Msc. Physics (ode No, (481)

•		
ħ	1	10.4

Question Booklet No
up by the candidate by blue/black ball-point pen)
9.3
et
(Signature of Invigilator)
She

INSTRUCTIONS TO CANDIDATES

(Use only blue/black ball-point pen in the space above and on both sides of the Answer Sheet)

- 1. Within 30 minutes of the issue of the Question Booklet, check the Question Booklet to ensure that it contains all the pages in correct sequence and that no page/question is missing. In case of faulty Question Booklet bring it to the notice of the Superintendent/Invigilators immediately to obtain a fresh Question Booklet.
- 2. Do not bring any loose paper, written or blank, inside the Examination Hall except the Admit Card without its envelope.
- 3. A separate Answer Sheet is given. It should not be folded or mutilated. A second Answer Sheet shall not be provided. Only the Answer Sheet will be evaluated.
- 4. Write your Roll Number and Serial Number of the Answer Sheet by pen in the space
- 5. On the front page of the Answer Sheet, write by pen your Roll Number in the space provided at the top, and by darkening the circles at the bottom. Also, wherever applicable, write the Question Booklet Number and the Set Number in appropriate places.
- 6. No overwriting is allowed in the entries of Roll No., Question Booklet No. and Set No. (if any) on OMR sheet and also Roll No. and OMR sheet No. on the Question Booklet.
- 7. Any change in the aforesaid entries is to be verified by the invigilator, otherwise it will be
- 8. Each question in this Booklet is followed by four alternative answers. For each question, you are to record the correct option on the Answer Sheet by darkening the appropriate circle in the corresponding row of the Answer Sheet, by ball-point pen as mentioned in the guidelines given on the first page of the Answer Sheet.
- 9. 'For each question, darken only one circle on the Answer Sheet. If you darken more than one circle or darken a circle partially, the answer will be treated as incorrect.
- 10. Note that the answer once filled in ink cannot be changed. If you do not wish to attempt a question, leave all the circles in the corresponding row blank (such question will be awarded zero mark).
- 11. For rough work, use the inner back page of the title cover and the blank page at the end of this Booklet.
- 12. Deposit only the OMR Answer Sheet at the end of the Test.
- 13. You are not permitted to leave the Examination Hall until the end of the Test.
- 14. If a candidate attempts to use any form of continuous. ut - liable to such punishment as

[उपर्युक्त निर्देश हिन्दी में अन्तिम आवरण-पृष्ठ पर दिये गए है]

Total No. of Printed Pages : 27

ROUGH WORK एक कार्य

Mac. Physics CodeNo, (481) 17P/218/22 (1)

No. of Questions: 120

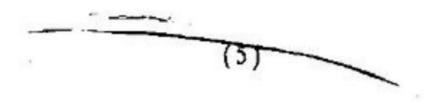
Tin	ne: 2 Hours]	•	44	.	[Full Marks: 360
No	marks.	ranger III III	e deducted f	or each	ion carries 3 (Three) incorrect answer. uestion.
		than one alternati		em to be	approximate to the
1.		a gas is mixed wit		the same	gas, the entropy of
	(1) 2 kN ln2	(2) kN ln2	(3) Zero		(4) ln2
	where k is Bolt	zmann constant.		9 4	
2.		ved in going revers			s can be made inte-
	(1) $\frac{1}{V}$	(2) T	(3) $\frac{1}{T}$		(4) S
3.	of initial volun	of logical expansion of 10 graphs of 10 grap	entropy of nitr	ogen if r	no becomes 4 times no lecular weight of I/mole- K, is
	(1) 4.1 joule/K	(2) 41 joule/K	(3) 4.1 ea	%	4.1 cal/K
			1)		— ,
					(Turn Over)

4.		hich remains cor and isothermally	50 H = 110 H = 100 + 100 + 100 H = 100	namic process is carried
	(1) Internal en	ergy	(2) Gibbs' function	
	(3) Helmholtz	function	(4) Enthalpy	
5.	Which of the fo	ollowing gives vo	lume, V?	
	$(1) \left(\frac{\partial G}{\partial P}\right)_{\Gamma}$		$(2) \left(\frac{\partial U}{\partial V}\right)_{S}$	
	$(3) - \left(\frac{\partial G}{\partial T}\right)_{P}$		(4) $\left(\frac{\partial U}{\partial S}\right)_{\Gamma}$	
	where the sym	bols have their usi	al meanings.	
6.	Fermi level rep	oresents the energ	y level with probabilit	ty of its occupation of
	(1) 0%	(2) 25%	(3) 50%	(4) 100%
7.	The steady stat	e conditions in di	ffusion are governed l	by .
	(1) Fick's seco	ond law	(2) Fick's first law	
	(3) Both (1) a	nd (2)	(4) Maxwell-Bohz	mann's law
8.	The electronic	polarizability, α ctron, is	of a monoatomic ga	s atom, if r is the radius
	(1) $4\Pi \varepsilon_0$	(2) $4\Pi \varepsilon_0 r$	(3) $4\Pi \varepsilon_0 r^3$	(4) $4\Pi \varepsilon_0 r^2$
	2.5		(2)	(Continued)

