}{3\pi}$ (d) | $\frac{121}{\pi}$ |
|-----|--------------------------|-------------------------|----------------------|------------------------|-------------------|
| 19. | What is a system of simu | ltaneous equations call | led if it has no sol | ution?                 |                   |
|     | (a) Consistent system    |                         | (b)                  | Independent system     |                   |
|     | (c) Inconsistent system  |                         | (d)                  | Dependent system       |                   |

**20.** Find the probability for a randomly selected number of 1, 2, 3, 4,.....25 to be a prime number.

(a) 
$$\frac{4}{25}$$
 (b)  $\frac{7}{25}$  (c)  $\frac{8}{25}$  (d)  $\frac{9}{25}$ 

#### SECTION-B

Section B consists of 20 questions of 1 mark each. Any 16 quesions are to be attempted.

| 21. | If $\alpha$ and $\beta$ are the zeroes o                                            | f the   | quadratic polynomial f (x  | $\mathbf{x}) = \mathbf{a}\mathbf{x}^2 + \mathbf{a}\mathbf{x}$ | bx + c then evalu   | tate $\frac{1}{\alpha^3}$ + | $-\frac{1}{\beta^3}$ . |  |  |
|-----|-------------------------------------------------------------------------------------|---------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----------------------------|------------------------|--|--|
|     | (a) $a^2 - b^2$                                                                     | (b)     | $\frac{3abc-b^3}{c^3}$     | (c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\frac{-b}{a}$      | (d)                         | $\frac{c}{a}$          |  |  |
| 22. | Find the chance that a non                                                          | -leap   | year contains 53 Saturda   | iys.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |                             |                        |  |  |
|     | (a) $\frac{1}{7}$                                                                   | (b)     | $\frac{2}{7}$              | (c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\frac{3}{7}$       | (d)                         | $\frac{5}{7}$          |  |  |
| 23. | What is the value of 'x' if                                                         | (4, 3)  | and $(x, 5)$ are points on | the circur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nference of a circl | le with ce                  | entre O(2, 3)?         |  |  |
|     | (a) 4                                                                               | (b)     | 2                          | (c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -2                  | (d)                         | 0                      |  |  |
| 24. | Which of the following is                                                           | not co  | prrect?                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     |                             |                        |  |  |
|     | (a) $\frac{1}{7}$ is rational having non-terminating is repeating decimal fraction. |         |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     |                             |                        |  |  |
|     | (b) $\frac{11}{30}$ is rational non-ter                                             | minat   | ing repeating decimal.     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     |                             |                        |  |  |
|     | (c) $\frac{31}{91}$ is rational having                                              | non-t   | erminating repeating dec   | imal.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     |                             |                        |  |  |
|     | (d) $\frac{13}{125}$ is rational having                                             | g non-  | terminating repeating de   | ecimal.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |                             |                        |  |  |
| 25. | In $\triangle ABC$ , $\angle B = 90^{\circ}$ and $E$                                | ) is th | e midpoint of BC. Then     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     |                             |                        |  |  |
|     | (a) $AC^2 = AD^2 + 3CD^2$                                                           |         |                            | (b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $AC^2 + AD^2 = CD$  | $\mathbf{)}^2$              |                        |  |  |
|     | (c) $3AC^2 = AD^2 + CD^2$                                                           |         |                            | (d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $AD^2 = CD^2 = 3A$  | $C^2$                       |                        |  |  |
|     |                                                                                     |         |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     |                             |                        |  |  |

26. Solve for x and y:  $\frac{3}{x} + \frac{4}{y} = 1$ ;  $\frac{4}{x} + \frac{2}{y} = \frac{11}{12}$ (a) x = 1, y = 2 (b) x = 6, y = 8 (c) x = 4, y = 5 (d) x = 7, y = 3 SP-57

(a) 21 m

 $\frac{2}{5}$ 

5,6

- 27. Which of the following statement is/are not correct?
  - (a) A chord divides the interior of a circle into two parts.
  - (b) An arc of a circle whose length is less than that of a semicircle of the same circle is a called a minor arc.
  - (c) Circles having the same centre but different radii are called concentric circles.
  - (d) A line segment joining any two points of a circle is called an arc.
- **28.** When two dice are thrown, find the probability of getting a number always greater than 4 on the second dice.

