## Chemistry

51. Which of the following is not a reaction intermediate?
(a) Carbenes
(b) Nitrenes
(c) Electrophiles
(d) Hydrophiles

Correct: d
52. Which of the following cations has the strongest tendency towards complex formn+inn)
(a) $\mathrm{Sm}^{3+}$
(b) $L u^{3+}$
(c) $\mathrm{Gd}^{3+}$
(d) $\mathrm{Yb}^{3+}$

Correct: b
53. The configuration of the compound

(a) R
(b) S
(c) Z
(d) E

Correct: a
54. Which of the following metal ions is expected to be coloured?
(a) $\mathrm{Zn}^{2+}$
(b) $\mathrm{Ti}^{3+}$
(c) $\mathrm{Sc}^{3+}$
(d) $\mathrm{Ti}^{4+}$

Correct: b
55. The best reducing agent among the following is
(a) $\mathrm{NH}_{3}$
(b) $\mathrm{SbH}_{3}$
(c) $\mathrm{PH}_{3}$
(d) $\mathrm{AsH}_{3}$

Correct: b
56. The EAN value y $\left[\mathrm{Ti}\left(\sigma-\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\left(\pi-\mathrm{C}_{5} \mathrm{H}_{\mathrm{S}}\right)_{2}\right]^{0}$ is
(a) 32
(b) 33
(c) 34
(d) 35

Correct: c
57. The major product of nitration of benzoic acid is
(a) 3-nitrobenzoic acid
(b) 4-nitrobenzoic acid
(c) 2-nitrobenzoic acid
(d) 2,4-dinitrobenzoic acid

Correct: a
58. Which of the following complexes is optically active?
(a) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right]^{+}$
(b) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right) \mathrm{C}_{5}\right]^{3-}$
(c) cis $-\left[\mathrm{Co}(\mathrm{en})_{2} \mathrm{Cl}_{2}\right]$
(d) tans $-\left[\mathrm{Co}(\mathrm{en})_{2} \mathrm{Cl}_{2}\right]$

Correct: c
59. Which of the following will exhibit highest boiling point?
(a) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{3}$
(b) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$
(c) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{OH}$
(d) $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{OH}$

Correct: b
60. The following reactions show the $\mathrm{H}_{2} \mathrm{O}_{2}$ behaviour in I and II reactions as:
$\mathrm{PbS}(s)+4 \mathrm{H}_{2} \mathrm{O}_{2}(a q) \longrightarrow \mathrm{PbSO}_{4}(s)$

$$
+4 \mathrm{H}_{2} \mathrm{O}(l)
$$

2. $\mathrm{HOCl}+\mathrm{H}_{2} \mathrm{O}_{2} \longrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{Cl}^{-}+\mathrm{O}_{2}$
(a) Oxidising in acidic medium and reducing in basic medium
(b) Reducing in acidic medium and oxidising in basic medium
(c) Oxidising in acidic medium and reducing in acidic medium
(d) Reducing in acidic medium and oxidising in acidic medium

Correct: c
61. The correct arrangement of following in their decreasing order of basic strength is
(a) $\mathrm{NH}_{3}>\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}>\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{NH}>\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}$
(b) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}>\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{NH}>\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}>\mathrm{NH}_{3}$
(c) $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{NH}>\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}>\mathrm{NH}_{3}>\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$
(d) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}>\mathrm{NH}_{3}>\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}>\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{NH}$

Correct: c
62. Products ( X and Y ) of the following reactions
(I and II) are :

$$
2 \mathrm{NaOH}+\mathrm{Cl}_{2} \longrightarrow \mathrm{NaCl}+X+\mathrm{H}_{2} \mathrm{O}
$$

1. 