9.	With increase	in temperature.	the	orie	ntational p	olarization in general
	(1) Decreases		(2)	Inci	reases	
	(3) Remains sar	ne	(4)	Nor	ne of these	
10.	The probability of	of occupation of	an en	ergy	level E, wh	en E - EF = KT , is given
	(1) 0.73	(2) 0.63		(3)	0.5	(4) 0.27
İ1.	The frequency as	ssociated with 20	mm	wave	elength micr	owaves is
	(1) 100 MHz	(2) 400 MHz		(3)	73 MHz	(4) _. 15 GHz
12.	Total current der	sity, \overline{J}_i equals				
	(1) Sum of current dens		to !	free	charge carr	iers and displacement
	(2) Current dens	sity due to free ch	arge	carr	riers only	
	(3) Displacement	nt current density	only	,		*
75-	(4) None of thes	se				· () · · · · · · · · · · · · · · · · ·
13.	The capacitance	of two concentri	c me	tal s	hells, with r	adii a and b is
	$(1) \frac{Q}{4\Pi\varepsilon_0} \left(\frac{1}{a} - \frac{1}{b} \right)$		(2)	4Π	$\varepsilon_0 \frac{ab}{(b-a)}$	
	l ab				<i>(</i>)	· parent
	(3) $\frac{1}{4\Pi\varepsilon_0} \cdot \frac{ab}{(b-a)}$	<u>,</u>	(4)	4Π.	$\mathcal{O}\left(\frac{1}{a}, \frac{1}{b}\right)$	·
	•					, 14
			(3)	_	. د ۱۰ د د	(T

14.	For glass-air interface (ng = 1.5 and na = 1) for normal incidence, the reflection coefficient is				
	(1) 0.2	(2) 0.04	(3) 0.98	(4) 0.96	
15.	The total energy space is	density assoc	iated with an el	ectromagnetic wave in free	
	$(1) \frac{1}{2} \varepsilon_0 E_{\text{mes}}^2$		(2) $\varepsilon_0 E_{\rm rm}^2$,		
	(3) $2\varepsilon_0 E_{\rm rms}^2$		(4) None of the	nese	
	where E_{rms} is the netic wave.	rms value of	electric field asso	ociated with the electromag-	
16.	Electric flux ass is given by	ociated with a	small surface are	a ds in an electric field \vec{E}	
	(1) $\vec{E} \cdot d\vec{s}$		(2) $\varepsilon_0 \overline{E} \cdot ds$		
	(3) $\oint_{S} \vec{E} \cdot d\vec{s}$		(4) $\vec{E} \times d\vec{s}$	*	
17.	If a Gaussian sur point inside it	rface encloses	no charge, which	of the following is true for a	
	(1) Electric field	must be zero			
	(2) Electric pote				
	(3) Electric field	d and potential	are zero		
	(4) None of the	se			
			(4)	(Continued)	

- 18. Energy is not transferred by
 - (1) Transverse progressive wave
 - (2) Longitudinal progressive wave
 - (3) Stationary wave
 - (4) Electromagnetic wave
- 19. The relation between permeability and susceptibility in C.G.S. system is
 - (1) $\mu = \mu_0(1+\chi)$
- (2) $\mu = 1 + 4\Pi \chi$
- (3) $\mu = \frac{\mu_0}{4\Pi}(1+\chi)$ (4) $\mu = 1+\chi$


- 20. Lorentz unit is
 - (1) $\frac{eB}{4\Pi mc}$

- 21. The unit of magnetic moment is
 - (1) erg-gauss

(2) erg-1 gauss-1

(3) m-gauss

(4) Bohr magneton

(Turn Over)

22.	Very low temperatures can be produced by

- (1) Adiabatic demagnetisation of a paramagnetic salt
- (2) Adiabatic magnetisation of a paramagnetic salt
- (3) Isothermal magnetisation of diamagnetic salt
- (4) Isothermal demagnetisation of diamagnetic salt

23. The SI unit of \hat{B} is

(1) Tesla

- (2) Gauss
- (3) Tesla mt Amp²
- (4) Amp-mt²

24. A solenoid having a resistance of 5 Ω and self inductance of 4 Henry, is connected to a battery of emf 10 volt and negligible resistance. After how long, current will become I A in it?