(a) 
$$\frac{2}{3}$$
 (b)  $\frac{1}{3}$  (c)  $\frac{3}{5}$  (d)

**29.** Find  $\alpha$  and  $\beta$  if x + 1 and x + 2 are factors of p (x) =  $x^3 + 3x^2 - 2\alpha x + \beta$ 

(a) 
$$3, -1$$
 (b)  $-1, 0$  (c)  $0, -3$  (d)

**30.** A ladder 15 m long reaches a window which is 9 m above the ground on one side of the street. Keeping its foot at the same point, the ladder is turned to the other side of the street to reach a window 12 m high. Find the width of the street.



- **31.** If a pair of linear equations is inconsistent, then the lines will be (a) parallel (b) always coincident (c) interse
- (a) parallel(b) always coincident(c) intersecting(d) coincident32. If ABC and EBC are two equilateral triangles such that D is mid-point of BC, then the ratio of the areas of triangles ABC
- and BDE is
- (a) 2:1 (b) 1:2 (c) 1:4 (d) 4:1
- **33.** If the mid-point of the line segment AB (shown in the adjoining figure) is (4, -3), then the coordinates of A and B are



Never ends with 5

(d)

- **35.** Which of the following is/are not correct?
  - (a) Area of a circle with radius 6 cm, if angle of sector is 60°, is  $\frac{132}{14}$  cm<sup>2</sup>.
  - (b) If *a* chord of circle of radius 14 cm makes an angle of  $60^{\circ}$  at the centre of the circle, then area of major sector is 512.87 cm<sup>2</sup>.
  - (c) The ratio between the circumference and area of a circle of radius 5 cm is 2 : 5.
  - (d) Area of a circle whose radius is 6 cm, when the length of the arc is 22 cm, is  $66 \text{ cm}^2$ .

#### Sample Paper-8

SP-**59** 



|     | $\bigwedge^{A}$                                 |                          |                 |                         |                  |                 |                   |                 |  |  |
|-----|-------------------------------------------------|--------------------------|-----------------|-------------------------|------------------|-----------------|-------------------|-----------------|--|--|
|     |                                                 |                          |                 |                         |                  |                 |                   |                 |  |  |
|     | D                                               |                          |                 |                         |                  |                 |                   |                 |  |  |
|     |                                                 |                          |                 | F                       |                  |                 |                   |                 |  |  |
|     |                                                 |                          |                 | B                       |                  |                 |                   |                 |  |  |
|     | (a) 25:81                                       | (b)                      | 5:81            | (c)                     | 81 : 25          | (d)             | 22:88             |                 |  |  |
| 37. | If $x = \frac{4}{2}$ is a root of               | the polynoi              | mial $f(x) = 6$ | $x^3 - 11x^2 + kx - 20$ | , then find the  | e value of k.   |                   |                 |  |  |
|     | (a) 10                                          | (b)                      | 19              | (c)                     | - 5              | (d)             | 3                 |                 |  |  |
| 38. | For what values of k                            | k, do the equ            | ations $3x - y$ | + 8 = 0 and $6x - ky$   | v = -16 repres   | ent coinciden   | t lines?          |                 |  |  |
|     | (a) solution of $3k - $                         | 9 = 0                    |                 | (b)                     | solution of      | 2k - 8 = 0      |                   |                 |  |  |
|     | (c) 2                                           |                          |                 | (d)                     | 3                |                 |                   |                 |  |  |
| 39. | A line intersects the good of P and Q are respe | y-axis and x<br>ectively | -axis at the po | oints P and Q respec    | tively. If (2, – | 5) is the mid p | ooint of PQ, ther | the coordinates |  |  |
|     | (a) $(0, -5)$ and $(2, 0)$                      | ))                       |                 | (b)                     | (0, 10) and      | (-4, 0)         |                   |                 |  |  |
|     | (c) $(0, 4)$ and $(-10, -10)$                   | 0)                       |                 | (d)                     | (4, 0) and (     | 0, 10)          |                   |                 |  |  |
| 40  | The decimal expans                              | ion of $\frac{21}{2}$ is | s ·             |                         |                  |                 |                   |                 |  |  |
|     | (a) terminating                                 | 45                       |                 |                         |                  |                 |                   |                 |  |  |
|     | (b) non-terminating                             | and reneati              | nσ              |                         |                  |                 |                   |                 |  |  |
|     | (c) non-terminating                             | and non-re               | neating         |                         |                  |                 |                   |                 |  |  |
|     | (d) none of these                               |                          | peating         |                         |                  |                 |                   |                 |  |  |
| _   | (u) none of these                               |                          |                 |                         |                  |                 |                   |                 |  |  |
|     |                                                 |                          |                 | SECTION-C               |                  |                 |                   |                 |  |  |
|     |                                                 |                          | С               | ase Study Based Q       | uestions:        |                 |                   |                 |  |  |

