Sample Paper

Time: 90 Minutes

General Instructions

- 1. The Question Paper contains three sections.
- 2. Section A has 25 questions. Attempt any 20 questions.
- 3. Section B has 24 questions. Attempt any 20 questions.
- 4. Section C has 6 questions. Attempt any 5 questions.
- 5. *All questions carry equal marks.*
- 6. There is no negative marking.

SECTION-A

This section consists of 25 multiple choice questions with overall choice to attempt **any 20** questions. In case more than desirable number of questions are attempted, ONLY first 20 will be considered for evaluation.

1.	A D-carbohydrate is:											
	(a)	Always dextrorotato	ry									
	(b) Always laevorotatory											
	(c)	Always the mirror of	the c	orresponding L-carbohy	drate							
	(d)	None of these.										
2.	Cor	ncentrated nitric acid,	upon	long standing, turns yell	ow br	own due to the formation	of					
	(a)	NO	(b)	NO ₂	(c)	N ₂ O	(d)	N_2O_4				
3.	Am	monia on catalytic oxi	dation	n gives an oxide from wh	ich nit	tric acid is obtained. The or	xide is	:				
	(a)	N ₂ O ₃	(b)	NO	(c)	NO ₂	(d)	N ₂ O ₅				
4.	Wh	ich is the least stable f	form of	of glucose ?								
	(a)	α-D-Glucose	(b)	β-D-Glucose	(c)	Open chain structure	(d)	All are equally stable				
5.	The	e best method for the c	onver	sion of an alcohol into a	n alky	l chloride is by treating th	e alcoh	ol with				
	(a) PCl_5					dry HCl in the presence	ry HCl in the presence of anhydrous ZnCl ₂					
	(c)	SOCl ₂ in presence of	pyrid	ine	(d)	none of these		-				
6.	Nitrogen forms N_2 , but phosphorus is converted into P_4 from P, the reason is											
	(a)	Triple bond is preser	nt bet	ween phosphorus atom	(b)	$p_{\pi} - p_{\pi}$ bonding is strong	g					
	(c) $p_{\pi} - p_{\pi}$ bonding is weak				(d)	Multiple bond is formed easily						
7.	Exa	imple of molecular sol	id is	:								
	(a)	$SO_2(s)$	(b)	SiC	(c)	C (graphite)	(d)	NaCl				
1. 2. 3. 4. 5. 6. 7. 8. 9.	Colligative properties of the solution depend on											
	(a)	Nature of solute			(b)	Nature of solvent						
	(c)	Number of particles	presei	nt in the solution	(d)	Number of moles of solv	ent on	ly				
9.	CsC	Cl crystallises in body of	centre	d cubic lattice. If 'a' is i	ts edg	e length then which of the	follow	ring expressions is correct?				

(a)
$$r_{Cs^+} + r_{Cl^-} = 3a$$
 (b) $r_{Cs^+} + r_{Cl^-} = \frac{3a}{2}$ (c) $r_{Cs^+} + r_{Cl^-} = \frac{\sqrt{3}}{2}a$ (d) $r_{Cs^+} + r_{Cl^-} = \sqrt{3}a$