(1) 1.1 sec

(2) 10.55 sec

(3) 2 sec

(4) 2.2 sec

25. An L-C-R circuit will oscillate if

(1) R > LC

 $(2) R < \sqrt[3]{\frac{L}{C}}$

(3) $R > \sqrt[2]{\frac{L}{C}}$

 $(4) R = \frac{L}{C}$

(6) (Continued)

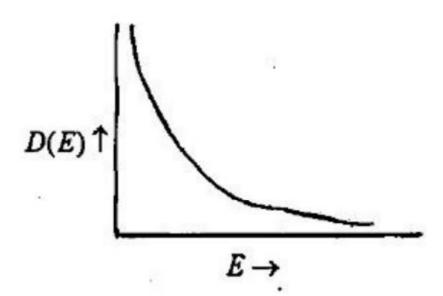
26.	The lag angle between the given by	e current ai	nd applic	ed emf in	a series LR	circuit is
	(1) $\tan^{-1}\frac{1}{WLR}$	(2)	tan ⁻¹ W	<u>L</u>		
	(3) tan- WLR	(4)	lan-1(R)) .		
27.	The quality factor of a serie	s L-C-R ci	rcuit is gi	iven by		
	(1) $\frac{1}{\text{WLR}}$ (2) WCF	₹	(3) WL/R		(4) WLR	
28.	For a good conductor, the sp	oin depth va	ries as			
	(1) Inversely as angular free	quency ω				
	(2) Directly as ω					
•	(3) Inversely as $\sqrt{\omega}$	12)	•	·		
	(4) Directly as √w					
29.	The dielectric constant, ε of index $n = 1.33$, violating the	f water is expression	80. This $n^2 = \varepsilon$.	does not This is be	justify its re	fractive
	(1) The water molecule has a	no permane	nt dipole	moment	2	
	(2) The boiling point of water					
	(3) The two quantities are me	easured at d	lifferent	frequenci	ec '	
	(4) Water is transparent to vi			- quenci	C 3	
		(7)		<u></u>		
	•			100	(Turn	Over)

30.	Propagation of electromagnetic waves in a medium with frequency depen- dence phase velocity is called				
	(1) Reflection	(2) Refraction	(3) Polarization	(4) Dispersion	
31.	varying electric fi	vity and ϵ , permiticeld E of angular free the conduction cur	vity of a medium w quency, ω , then the re rent density will be	ith sinusoidal time atio of displacement	
	(1) $\frac{\sigma}{E\varepsilon}$	(2) $\frac{\sigma}{\sigma}$	(3) $\frac{\sigma}{\omega \varepsilon}$	(4) $\frac{E\varepsilon}{\omega}$	
32.	For sinusoidally	varying electric fic at differ in phase by	eld, the conduction	current and the dis-	
	(1) 180 degree	(2) Zero degree	(3) 90 degree	(4) 45 degree	
33.	A bubbled (input	inverted) OR gate is	s equivalent to		
	(1) NOR gate	(2) NAND gate	(3) NOT gate	(4) XNOR gate	
34.	The most suitab	le gate for comparin	g two bits is		
	(1) AND	(2) OR	(3) NAND	(4) X-OR	
35	Which of the fo	llowing gates canno	t be used as an invert	er?	
	(1) NAND	(2) AND	(3) NOR	(4) X-NOR	
	Llow many NO	R gates are required	to obtain AND opera	tion?	
30	(1) 2	(2) 3	(3) 4	(4) 1	
			(8)	(Continued)	

	(3) $5 \times 10^7 \text{ m/s}$	sec	(4) 22×10^7 m/sec	•
38.	For overlap into	eraction between	en nearest neighbours of	the type,
	$\phi(r) = B \exp\left(\frac{-r}{\rho}\right)$	B and ρ are	re constants, the equilibr	ium spacing in terms of
	B and ρ is			
	(1) $\rho \log e B$	(2) $\frac{\rho}{B}$	(3) B/ρ	(4) ρ B
39.			charge q and mass m is, the de Broglie waveler	
	$(1) \ \frac{h}{\sqrt{2meV}}$		$(2) \frac{h}{\sqrt{2mqV}} \dots$	
	$(3) \ \frac{h}{\sqrt{2qV}}$	e e	$(4) \ \overline{\sqrt{2mV}}$	
40.	Number of atom	ns in a unit cell	in BCC lattice is	
	(1) 8	(2) 1	(3) 2	(4) 4
41.	Atomic packing	factor for FCC	Clattice is approximately	15
	(1) 34%	(2) 52%	(3) 68%	(4) 74%
			(9)	(Turn Over)