Section C consists of 10 quesions of 1 mark each. Any 8 quesions are to be attempted.

# Q 41. - Q 45 are based on case study-I

#### Case Study-I

Two unbiased coins are tossed simultaneously.

The word 'unbiased' means each outcome is equally likely to occure.

| 41. | The probability of getting two | heads is |   |     |               |     |               |
|-----|--------------------------------|----------|---|-----|---------------|-----|---------------|
|     | (a) $\frac{1}{2}$              | (b)      | 1 | (c) | $\frac{1}{3}$ | (d) | $\frac{1}{4}$ |
| 42. | The probability of getting one | tail is  |   |     |               |     |               |
|     | (a) $\frac{1}{2}$              | (b)      | 1 | (c) | $\frac{1}{3}$ | (d) | $\frac{1}{4}$ |

| SP- | 60                               |             |               |     |               |     | -(            |
|-----|----------------------------------|-------------|---------------|-----|---------------|-----|---------------|
| 43. | The probability of getting no h  | ead is      |               |     |               |     |               |
|     | (a) $\frac{1}{2}$                | (b)         | 1             | (c) | $\frac{1}{3}$ | (d) | $\frac{1}{4}$ |
| 44. | The probability of getting at m  | ost one hea | ıd.           |     |               |     |               |
|     | (a) $\frac{1}{4}$                | (b)         | $\frac{1}{2}$ | (c) | $\frac{3}{4}$ | (d) | 1             |
| 45. | The probability of getting at le | ast one hea | d             |     |               |     |               |
|     | (a) $\frac{1}{4}$                | (b)         | $\frac{3}{4}$ | (c) | $\frac{9}{2}$ | (d) | 1             |

# Q 46 - Q 50 are based on case study-II

### Case Study-II

A chord of a circle of radius 10 cm subtends a right angle at the centre.



| 46. | The area of minor sector is                            |           |                     |     |                      |     |                       |
|-----|--------------------------------------------------------|-----------|---------------------|-----|----------------------|-----|-----------------------|
|     | (a) $78 \text{ cm}^2$                                  | (b)       | $79 \text{ cm}^2$   | (c) | 78.5 cm <sup>2</sup> | (d) | 77 cm <sup>2</sup>    |
| 47. | The area of minor segment<br>(a) 28.5 cm <sup>2</sup>  | is<br>(b) | 27 cm <sup>2</sup>  | (c) | 26 cm <sup>2</sup>   | (d) | 30 cm <sup>2</sup>    |
| 48. | The area of major sector is<br>(a) 236 cm <sup>2</sup> | (b)       | 234 cm <sup>2</sup> | (c) | 237 cm <sup>2</sup>  | (d) | 235.5 cm <sup>2</sup> |
| 49. | The area of major segment<br>(a) 285.5 cm <sup>2</sup> | is<br>(b) | 286 cm <sup>2</sup> | (c) | 287 cm <sup>2</sup>  | (d) | 288 cm <sup>2</sup>   |
| 50. | The length of arc APB is<br>(a) 17.15 cm               | (b)       | 15.71 cm            | (c) | 25 cm                | (d) | 15 cm                 |