Max. Marks : 35

SP-24

10	Den men e have ak lani de is										
10.	Benzene nexachioride is (a) $1, 2, 3, 4, 5, 6$ have able received by a second second	(b)	1 1 1 6 6 6 have chlored	valah	24010						
	(a) $1, 2, 3, 4, 5, 0$ -inexactinolocyclonexane	(0)	1, 1, 1, 0, 0, 0-nexacinorocy	ano	exame						
11	(u) 1, 0-phony 1, 0-childron contraine (u) 1, 1-phony 1-0, 0-childron contraine The two forms of D glucon waves obtained from the solution of D glucose are better called										
11.	(a) isomers (b) anomers (c) mimora (d) mentioners										
12	Which of the following reactions is an example of nucleophilic substitution reaction?										
14,	(a) $2RX + 2N_2 \rightarrow R - R + 2N_2X$ (b) $RY + H \rightarrow RH + HY$										
	(a) $2 KA + 2 Na \rightarrow K - K + 2 NaA$	(0)	$KA + \Pi_2 \rightarrow K\Pi + \Pi A$								
10	(c) $RX + Mg \rightarrow RMgX$	(d)	$RX + KOH \rightarrow ROH + KX$								
13.	Fluorine exhibits an oxidation state of only-1 because	<i>a</i>)									
	(a) it can readily accept an electron	(b)	it is very strongly electron	iegati	ve						
	(c) It is a non-metal	(d)	it belongs to halogen fami	ly							
14.	When phenol is treated with excess bromine water, it gr	ves:									
	(a) <i>m</i> -bromophenol	(b)	<i>o</i> - and <i>p</i> -bromophenol								
1.5	(c) 2, 4-dibromophenol	(d)	2, 4, 6-tribromophenol	0							
15.	which of the following conditions favours the existence	e of a	substance in the solid state	e?							
	(a) High temperature	(0)	Low temperature								
16	(c) High thermal energy	(a)	in natura?								
10.	How many accords with molecular formula $C_4 \Pi_{10} O$ are	(a)		(4)	Λ						
17	(a) 1 (b) 2 Pressure cooker reduces cooking time because	(\mathbf{c})	5	(u)	4						
17.	(a) the heat is more easily distributed										
	(h) the higher pressure tenderizes the food										
	(c) the boiling point of the water inside is elevated										
	(d) a larger flame is used										
10	ILIDAC name of the compound CH CH OCH i	a									
18.	IUPAC name of the compound $CH_3 - CH - OCH_3$ i	S.	2	_							
18.	IUPAC name of the compound $CH_3 - CH - OCH_3$ i (a) 1-methoxy-1methylethane CH_3	s. (b)	2-methoxy-2-methylethan	e							
18.	IUPAC name of the compound $CH_3 - CH - OCH_3$ i (a) 1-methoxy-1methylethane CH_3 (c) 2-methoxypropane In ansa of hydrida of avygan family, which of the follow	s. (b) (d)	2-methoxy-2-methylethan isopropylmethyl ether	e	y on moving down the group						
18. 19.	IUPAC name of the compound $CH_3 - CH - OCH_3$ i (a) 1-methoxy-1methylethane CH_3 (c) 2-methoxypropane In case of hydride of oxygen family, which of the follow	s. (b) (d) ing pl	2-methoxy-2-methylethan isopropylmethyl ether nysical property change reg	e ularly	y on moving down the group.						
18. 19.	IUPAC name of the compound $CH_3 - CH - OCH_3$ i (a) 1-methoxy-1methylethane CH_3 (c) 2-methoxypropane In case of hydride of oxygen family, which of the follow (a) Melting point (c) Deiling point	s. (b) (d) ing pl (b)	2-methoxy-2-methylethan isopropylmethyl ether nysical property change reg Thermal stability	e Jularly	y on moving down the group.						
18. 19.	 IUPAC name of the compound CH₃ —CH — OCH₃ i (a) 1-methoxy-1methylethane CH₃ (c) 2-methoxypropane In case of hydride of oxygen family, which of the follow (a) Melting point (c) Boiling point 	s. (b) (d) ing pl (b) (d)	2-methoxy-2-methylethan isopropylmethyl ether nysical property change reg Thermal stability Critical temperature	e ularly	y on moving down the group.						
18.19.20.	 IUPAC name of the compound CH₃ —CH — OCH₃ i (a) 1-methoxy-1methylethane CH₃ (c) 2-methoxypropane In case of hydride of oxygen family, which of the follow (a) Melting point (c) Boiling point (c) Boiling point (c) A disctores and a second se	s. (b) (d) ing ph (b) (d)	2-methoxy-2-methylethan isopropylmethyl ether nysical property change reg Thermal stability Critical temperature	e ularly	y on moving down the group.						
18.19.20.	IUPAC name of the compound $CH_3 - CH - OCH_3$ i (a) 1-methoxy-1methylethane CH_3 (c) 2-methoxypropane In case of hydride of oxygen family, which of the follow (a) Melting point (c) Boiling point Which one is the absolutely specific term? (a) A diastereomer (c) An anomor	s. (b) (d) ing ph (b) (d) (b) (d)	2-methoxy-2-methylethan isopropylmethyl ether nysical property change reg Thermal stability Critical temperature An epimer	e ularly	y on moving down the group.						