37. The velocity of an electron in first orbit of H atom is (approximately)

(2) 2.2×10^6 m/sec


(1) C

2.	Nearest neighbo	ur distance in a s	imple cubic lattice wi	th lattice parameter a is
	(1) $a\sqrt{\frac{3}{2}}$	(2) a	(3) $\sqrt{2}a$	(4) $\sqrt{3} a$
43.	For a simple cuplanes is	bic lattice, the	ratio of density of po	oints in (111) and (110)
	(1) $\frac{2}{3}$	(2) $\frac{\sqrt{2}}{\sqrt{3}}$	(3) $\frac{9}{4}$	(4) $\frac{2}{5}$
44.	If Fermi energy average electron	of electrons in energy at same	a metal at some temp temperature will be g	perature T is 5.5 eV. The iven by
	(1) 33 eV	(2) 5.5 eV	(3) 3.3 eV	(4) Zero eV
45.	Which of the op-amp?	following chara	cteristics does not	necessarily apply to an
	(1) High gain		(2) Low power	
	(3) High input	impedance	(4) Low output im	pedance
46.	Common mode	gain in a differe	ential amplifier is	
	(1) Very high		(2) Very low	
	(3) Always un	ity	(4) Infinite	
47	. A certain noni closed loop ga	nverting amplifi in is	er has an R_i of 1 k Ω	and an R_f of 100 k Ω . The
	(1) 106	$(2) 10^3$	(3) 101	(4) 100
			(10)	(Continued)

- 48. A phase-shift oscillator has
 - (1) Three RC circuits
- (2) Three LC circuits
- (3) a T-type circuit
- (4) a Π-type circuit
- 49. The figure given below shows the density of electron states versus energy for a free electron gas in

- (I) Three-dimensions
- (2) One-dimension
- (3) Two-dimensions
- (4) None of these
- 50. Specific impedance of free space is
 - (1) 377 Q
- (2) 500 Ω
- (3) 50Ω
- (4) 100Ω

- 51. Zero-point is related to
 - (1) Quantization (2) Lasers
- (3) Uncertainty . (4) Duality

52.	Stern-Gerlach exp	eriment demonst	trated	
	(1) Uncertainty pr			
	(2) Quantization of	of angular momen	ntum	
	(3) Duality		•	
	(4) None of these			
53.	The distance betwaris	veen (100) planes	s in a simple cubic crys	tal with unit cell side
	(1) a	$(2) \ \frac{a}{\sqrt{2}}$	$(3) \ \frac{a}{\sqrt{3}}$	(4) $\frac{a}{2}$
54.	The term value, 7	of a state is		
	(1) $\frac{E}{hc}$	$(2) - \frac{E}{hc}$	$(3) \ \frac{E}{211hc}$	$(4) - \frac{E}{2\Pi hc}$
55.	The spectral term is 84178.5 cm '.	value correspor The ionisation po	nding to the ionisation otential of Hg-atom is	potential of Hg-atom
	(1) 15 V	(2) 10.4 V	(3) 13.6 V	(4) 1 V
56.	Which of the fo	llowing, best decorresponding m	scribes the relation be agnetic moment of elec	tween orbital angular etron in an atom?
	(1) $\vec{p}_e = \frac{-2m}{e} \vec{\mu}$		$(2) \stackrel{-}{p_c} = \frac{2m}{e} \stackrel{-}{\mu_c}$	
	(3) $\overline{P}_{c} = \frac{2m}{\hbar} \overline{\mu}_{c}$		(4) $p_e = \mu_e$	
	N-7 H		(12)	(Continued)

57.	If a well collina magnetic field i				rough non-	homogeneous		
	(1) One trace		(2)	Double trace				
	(3) No trace			None of these				
58.	For So state							
	(1) J = 1	(2) $J = 0$		(3) $J = 3/2$. (4)	J = 5/2		
59.	The magnitude of \vec{L} , for a d-electron, in one-electron atomic system is							
	(1) 2	(2) √5 ħ		(3) √3 /₁	(4)	√7 ħ		
60.	In alkali spectra	I series, when or	ne goe	s towards highe	er value of	7,		
	(1) Doublet sep	aration increase	S					
	(2) Doublet con	aration decrees			- 1 September 201			
	(2) Doublet sep	aration decrease	. 5					
	(3) Separations			ωz., ,				
			ie					
	(4) (1) and (3)			· · · · · · · · · · · · · · · · · · ·	•			
61.	The transition	$1^2P \rightarrow 3^{-2}S$, n	= 3,4,	5 in alkali a	ntom gives			
	(1) Sharp series	en verkligere en bijer.	(2)	Principal serie	s			
	(3) Diffuse seri	es	(4)	runcamental s	eries.			
			(13)	×				
	e.	9				(Turn Over)		
						-		

62.	In the	following	lines	ofa	doublet	:
		-				

$${}^{2}S_{1/2} \leftarrow {}^{2}P_{1/2}, \quad {}^{2}S_{1/2} \leftarrow {}^{2}P_{3/2}$$

- (1) 1st line is stronger
- (2) 2nd line is stronger
- (3) Both lines have the same intensity
- (4) Intensity of 2nd line is half that of 1st
- 63. For the level 3D3, the Lange's splitting factor g is
 - (1) 7/3
- (2) 5/3
- (3) 4/3
- '(4) Zero
- 64. In normal Zeeman effect, selection rule $\Delta M_L = 0$ gives
 - (1) II components
- (2) σ components
- (3) unpolarized components
- (4) γ- components
- 65. If one state is occupied (or allowed) for one microparticle and is denied for other particles, the particles are