# OMR ANSWER SHEET Sample Paper No –

- \* Use Blue / Black Ball pen only.
- \* Please do not make any atray marks on the answer sheet.
- Rough work must not be done on the answer sheet. \*
- Darken one circle deeply for each question in the OMR Answer sheet, as faintly darkend / half darkened circle might by rejected. \*

| Start                                                                                                              | 1me :                                                      |                                                                          |                       | End               | time                                                                                                                                                    |       | T                | ime taker                | 1                        |            |                                         |                  |            |
|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------------|--------------------------|--------------------------|------------|-----------------------------------------|------------------|------------|
| 1. N                                                                                                               | ame (in                                                    | Block Le                                                                 | etters)               |                   |                                                                                                                                                         |       |                  |                          |                          |            |                                         |                  |            |
| Γ                                                                                                                  |                                                            |                                                                          |                       |                   |                                                                                                                                                         |       |                  |                          |                          |            |                                         |                  |            |
| 2. D                                                                                                               | ate of E                                                   | xam                                                                      |                       |                   |                                                                                                                                                         |       |                  |                          |                          |            |                                         |                  |            |
| Γ                                                                                                                  |                                                            |                                                                          |                       |                   |                                                                                                                                                         |       |                  |                          |                          |            |                                         |                  |            |
| 3. C                                                                                                               | Candidate's Signature                                      |                                                                          |                       |                   |                                                                                                                                                         |       |                  |                          |                          |            |                                         |                  |            |
|                                                                                                                    |                                                            | -                                                                        |                       |                   |                                                                                                                                                         | SECTI | ON-A             |                          |                          |            |                                         |                  |            |
| 1.         2.         3.         4.         5.         6.         7.         8.                                    | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8                      |                                                                          | 000000000             |                   | 9.       a         10.       a         11.       a         12.       a         13.       a         14.       a         15.       a         16.       a  |       | 0000000000       |                          | 17.<br>18.<br>19.<br>20. |            |                                         | ©<br>©<br>©<br>© |            |
|                                                                                                                    |                                                            |                                                                          |                       |                   | <u> </u>                                                                                                                                                | SECTI | ON-B             |                          |                          |            |                                         |                  |            |
| <ol> <li>21.</li> <li>22.</li> <li>23.</li> <li>24.</li> <li>25.</li> <li>26.</li> <li>27.</li> <li>28.</li> </ol> |                                                            |                                                                          | 000000000             |                   | 29.       a         30.       a         31.       a         32.       a         33.       a         34.       a         35.       a         36.       a |       | 000000000        |                          | 37.<br>38.<br>39.<br>40. |            | (a) | 0000             |            |
|                                                                                                                    |                                                            |                                                                          |                       |                   |                                                                                                                                                         | SECTI | ON-C             |                          |                          |            |                                         |                  |            |
| <ul><li>41.</li><li>42.</li><li>43.</li><li>44.</li></ul>                                                          | <ul> <li>a)</li> <li>a)</li> <li>a)</li> <li>a)</li> </ul> | (b)<br>(c)<br>(c)<br>(c)<br>(c)<br>(c)<br>(c)<br>(c)<br>(c)<br>(c)<br>(c | 0<br>0<br>0<br>0<br>0 | (d)<br>(d)<br>(d) | 45. (a)<br>46. (a)<br>47. (a)<br>48. (a)                                                                                                                |       | 0<br>0<br>0<br>0 | (d)<br>(d)<br>(d)<br>(d) | 49.<br>50.               | (a)<br>(a) | (b)<br>(b)                              | ©<br>©           | (d)<br>(d) |
| No. c                                                                                                              | of Qns. A                                                  | Attempted                                                                | d                     |                   | Correct                                                                                                                                                 |       | Inc              | correct                  |                          |            | Mark                                    | s                |            |

Page for Rough Work