 18. 19. 20. 21 	 IUPAC name of the compound CH₃ —CH — OCH₃ i (a) 1-methoxy-1methylethane CH₃ (c) 2-methoxypropane In case of hydride of oxygen family, which of the follow (a) Melting point (c) Boiling point (c) Boiling point (d) A diastereomer (e) An anomer 	s. (b) (d) ing ph (b) (d) (b) (d)	2-methoxy-2-methylethan isopropylmethyl ether hysical property change reg Thermal stability Critical temperature An epimer None of the three.	e ularly	y on moving down the group.						
 18. 19. 20. 21. 	 IUPAC name of the compound CH₃ —CH — OCH₃ i (a) 1-methoxy-1methylethane CH₃ (c) 2-methoxypropane In case of hydride of oxygen family, which of the follow (a) Melting point (c) Boiling point (c) Boiling point (c) An anomer (c) An anomer (c) An anomer (a) 2 3-dimethylpentane 	s. (b) (d) ing ph (b) (d) (b) (d) 14° ca	2-methoxy-2-methylethan isopropylmethyl ether nysical property change reg Thermal stability Critical temperature An epimer None of the three. rbon atoms is	e ularly	y on moving down the group.						
 18. 19. 20. 21. 	IUPAC name of the compound CH ₃ —CH — OCH ₃ i (a) 1-methoxy-1methylethane CH ₃ (c) 2-methoxypropane In case of hydride of oxygen family, which of the follow (a) Melting point (c) Boiling point Which one is the absolutely specific term? (a) A diastereomer (c) An anomer The compound which contains all the four 1°, 2°, 3° and (a) 2, 3-dimethylpentane (c) 2 3 4-trimethylpentane	s. (b) (d) ing ph (b) (d) (b) (d) 14° ca (b) (d)	2-methoxy-2-methylethan isopropylmethyl ether hysical property change reg Thermal stability Critical temperature An epimer None of the three. rbon atoms is 3-chloro-2, 3-dimethylpen 3 3-dimethylpentane	e ularly tane	y on moving down the group.						
 18. 19. 20. 21. 22. 	 IUPAC name of the compound CH₃ —CH — OCH₃ i (a) 1-methoxy-1methylethane CH₃ (c) 2-methoxypropane In case of hydride of oxygen family, which of the follow (a) Melting point (c) Boiling point (c) Boiling point (d) A diastereomer (e) An anomer (f) The compound which contains all the four 1°, 2°, 3° and (a) 2, 3-dimethylpentane (c) 2, 3, 4-trimethylpentane 	s. (b) (d) ing ph (b) (d) (b) (d) 14° ca (b) (d)	2-methoxy-2-methylethan isopropylmethyl ether nysical property change reg Thermal stability Critical temperature An epimer None of the three. rbon atoms is 3-chloro-2, 3-dimethylpen 3,3-dimethylpentane	e ularly tane	y on moving down the group.						
 18. 19. 20. 21. 22. 	IUPAC name of the compound $CH_3 - CH - OCH_3$ i (a) 1-methoxy-1methylethane CH_3 (c) 2-methoxypropane In case of hydride of oxygen family, which of the follow (a) Melting point (c) Boiling point Which one is the absolutely specific term? (a) A diastereomer (c) An anomer The compound which contains all the four 1°, 2°, 3° and (a) 2, 3-dimethylpentane (c) 2, 3, 4-trimethylpentane Sulphur does not exist as S ₂ molecule because (b) It is less electronegative	s. (b) (d) ing ph (b) (d) (b) (d) 14° ca (b) (d)	2-methoxy-2-methylethan isopropylmethyl ether nysical property change reg Thermal stability Critical temperature An epimer None of the three. rbon atoms is 3-chloro-2, 3-dimethylpen 3,3-dimethylpentane	e ularly tane	y on moving down the group.						
 18. 19. 20. 21. 22. 	IUPAC name of the compound $CH_3 - CH - OCH_3$ i (a) 1-methoxy-1methylethane CH_3 (c) 2-methoxypropane In case of hydride of oxygen family, which of the follow (a) Melting point (c) Boiling point Which one is the absolutely specific term? (a) A diastereomer (c) An anomer The compound which contains all the four 1°, 2°, 3° and (a) 2, 3-dimethylpentane (c) 2, 3, 4-trimethylpentane Sulphur does not exist as S ₂ molecule because (b) It is less electronegative (b) It has ability to exhibit catenation	s. (b) (d) ing ph (b) (d) (b) (d) 14° ca (b) (d)	2-methoxy-2-methylethan isopropylmethyl ether hysical property change reg Thermal stability Critical temperature An epimer None of the three. rbon atoms is 3-chloro-2, 3-dimethylpen 3,3-dimethylpentane	e ularly	y on moving down the group.						