(Cold and di.)
$6 \mathrm{NaOH}+3 \mathrm{Cl}_{2} \longrightarrow \mathrm{NaCl}+Y+3 \mathrm{H}_{2} \mathrm{O}$
2. (Hot and conc.)
(a) $X=\mathrm{NaClO}_{3}$ and $Y=\mathrm{NaOCl}$
(b) $X=\mathrm{NaClO}$ and $Y=\mathrm{NaOCl}_{3}$
(c) $X=\mathrm{NaHClO}_{3}$ and $Y=\mathrm{NaOCl}$
(d) $X=\mathrm{NaClO}_{3}$ and $Y=\mathrm{NaHClO}_{3}$

Correct: b
63. The polymer used as a substitute for wool in making commercial fibres is
(a) glyptal
(b) novolac
(c) neoprene
(d) polyacrylonitrile

Correct: d
64. An example of non-stoichiometric hydride is
(a) sodium hydride
(b) beryllium hydride
(c) lanthanum hydride
(d) diborane

Correct: c
65. Which one of the following is not the use of $\mathrm{SO}_{2}$ ?
(a) Preservative
(b) Anti-chlor
(c) Disinfectant
(d) Insecticide

Correct: d
66. Which of the following will not give iodoform test?
(a) Isopropyl alcohol
(b) Ethanol
(c) Ethanal
(d) Benzyl alcohol

Correct: d
67. Structure anions of acids $\mathrm{HNO}_{3}, \mathrm{H}_{3} \mathrm{PO}_{4}$ and $\mathrm{H}_{2} \mathrm{SO}_{4}$ are, respectively
(a) tetrahedral, tetrahedral and trigonal bipyramidal
(b) angular, tetrahedral and trigonal bipyramidal
(c) tetrahedral, tetrahedral and angular
(d) planar, tetrahedral and tetrahedral

Correct: d
68. Which of the following will not give iodoform test?
(a) Isopropyl alcohol
(b) Ethanol
(c) Ethanal
(d) Benzyl alcohol

Correct: d
69. Aspartame is an
(a) alkaloid
(b) insecticide
(c) artificial sweetener
(d) antiseptic

Correct: c
70. Sodium hydroxide is manufactured by
(a) Solvay process
(b) Haber's process
(c) Castner-Kellner process
(d) Evaporating process

Correct: c
71. The strongest base in the following is
(a)


(b)
(c)

(d)


Correct: a
72. The oxidation number of Pt in $\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right) \mathrm{Cl}_{3} \mathrm{~F}\right.$ ion is
(a) +1
(b) +2
(c) +3
(d) +4

Correct: b
73. Name the end product in the following series of reactions
$\mathrm{CH}_{3} \mathrm{COOH} \xrightarrow{\mathrm{NH}_{3}} A \xrightarrow{\Delta} B \xrightarrow{\mathrm{P}_{2} \mathrm{O}_{5}} C$
(a) Methane
(b) Methanol
(c) Acetonitrile
(d) Acetamide

Correct: c
74. Which one acts as refrigerant?
(a) $\mathrm{CF}_{2} \mathrm{Cl}_{2}$
(b) $\mathrm{CF}_{4}$
(c) $\mathrm{CFCl}_{3}$
(d) $\mathrm{CF}_{3} \mathrm{Cl}$

Correct: a
75. The correct sequence of bond order is
(a) $\mathrm{O}_{2}^{+}>\mathrm{O}_{2}^{-}>\mathrm{O}_{2}$
(b) $\mathrm{O}_{2}>\mathrm{O}_{2}^{-}>\mathrm{O}_{2}^{+}$
(c) $\mathrm{O}_{2}^{+}>\mathrm{O}_{2}>\mathrm{O}_{2}^{-}$
(d) $\mathrm{O}_{2}^{-}>\mathrm{O}_{2}^{+}>\mathrm{O}_{2}$

Correct: c
76. The reactant ' P ' in the following reaction is
(a) $\mathrm{CH}_{3} \mathrm{CHOHCH}_{3}$
(b) $\mathrm{CH}_{3} \mathrm{COCH}_{3}$
(c) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$
(d) $\mathrm{CH}_{3} \mathrm{COOH}$