 - (1) Bosons (2) Fermions
- (3) Phonons
- (4) Photons
- The main component responsible for the fall of gain of an RC coupled amplifier in low frequency range is
 - (1) The active device itself
- (2) Coupling capacitance
- (3) Load resistance
- (4) Junction capacitance

(14)

- 67. Compared to a CB amplifier, the CE amplifier has
 - (1) Lower input resistance
 - (2) Higher output resistance
 - (3) Lower current amplification
 - (4) Higher current amplification
- 68. r"r is solenoidal for

$$(1) n = 3$$

(2)
$$n = -3$$

(3)
$$n = 2$$

(1)
$$n=3$$
 (2) $n=-3$ (3) $n=2$ (4) $n=-2$

69. If
$$I = \int_{0}^{\infty} e^{-\alpha u^{2}} du$$
, then

(1)
$$I = \sqrt{\Pi/a}$$

(2)
$$I = \frac{1}{2} \sqrt{\Pi / a}$$

(4) $I = \sqrt{\frac{\Pi}{2a}}$

(3)
$$I = \frac{3}{8} \sqrt{\frac{\Pi}{a}}$$

$$(4) I = \sqrt{\frac{\Pi}{2a}}$$

- 70. The coefficient of t^n in the expansion of the function $e^{\frac{s}{2}(t-1)}$ is called
 - (1) The Legendre function
 - (2) The Bessel function of first kind of order n
 - (3) Laugurre function
 - (4) Hermite polynomial of order n

(Turn Over)

71. $H_{get}(x) + H_{get}(x)$ equals (where terms have their usual meanings)

- (1) $\frac{2n}{x} H_n(x)$ (2) $2n H_n(x)$

(3) $2H'_{p}(x)$

(4) $H_{n+2}(x)$

Transpose conjugate of two matrices A and B i.e., (AB)' equals

- (1) A'B'
- (2) $B^{+}A^{+}$
- (3) B'A'
- (4) AB

73. The product of a singular matrix with its adjoint gives

- (1) a unitary matrix
- (2) a null matrix
- (3) a diagonal matrix
- (4) None of these

74. The generalised momenta is defined by

(1) $p_{i} = \frac{\partial L}{\partial q_{i}}$

(2) $p_i = \frac{\partial H}{\partial q_i}$

(3) $P_i = \frac{\partial L}{\partial \dot{q}_i}$

75. If $\delta(x)$ is delta function then

- $(1) x \delta(x) = x$
- (2) $x \delta x = \delta x$
- $(3) \times \delta(x) = 0$
- (4) $\delta(x) = \infty$

(16)

76.	. 1 m Curie is equal to	*
	(1) 3.7 × 10 ⁷ disintegrations/sec	
	(2) 3.7 × 10 ¹⁰ disintegrations/sec	
	(3) 106 disintegrations/sec	
	(4) 10 ³ disintegrations/sec	
77.	Nuclei with even mass numbers have	
	(1) Zero or integral spin (2) Half integral spin	
	(3) Imaginary spin (4) None of these	
78.	In Mosley's law, $\sqrt{\nu} = a(z-b)$, the screening constant b for	K series is
	(1) 1 (2) 7.4 (3) 19.6 (4) 2.7
79.	For crystals, having two atoms per primitive cell, square of an	gular Ca onna
	of lattice vibration is given by $\omega^2 = \frac{C/2}{M_1 + M_2} K^2 a^2$ correspond	de to
	(1) Optical branch	
	(2) Acoustical branch	•
	(3) To both acoustical and optical branches	
	(4) Band gap	
		4
	(17)	(Turn Over)

80. The wave vector associated with free electrons at Fermi surface has magnitudes

$$(1) \left(\frac{2mE_E}{\hbar^2}\right)^{1/2}$$

$$(2) \ \frac{2mE_F}{h^2}$$

$$(3) \left(\frac{2m}{\hbar^2}\right)^{\frac{1}{2}}$$

$$(4) \left(\frac{2mE_F}{\hbar^2}\right)^{3/2}$$

 The total forward electric current, including the effects of both holes and electrons, in a p-n junction is given by

$$(1) \quad I = I_0 \left(e^{\frac{e^2}{KT}} - 1 \right)$$

$$(2) \quad I = I_0 \left(e^{\frac{-eV}{KT}} - 1 \right)$$

$$(4) \quad I = I_{u}e^{\frac{eV}{KT}}$$

where the terms have their usual meaning.