 18. 19. 20. 21. 22. 	IUPAC name of the compound $CH_3 - CH - OCH_3$ i (a) 1-methoxy-1methylethane CH_3 (c) 2-methoxypropane In case of hydride of oxygen family, which of the follow (a) Melting point (c) Boiling point Which one is the absolutely specific term? (a) A diastereomer (c) An anomer The compound which contains all the four 1°, 2°, 3° and (a) 2, 3-dimethylpentane (c) 2, 3, 4-trimethylpentane Sulphur does not exist as S ₂ molecule because (b) It is less electronegative (c) It is not able to constitute p π -p π bond	s. (b) (d) ing ph (b) (d) (b) (d) 14° ca (b) (d)	2-methoxy-2-methylethan isopropylmethyl ether nysical property change reg Thermal stability Critical temperature An epimer None of the three. rbon atoms is 3-chloro-2, 3-dimethylpen 3,3-dimethylpentane	e ularly	y on moving down the group.						
 18. 19. 20. 21. 22. 	IUPAC name of the compound $CH_3 - CH - OCH_3$ i (a) 1-methoxy-1methylethane CH_3 (c) 2-methoxypropane In case of hydride of oxygen family, which of the follow (a) Melting point (c) Boiling point Which one is the absolutely specific term? (a) A diastereomer (c) An anomer The compound which contains all the four 1°, 2°, 3° and (a) 2, 3-dimethylpentane (c) 2, 3, 4-trimethylpentane Sulphur does not exist as S ₂ molecule because (b) It is less electronegative (b) It has ability to exhibit catenation (c) It is not able to constitute $p\pi$ - $p\pi$ bond (d) It has the tendency to show variable oxidation sta	s. (b) (d) ing ph (b) (d) (d) (d) (d) (d) (d)	2-methoxy-2-methylethan isopropylmethyl ether hysical property change reg Thermal stability Critical temperature An epimer None of the three. rbon atoms is 3-chloro-2, 3-dimethylpen 3,3-dimethylpentane	e ularly	y on moving down the group.						
 18. 19. 20. 21. 22. 23. 	IUPAC name of the compound $CH_3 - CH - OCH_3$ i (a) 1-methoxy-1methylethane CH_3 (c) 2-methoxypropane In case of hydride of oxygen family, which of the follow (a) Melting point (c) Boiling point Which one is the absolutely specific term? (a) A diastereomer (c) An anomer The compound which contains all the four 1°, 2°, 3° and (a) 2, 3-dimethylpentane (c) 2, 3, 4-trimethylpentane Sulphur does not exist as S ₂ molecule because (b) It is less electronegative (b) It has ability to exhibit catenation (c) It is not able to constitute $p\pi$ - $p\pi$ bond (d) It has the tendency to show variable oxidation stat The total number of acyclic isomers including the stereo	s. (b) (d) ing ph (b) (d) (d) (d) (d) (d) (d) (d) tes isome	2-methoxy-2-methylethan isopropylmethyl ether hysical property change reg Thermal stability Critical temperature An epimer None of the three. rbon atoms is 3-chloro-2, 3-dimethylpen 3,3-dimethylpentane	e ularly tane	y on moving down the group. H ₇ Cl						
 18. 19. 20. 21. 22. 23. 	IUPAC name of the compound $CH_3 - CH - OCH_3$ i (a) 1-methoxy-1methylethane CH_3 (c) 2-methoxypropane In case of hydride of oxygen family, which of the follow (a) Melting point (c) Boiling point Which one is the absolutely specific term? (a) A diastereomer (c) An anomer The compound which contains all the four 1°, 2°, 3° and (a) 2, 3-dimethylpentane (c) 2, 3, 4-trimethylpentane Sulphur does not exist as S ₂ molecule because (b) It is less electronegative (b) It has ability to exhibit catenation (c) It is not able to constitute $p\pi$ - $p\pi$ bond (d) It has the tendency to show variable oxidation stat The total number of acyclic isomers including the stereo (a) 11 (b) 12	s. (b) (d) ing ph (b) (d) (d) (d) (d) (d) (d) (d) tes isome (c)	2-methoxy-2-methylethan isopropylmethyl ether nysical property change reg Thermal stability Critical temperature An epimer None of the three. rbon atoms is 3-chloro-2, 3-dimethylpen 3,3-dimethylpentane	e ularly tane tane (d)	y on moving down the group. H ₇ Cl 10						
 18. 19. 20. 21. 22. 23. 24. 	IUPAC name of the compound $CH_3 - CH - OCH_3$ i (a) 1-methoxy-1methylethane CH_3 (c) 2-methoxypropane In case of hydride of oxygen family, which of the follow (a) Melting point (c) Boiling point Which one is the absolutely specific term? (a) A diastereomer (c) An anomer The compound which contains all the four 1°, 2°, 3° and (a) 2, 3-dimethylpentane (c) 2, 3, 4-trimethylpentane Sulphur does not exist as S ₂ molecule because (b) It is less electronegative (b) It has ability to exhibit catenation (c) It is not able to constitute $p\pi$ - $p\pi$ bond (d) It has the tendency to show variable oxidation stat The total number of acyclic isomers including the stereod (a) 11 (b) 12 Which of the following units is useful in relating concert	s. (b) (d) ing ph (b) (d) (d) (d) (d) (d) (d) (d) (d) (d) (c) (c) entrati	2-methoxy-2-methylethan isopropylmethyl ether hysical property change reg Thermal stability Critical temperature An epimer None of the three. rbon atoms is 3-chloro-2, 3-dimethylpen 3,3-dimethylpentane	e ularly tane tane (d) our pi	y on moving down the group. H ₇ Cl 10 ressure?						