Correct: a
77. A $\beta$-hydroxy carbonyl compound is obtained by the action of NaOH on
(a) $R_{3} \mathrm{CCHO}$
(b) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO}$
(c) $\mathrm{CH}_{3} \mathrm{CHO}$
(d) HCHO

Correct: c
78. Correct formula for Wilkinson's catalyst is
(a) $\left[\left(P h_{3} P\right)_{3} R h C l\right]$
(b) $\left[\left(P h_{3} P\right)_{2} R h C l_{2}\right]$
(c) $\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{3} \mathrm{RuCl}_{3}\right]$
(d) $\left[\left(P h_{3} P\right)_{2} R u C I_{2}\right]$

Correct: a
79. Which of the following is used for the estimation of halogens in organic compounds?
(a) Carius method
(b) Duma's method
(c) Kjeldahl's method
(d) Newman method

Correct: a
80. Which of the following structures contain sp-hybridised carbon atom(s)?
I. $\mathrm{HC} \equiv \mathrm{CH}$
III.

II. $\mathrm{H}_{2} \mathrm{C}=\mathrm{C}=\mathrm{CH}_{2}$
IV.

(a) I, II and III
(b) I, III and IV
(c) II, III and IV
(d) I, II and IV

Correct: d
81. Which of the following structures represents a chiral compound?

(a)

(b)

(c)

(d)

Correct: d
82. Which of the following oxides of nitrogen is blue in nature?
(a) NO
(b) $\mathrm{N}_{2} \mathrm{O}_{3}$
(c) $\mathrm{N}_{2} \mathrm{O}_{5}$
(d) $\mathrm{NO}_{2}$

Correct: b
83. Which of the following carbocations is most stable?

(a) I
(b) II
(c) III
(d) IV

Correct: b
84. On heating an aldehyde with Fehling's reagent, a reddish brown precipitate is obtained due to the formation of
(a) $\mathrm{RCOO}^{-}$
(b) CuO
(c) $\mathrm{Cu}_{2} \mathrm{O}$
(d) $\mathrm{RCH}_{2} \mathrm{OH}$

Correct: c
85. What is the number of nitrogen-nitrogen bonds in $\mathrm{N}_{2} \mathrm{O}_{5}$ ?
(a) 1
(b) 0
(c) 1.5
(d) None of these

Correct: b
86. What will be the pH of solution formed by mixing $10 \mathrm{~mL} 0.1 \mathrm{M} \mathrm{NaH}_{2} \mathrm{PO}_{4}$ and 15 mL 0.1 $\mathrm{M} \mathrm{Na}_{2} \mathrm{HPO}_{4}$.
[Given: $p K_{1}=2.12, p K_{2}=7.2$ ]
(a) 7.0
(b) 6.9
(c) 7.4
(d) 7.5

Correct: c
87. Which of the following has the highest coagulating power for $\mathrm{As}_{2} \mathrm{~S}_{3}$ colloid?
(a) $\mathrm{PO}_{4}^{3-}$
(b) $\mathrm{SO}_{4}^{2-}$
(c) $\mathrm{Al}^{3+}$
(d) $\mathrm{Na}^{+}$

Correct: c
88. For the reaction
$A+B \rightarrow P=-\frac{d[A]}{d t}=-\frac{d[B]}{d t}=k[A][B]$
$k t=\frac{1}{[A]_{0}-[B]_{0}} \ln \frac{[A][B]_{0}}{[B][A]_{0}}$ when , $[A]_{0} \neq[B]_{0}$ and when, $[A]_{0} \neq[B]_{0}$. If, $[A]_{0}=[B]_{0}$ then the integrated rate law will be
(a) $k t=\ln \frac{[A]}{[B]}$
(b) $\frac{1}{[B]}=\frac{1}{[A]_{0}}+k t$
(c) $\frac{1}{[A]}=\frac{1}{[B]_{0}}+k t$
(d) $\frac{1}{[A]}=\frac{1}{\left[A_{b}\right.}+k t$ or $\frac{1}{[B]}=\frac{1}{[B]_{0}}+k t$