82. Compton wavelength $\frac{h}{m_0 e}$ equals

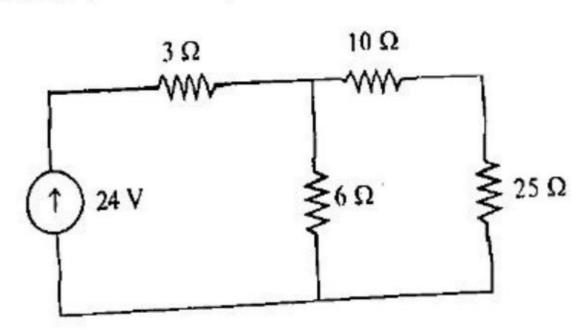
(4)
$$2.4 \times 10^{-11}$$
 m

83. According to free electron theory of metals, potential experienced by electrons inside the metal is

- (1) A constant large potential
- (2) A variable potential
- (3) Zero potential
- (4) Periodic potential

(18)

84.	Energy equivale	ent to rest mass o	fele	ctron is	(2)			
	(1) 1.02 MeV	(2) 0.51 MeV		(3) 1.53.MeV	(4) 0.51 keV			
85.	A particle is mo mass with its res	ving with 90% o st mass is	f the	velocity of light. Ra	atio of its relativistic			
	(1) 2.29	(2) 3.00		(3) 5.00	(4) 2.00			
86.	In a solenoid, m	agnetic field is m	axim	num at				
	(I) Its centre	*	(2)	Ends				
	(3) Away from i	t	(4)	None of these				
87.	Two interfering maximum to min	coherent waves h	ave	amplitudes in the rat	io 2:1. The ratio of			
	(1) 9:1	(2) 3:1	÷	(3) 12:1	(4) 4:1			
88.	In Fresnel's bipri	ism, coherent sou	ırces	are formed due to	,			
	(1) Division of a	mplitude	(2)	Multiple reflection				
	(3) Division of v	vavefront	(4)	Reflection				
89.	In colour photogr	aphy	(
-	(1) Progressive w	ave-formation is	use	d				
i	2) The formation of stationary waves is used							
((3) Diffraction is							
((4) Reflection is t	ised						
	.,	(19)		(Turn Over)			



- 90. In case of Newton's ring, central ring will be dark in
 - (1) Reflected system of light
 - (2) Transmitted system
 - (3) In reflected as well as transmitted system
 - (4) In case plano-convex lens is silvered
- 91. Diffraction of light can be exhibited by light with an obstacle having dimension of the order of
 - (1) 100 cm
- (2) 10 cm
- (3) 10⁻⁵ cm
- (4) 10 m
- 92. At polarising angles, reflected and refracted rays are
 - (1) Parallel

(2) Antiparallel

(3) at 90°

- (4) at 45°
- 93. The Thevenin equivalent voltage for the network shown is

- (1) 24 V
- (2) 12 V
- (3) 16 V
- (4) 8 V

(20)

94.	A certain JFE ideal voltage ga	Γ has a g _m = 4 ms. ain is	With an ac drain res	sistance of 1.5 kΩ, the	
	$(1) 6 \times 10^3$	(2) 2.6	(3) 6	(4) 2.6×10^3	
95.·	The wavelengt	h associated with	an electron accelerat	ed through a potential	
	(1) 1.2 Å	(2) 12.2 Å	(3) 12 nm	(4) 1.22 pm	
96.	The typical de	Broglie wavelength	of an electron in a me	etal at TK is	
	$(1) \lambda = \frac{1}{\sqrt{3mK}}$	Ē,	$(2) \lambda = \frac{h}{\sqrt{3mKT}}$		
	$(3) \lambda = \frac{h/2}{\sqrt{3}mK^2}$	•	$(4) \lambda = \frac{\hbar}{\sqrt{2mKT}}$		
7.	Slow neutrons (238 U isotopes, th		mple of Uranium con	taining both "U and	
	(1) Both isotope	es will undergo fissi	ion and breakup		
	(2) only at at	oms undergo fissio	n -		
,	(3) only 238 U at	oms undergo fissio	ń ,	• 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
((4) None of the	sotopes will break	ир	• .	
		,			

(Turn ()ver)

- 98. The half life of $^{218}P_0$ is 3 minute. What fraction of a 10 gm sample of $^{218}P_0$ will remain after 15 minutes?

 - (1) $\frac{1}{5}$ (2) $\frac{1}{25}$ (3) $\frac{1}{32}$

- Hard magnetic material is characterized by
 - (1) High coercive force and low residual magnetic induction
 - (2) Low coercive force and high residual magnetic induction
 - (3) Only low coercive force
 - (4) High coercive force and high residual magnetic induction
- 100. The density of carriers in a pure semiconductor is proportional to
 - (1) $\exp\left(\frac{-Eg}{KT}\right)$
- (2) $\exp\left(\frac{-2Eg}{KT}\right)$
- (3) $\exp\left(\frac{-Eg}{KT^2}\right)$
- (4) $\exp\left(\frac{-Eg}{2KT}\right)$
- 101. Imperfection arising due to the displacement of an ion from a regular site to an interstitial site maintaining overall electrical neutrality of ionic crystal is called
 - (1) Frenkel imperfection
- (2) Schottky imperfection
- (3) Point imperfection
- (4) Volume defect