 18. 19. 20. 21. 22. 23. 24. 	IUPAC name of the compound $CH_3 - CH - OCH_3$ i (a) 1-methoxy-1methylethane CH_3 (c) 2-methoxypropane In case of hydride of oxygen family, which of the follow (a) Melting point (c) Boiling point Which one is the absolutely specific term? (a) A diastereomer (c) An anomer The compound which contains all the four 1°, 2°, 3° and (a) 2, 3-dimethylpentane (c) 2, 3, 4-trimethylpentane Sulphur does not exist as S ₂ molecule because (b) It is less electronegative (b) It is not able to constitute $p\pi$ - $p\pi$ bond (c) It is not able to constitute $p\pi$ - $p\pi$ bond (d) It has the tendency to show variable oxidation stather the total number of acyclic isomers including the stereod (a) 11 (b) 12 Which of the following units is useful in relating concert (a) Mole fraction (b) Parts per milion	s. (b) (d) ing ph (b) (d) (d) (d) (d) (d) (d) (d) (d) (d) (c)	2-methoxy-2-methylethan isopropylmethyl ether hysical property change reg Thermal stability Critical temperature An epimer None of the three. rbon atoms is 3-chloro-2, 3-dimethylpen 3,3-dimethylpentane	e ularly tane (d) (d)	y on moving down the group. H ₇ Cl 10 ressure? Molality						
 18. 19. 20. 21. 22. 23. 24. 25. 	IUPAC name of the compound $CH_3 - CH - OCH_3$ i (a) 1-methoxy-1methylethane CH_3 (c) 2-methoxypropane In case of hydride of oxygen family, which of the follow (a) Melting point (c) Boiling point Which one is the absolutely specific term? (a) A diastereomer (c) An anomer The compound which contains all the four 1°, 2°, 3° and (a) 2, 3-dimethylpentane (c) 2, 3, 4-trimethylpentane Sulphur does not exist as S ₂ molecule because (b) It is less electronegative (b) It has ability to exhibit catenation (c) It is not able to constitute $p\pi$ - $p\pi$ bond (d) It has the tendency to show variable oxidation stat The total number of acyclic isomers including the stereod (a) 11 (b) 12 Which of the following units is useful in relating concert (a) Mole fraction (b) Parts per milion	s. (b) (d) ing ph (b) (d) (d) (d) (d) (d) (d) (d) (d) (d) (c) colour	2-methoxy-2-methylethan isopropylmethyl ether hysical property change reg Thermal stability Critical temperature An epimer None of the three. rbon atoms is 3-chloro-2, 3-dimethylpen 3,3-dimethylpentane	e ularly tane tane (a) (b) (c) (c)	y on moving down the group. H ₇ Cl 10 ressure? Molality						
 18. 19. 20. 21. 22. 23. 24. 25. 	IUPAC name of the compound $CH_3 - CH - OCH_3$ i (a) 1-methoxy-1methylethane CH_3 (c) 2-methoxypropane In case of hydride of oxygen family, which of the follow (a) Melting point (c) Boiling point Which one is the absolutely specific term? (a) A diastereomer (c) An anomer The compound which contains all the four 1°, 2°, 3° and (a) 2, 3-dimethylpentane (c) 2, 3, 4-trimethylpentane Sulphur does not exist as S ₂ molecule because (b) It is less electronegative (b) It has ability to exhibit catenation (c) It is not able to constitute $p\pi$ - $p\pi$ bond (d) It has the tendency to show variable oxidation stather the total number of acyclic isomers including the stereod (a) 11 (b) 12 Which of the following units is useful in relating concert (a) Mole fraction (b) Parts per milion Which of the following solutions does not change its of (a) Starch iodide solution	s. (b) (d) ing ph (b) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d	2-methoxy-2-methylethan isopropylmethyl ether hysical property change reg Thermal stability Critical temperature An epimer None of the three. rbon atoms is 3-chloro-2, 3-dimethylpen 3,3-dimethylpentane rs with the molecular formu 9 on of solution with its vapo Mass percentage on passing ozone through Alcoholic solution of benz	e ularly tane tane (d) our pr (d) it? zidine	y on moving down the group. H ₇ Cl 10 ressure? Molality						