Correct: d
89. For a buffer of a mixture of $0.12 \mathrm{molL}^{-1}$
$\mathrm{CH}_{3} \mathrm{COOH}$ and $0.12 \mathrm{molL}^{-1} \mathrm{CH}_{3} \mathrm{COONa}$ the buffer capacity is
(a) 1.38
(b) 0.130
(c) 0.06
(d) 0.60

Correct: d
90. The standard emf of the cell ( $E_{\text {cell }}^{\circ}$ and equilibrium constant $\left(K_{\text {eq }}\right)$ of the following reaction of 298 K
$\mathrm{Cd}^{2+}+4 \mathrm{NH}_{3} \rightleftharpoons \mathrm{Cd}\left(\mathrm{NH}_{3}\right)_{4}^{2+}$
(a) $E_{\text {cell }}^{\circ}=1.0 \mathrm{~V}, K_{\text {eq }}=1.26 \times 10^{7}$
(b) $E_{\text {cell }}^{\circ}=0.21 \mathrm{~V}, K_{\text {eq }}=1.26 \times 10^{7}$
(c) $E_{\text {cell }}^{\circ}=1.0 \mathrm{~V}_{1} \mathrm{~K}_{\text {eq }}=6.60 \times 10^{33}$
(d) $E_{\text {cell }}^{\circ}=021 \mathrm{~V}, K_{\text {eq }}=6.60 \times 10^{33}$

Correct: b
91. 0.002 M solution of a weak acid has an equivalent conductance $(\Lambda) 60 \mathrm{ohm}^{-1} \mathrm{~cm}^{2} \mathrm{eq}^{-1}$ What will be the pH ?
(Given $\Lambda^{\circ}=400 \mathrm{ohm}^{-1} \mathrm{~cm}^{2} \mathrm{eq}^{-1}$ ])
(a) 3.52
(b) 2.52
(c) 1.87
(d) 2.7

Correct: a
92. Benzene freezes at $5.6^{\circ} \mathrm{C}$. Its value for $\boldsymbol{K}_{f}$ is 5.1. The value of f is $\Delta H_{\mathrm{fus}}$
(a) 30.24 cal
(b) 2358.72 cal
(c) 1179.36 cal
(d) 15.12 cal

Correct: b
93. The rate constant, the activation energy and the Arrhenius parameter of a chemical reaction at $25^{\circ} \mathrm{C}$ are $3.0 \times 10^{-4} \mathrm{~s}^{-1}, 104.4 \mathrm{kJmol}^{-1}$ and $6.0 \times 10^{14} \mathrm{~s}^{-1}$ respectively. The value of the rate constant at $T \rightarrow \infty$ is
(a) $2.0 \times 10^{18} \mathrm{~s}^{-1}$
(b) $60 \times 10^{14} \mathrm{~s}^{-1}$
(c) $3.6 \times 10^{30} \mathrm{~s}^{-1}$
(d) Infinity

Correct: b
94. An ideal gas initially at temperature, pressure and volume, $27^{\circ} \mathrm{C}, 1.00 \mathrm{bar}$ and 10 L respectively is heated at constant volume until pressure is 10.0 bar , it then undergoes a reversible isothermal expansion until pressure is 1.00 bar what is the total work W during the process?
(a) $-23.02 \times 10^{3} \mathrm{~J}$
(b) $-14.0 \times 10^{3} \mathrm{~J}$
(c) $14.0 \times 10^{3} \mathrm{~J}$
(d) Zero