(22)

102. Miller indices of the	e diagonal p	olane o	of a cube are		27	
(1) (200)	2) (111)	5 4	(3) (010)		(4) (11	0)
103. If the load resistant ripple voltage	ce of a capa	citor f	iltered full v	vave rect	ifier is red	uced, the
(1) Increases		(2)	Decreases			
(3) Is not affected	. 2	(4)	has a differ	ent frequ	iency	
104. If one of the diodes	in a bridge f	full wa	ve rectifier	opens, th	e output is	
(I) 0 V			1. **	* ** .	•.	
(2) One-fourth the a	mplitude of	the in	put voltage			,
(3) a half-wave recti	fied voltage	1.1.* ,	erde opperates	* FT 100 0100000.	1. 4	•
(4) a 100 Hz voltage	.					
105. When operated in cu	toff and sat	uration	n, the transis	tor acts 1	ikė	
(!) a linear amplifie	F · ·	(2)	a switch			
(3) a variable capaci	tor	(4)	a variable re	sistor		
06. The low frequency re	sponse of a				part by	
(1) the voltage gain	1000		the type of t			
(3) the supply voltage	·	(4) t	he coupling	capacit _{Ol}	ris	
	i.	(22)				
		,			(Turn	Over

- 107. If the rate of change of current in a current carrying coil is unity, then the induced emf is equal to
 - (1) Coefficient of self induction
 - (2) Magnetic flux linked with the coil
 - (3) Number of turns in the coil
 - (4) Thickness of the coil
- 108. The velocity of the ejected photoelectrons depends upon the
 - (1) Frequency of incident light
 - (2) Intensity of incident light
 - (3) Both (1) and (2)
 - (4) Neither (1) nor (2)
- 109. If the electron in a hydrogen atom jumps from an orbit with level $n_i = 3$ to an orbit with level $n_f = 2$, the emitted radiation has a wavelength given by
 - $(1) \lambda = \frac{36}{5R}$

 $(2) \quad \lambda = \frac{5R}{36}$

(3) $\lambda = \frac{6}{R}$

(4) $\lambda = \frac{R}{\lambda}$

where R is Rydberg constant.

- 110. Consider α -particles, β -particles and γ -rays, each having an energy of 0.5 MeV. In the increasing order of penetrating powers, the radiations are
 - (1) α, β, γ (2) α, γ, β
- (3) β, γ, α (4) γ, β, α

(24)

(1) ih	L _x	(2) i	ħሢ _,		(3)	Zero	((4) A L	2
113. An ele de Bro	ectron falls oglie wavele	from r	est in a rep ssociated	gion with	with	potential tron will l	differen	ce of 1	00 V. The
(1) 12	.3 nm	(2) 1	.23 nm		(3)	123 nm	. (4) 0.12	3 nm
114. An ele	ctromagnet	ic wav	e going th	rox10	h var	mum in de			
$E = E_0$	sin(kx-wt)	and E	$B = B_0 \sin(k)$	x-a	n vac	hen	scribed	рy	
(1) E_0	$K = B_0 \omega$			(2)	E_0B_0	= wK	75		
(3) E_0	$\omega = B_0 K$			(4)	$\frac{E_0}{B_0} =$	0/K	1		
15. The en well of	ergy densit	y of s igh wa	tates of a	n ele syml	ectro bols i	lave their	usual me	aning)	
(1) 1				2)	Li II h	m JE	. • • • • • • • • • • • • • • • • • • •	•	
(3) П	$\frac{Lm}{\sqrt{2E}}$	19	6	4)	L√ 2 ∏ I	E E			
		* (2)	(2	25)				(Tur	n Over)

(2) 10 -10 metre

(4) 10 - metre

111. The wavelength of γ -rays is of the order of

(1) 10 -7 metre

(3) 10^{-12} metre

112. $[L^2, L_r]$ equals

- 116. The commutator [x, px], where x and px are position and momentum operator respectively, is
 - (1) 2ihpx
- (2) -ihpx
- (3) 2*i*ħxpx
- (4) -2ihxpx

- 117. Value of $[f(x), px^2]$ is
 - (1) ih

(2) $i\hbar \frac{\partial f}{\partial x}$

(3) ih $\frac{\partial f}{\partial px}$

- (4) n iħ
- 118. The equation of states of a dilute gas at very high temperature is described by $\frac{pV}{K_BT} = 1 + \frac{B(T)}{V}$, where V is the volume per particle and B(T) is a ve quantity. One can conclude that this is a property of
 - (1) a van der Waals' gas
- (2) an ideal Fermi gas
- (3) an ideal Bose gas
- (4) an ideal inert gas
- 119. Which of the following relations between the particle number density n and temperature T must hold good for a gas consisting of non-interacting particles to be described by quantum statistics?
 - $(1) \ \frac{n}{T^{1/2}} \ll 1$