Sample Paper-4

SECTION-B This section consists of 24 multiple choice questions with overall choice to attempt any 20 questions. In case more than desirable number of questions are attempted, ONLY first 20 will be considered for evaluation. In both DNA and RNA, heterocylic base and phosphate ester linkages are at -26. (a) C'_5 and C'_1 respectively of the sugar molecule (b) C'_1 and C'_5 respectively of the sugar molecule (c) C'_2 and C'_5 respectively of the sugar molecule (d) C'_5 and C'_2 respectively of the sugar molecule 27. In the case of alkali metals, the covalent character decreases in the order: (a) MF > MCl > MBr > MI(b) MF > MCl > MI > MBr(c) MI > MBr > MCl > MFMCl > MI > MBr > MF(d) 28. Of the interhalogen AX₃ compounds, ClF_3 is most reactive but BrF_3 has higher conductance in liquid state. This is because (a) BrF_3 has higher molecular mass (b) ClF_3 is more volatile (c) BrF_3 dissociates into BrF_2^+ and BrF_4^- most easily (d) Electrical conductance does not depend on concentration **29.** Molarity of H_2SO_4 is 18 M. Its density is 1.8 g/mL. Hence molality is (a) 36 200 500 (b) (c) (d) 18 30. How many grams of concentrated nitric acid solution should be used to prepare 250 mL of 2.0 M HNO₃? The concentrated acid is 70% HNO₂ (a) 90.0 g conc. HNO_3 (b) $70.0 \text{ g conc. HNO}_3$ (c) $54.0 \text{ g conc. HNO}_3$ (d) $45.0 \text{ g conc. HNO}_3$ **31.** In the following groups : (I) –OAc (II) –OMe (III) $-OSO_2 Me$ $(IV) -OSO_2CF_2$ the order of leaving group ability is (a) I > II > III > IV(b) IV > III > I > IIIII > II > I > IV(c) (d) II > III > IV > I32. Which one of the following reactions of xenon compounds is not feasible? (a) $3XeF_4 + 6H_2O \longrightarrow 2Xe + XeO_3 + 12HF + 1.5O_2$ (b) $2XeF_2 + 2H_2O \longrightarrow 2Xe + 4HF + O_2$ (c) $XeF_6 + RbF \longrightarrow Rb[XeF_7]$ (d) $XeO_3 + 6HF \longrightarrow XeF_6 + 3H_2O$ **33.** The **incorrect** statement among the following is: (a) α -D-glucose and β -D-glucose are anomers. (b) α -D-glucose and β -D-glucose are enantiomers. (c) Cellulose is a straight chain polysaccharide made up of only β -D-glucose units. (d) The penta acetate of glucose does not react with hydroxyl amine. 34. Identify the compound Y in the following reaction. ¹² Na NO₂+HCl 273–278 K $C\underline{u_2Cl_2} \rightarrow Y + N_2$ (c) (d) (a)