Correct: a
95. A better criterion for ideality of a gas than $\left(\frac{\partial U}{\partial V}\right)_{T}=0$ is
(a) $\left(\frac{\partial H}{\partial p}\right)_{T}<0$
(b) $\left(\frac{\partial H}{\partial \rho}\right)_{T}>0$
(c) $\left(\frac{\partial H}{\partial p}\right)_{T}=0$
(d) $\left(\frac{\partial H}{\partial p}\right)_{T} \neq 0$

Correct: c
96. The electrode potential, $E^{\circ}$ for the reduction of $\mathrm{MnO}_{4}^{-}$to $\mathrm{Mn}^{2+}$ in acidic medium is +1.51 V . Which of the following metal(s) will be oxidised? The reduction reaētions and standard electrode potentials for $\mathrm{Zn}^{2+}, \mathrm{Ag}^{+}$and $\mathrm{Au}^{+}$are given as
$\mathrm{Zn}^{2+}(a q)+2 e \longrightarrow \mathrm{Zn}(s), E^{\circ}=-0.762 \mathrm{~V}$
$\mathrm{Ag}^{+}(a q)+e \rightleftarrows \mathrm{Ag}(s), E^{\circ}=+0.80 \mathrm{~V}$
$\mathrm{Au}^{+}(a q)+e \rightleftharpoons \mathrm{Au}(s), E^{\circ}+1.69 \mathrm{~V}$
(a) Zn and Au
(b) Ag and Au
(c) Au
(d) Zn and Ag

Correct: d
97. For the reaction,
$\frac{1}{2} \mathrm{H}_{2}(g)+\frac{1}{2} \mathrm{Cl}_{2}(g) \longrightarrow \mathrm{H}^{+}(a q)+\mathrm{Cl}^{-}(a q)$
$\Delta G_{\text {reaction }}^{\circ}=-131.23 \mathrm{kJmol}^{-1}$
The value of $\Delta G_{\text {formation }}^{\circ}$ of $\mathrm{Ag}^{+}(a q)$ shall be given by ,(if $\Delta G_{f}^{\delta}\left(\mathrm{H}^{+} \mathrm{a} q\right)=0$
(a) $-54.12 \mathrm{kJmol}^{-1}$
(b) $-131.23 \mathrm{kJmol}^{-1}$
(c) $+77.11 \mathrm{kJmol}^{-1}$
(d) $+5412 \mathrm{kJmol}^{-1}$

Correct: b
98. For $\mathrm{NH}_{4} \mathrm{HS}(s) \longmapsto \mathrm{NH}_{3}(g)+\mathrm{H}_{2} \mathrm{~S}(g)$, the
observed pressure for the reaction mixture in equilibrium is 1.12 atm at $106^{\circ} \mathrm{C}$. What is the value of $K_{p}$ for the reaction?
(a) $0.56 \mathrm{~atm}^{2}$
(b) $0.3136 \mathrm{~atm}^{2}$
(c) $1.25 \mathrm{~atm}^{2}$
(d) $1.12 \mathrm{~atm}^{2}$

Correct: b
99. If $\chi_{1}$ and $\chi_{2}$ represent the mole fractions of a component $A$ in the vapour phase and liquid mixture respectively, and $p_{A}^{0}$ and $\mid p_{B}^{\circ}$ represent vapour pressures of pure A and pure B , then total vapour pressure of liquid mixture is
(a) $\frac{p_{A}^{\circ} \chi_{1}}{\chi_{2}}$
(b) $\frac{p_{A}^{\circ} x_{2}}{\chi_{1}}$
(c) $\frac{p_{B}^{\alpha} \chi_{1}}{\chi_{2}}$
(d) $\frac{p_{B}^{a} \chi_{2}}{\chi_{1}}$

Correct: b
100. Number of electrons present in 3.6 mg of $\mathrm{NH}_{4}^{+}$are
(a) $1.20 \times 10^{21}$
(b) $1.20 \times 10^{20}$
(c) $1.20 \times 10^{22}$
(d) $2 \times 10^{-3}$

Correct: a