 $(2) \ \frac{n}{T^{3/2}} \ll 1$

(3) $\frac{n}{T^{3/2}} \gg 1$

(4) $\frac{n}{T^{1/2}}$ and $\frac{n}{T^{3/2}}$ can have any values

(26)

120. If the kinetic energy of a body is twice its rest mass energy, what will be the ratio of relativistic mass to the rest mass of the body

(1) 3

(2) 1

(3) $\frac{1}{2}$

(4) 2

(27)

ROUGH WORK एक कार्य

ROUGH WORK रफ़ कार्य

अभ्यर्थियों के लिए निर्देश

(इस पुस्तिका के प्रथम आवरण-पृष्ठ पर तथा उत्तर-पत्र के दोनों पृष्ठों पर केवल नीली या काली बाल-प्याइंट पेन से ही लिखें)

- प्रश्न पुस्तिका मिलने के 30 मिनट के अन्दर ही देख लें कि प्रश्नपत्र में सभी पृष्ठ मौजूद हैं और कोई प्रश्न छूटा नहीं है । पुस्तिका दोषयुक्त पाये जाने पर इसकी सूचना तत्काल कक्ष-निरीक्षक को देकर सम्पूर्ण प्रश्नपत्र की दूसरी पुस्तिका प्राप्त कर लें।
- परीक्षा भवन में लिफाफा रहित प्रवेश-पत्र के अतिरिक्त, लिखा या सादा कोई भी खुला कागज साथ में न
- उत्तर-पत्र अलग से दिया गया है । इसे न तो मोड़ें और न ही विकृत करें । दूसरा उत्तर-पत्र नहीं दिया जायेगा, केवल उत्तर-पत्र का ही मूल्यांकन किया जायेगा।
- अपना अनुक्रमांक तथा उत्तर-पत्र का क्रमांक प्रथम आवरण-पृष्ठ पर पेन से निर्धारित स्थान पर लिखें।
- उत्तर-पत्र के प्रथम पृष्ठ पर पेन से अपना अनुक्रमांक निर्धारित स्थान पर लिखें तथा नीचे दिये वृत्तों को गाढ़ा कर दें।जहाँ-जहाँ आवश्यक हो वहाँ प्रश्न-पुस्तिका का क्रमांक तथा सेट का नम्बर उचित स्थानों पर लिखें।
- 6. ओ. एम.. आर.. पत्र पर अनुक्रमांक संख्या, पश्न-पुस्तिका संख्या व सेट संख्या (यदि कोई हो) तथा प्रश्न-पुस्तिका पर अनुक्रमांक संख्या और ओ. एम. आर. पत्र संख्या की प्रविष्टियों में उपरिलेखन की अनुमति नहीं है ।
- उपर्युक्त प्रविष्टियों में कोई भी परिवर्तन कक्ष निरीक्षक द्वारा प्रमाणित होना चाहिये अन्यथा यह एक अनुचित साधन का प्रयोग माना जायेगा।
- प्रश्न-पुस्तिका में प्रत्येक प्रश्न के चार वैकल्पिक उत्तर दिये गये हैं । प्रत्येक प्रश्न के वैकल्पिक उत्तर के लिये आपको उत्तर-पत्र की सम्बन्धित यंक्ति के सामने दिये गये वृत्त को उत्तर-पत्र के प्रथम पृष्ठ पर दिये गये निर्देशों के अनुसार पेन से गाड़ा करना है।
- 9. प्रत्येक प्रश्न के उत्तर के लिये केवल एक ही वृत्त को गाढ़ा करें। एक से अधिक वृत्तों को गाढ़ा करने पर अधवा एक वृत्त को अपूर्ण भरने पर वह उत्तर गलत माना जायेगा।
- 10. ध्यान दें कि एक बार स्याही द्वारा अंकित उत्तर बदला नहीं जा सकता है। यदि आप किसी प्रश्न का उत्तर नहीं देना चाहते हैं, तो सम्बन्धित पंक्ति के सामने दिये गये सभी वृत्तों को खाली छोड़ दें। ऐसे प्रश्नों पा शून्य अंक दिये जायेंगे।
- 11. एफ कार्य के लिये प्रश्न-पुस्तिका के मुखपृष्ठ के अन्दर वाले पृष्ठ तथा अंतिम पृष्ठ का प्रयोग करें।
- 12. परीक्षा के उपरान्त केवल ओः एमः आरः उत्तर-पत्र परीक्षा भवन में जमा कर दें।
- परीक्षा समाप्त होने से पहले परीक्षा भवन से बाहर जाने की अनुमित नहीं होगी।
- यदि कोई अभ्यर्थी परीक्षा में अनुचित साधनों का प्रयोग करता है, तो वह विश्वविद्यालय द्वारा निर्धारित दंड का/की, भागी होगा/होगी ।