35. Elements of group- 15 form compounds in +5 oxidation state. However, bismuth forms only one well characterised compound in +5 oxidation state. The compound is

(a) Bi_2O_5 (b) BiF_5 (c) $BiCl_5$ (d) Bi_2S_5

sp-25

SP-26

4×10^{25}
nyl chloride
robenzene
g. If enthalpy of vaporisation
290 K
111 < 11 < 1
None of these cation is 110 pm, the radius
144 pm ack 'M' and on reaction with ue compound. 'M' and 'B'
Al and N ₂
0
l l
1 ac ue

Sample Paper-4

Given below are two statements labelled as Assertion (A) and Reason (R). Select the most appropriate answer from the options given below:

- (a) Both A and R are true and R is the correct explanation of A.
- Both A and R are true but R is not the correct explanation of A. *(b)*
- (c) A is true but R is false.
- A is false and R is also false. (d)
- **45.** Assertion : The bond angle in alcohols is slightly less than the tetrahedral angle. **Reason :** In alcohols, the oxygen of -OH group is attached to sp^3 hybridized carbon atom.
- 46. Assertion : Atoms in S_{α} molecule undergo sp^3 hybridization and contain two lone pair on each atom. **Reason :** S_8 has a V-shape.
- 47. Assertion : Ethers behave as bases in the presence of mineral acids. **Reason**: Due to the presence of lone pairs of electrons on oxygen.
- **48.** Assertion : High concentration of nucleophile favour S_N I mechanism. **Reason :** 2° alkyl halides are more reactive than 1° alkyl halides towards S_NI reactions.
- **49.** Assertion : When a metal is treated with conc. HNO_3 it generally yields a nitrate, NO_2 and H_2O_2 . Reason : Conc. HNO3 reacts with metal and first produces a metal nitrate and nascent hydrogen. The nascent hydrogen then further reduces HNO₃ to NO₂.

SECTION-C

This section consists of 6 multiple choice questions with an overall choice to attempt any 5. In case more than desirable number of questions are attempted, ONLY first 5 will be considered for evaluation.

50.	Match	the	columns	
-----	-------	-----	---------	--

Column - I		Column - II
(A) $CH_2 = CH - CH_2Cl$	(p)	gem-Dichloride
(B) $CH_2 = CHX$	(q)	Vinylic halide
(C) CH ₃ CHCl ₂	(r)	vic-Dichloride
(D) CH_2ClCH_2Cl	(s)	Allylic halide
(a) $A - (r), B - (q), C - (p), D - (s)$	(b)	A - (q), B - (p), C - (s), D - (r)
(c) $A-(s), B-(q), C-(p), D-(r)$	(d)	A - (r), B - (p), C - (s), D - (q)
Complete the following analogy:		
A : Ideal solution : : B : Non Ideal solution		
(a) A: <i>n</i> -Heptane + <i>n</i> -Hexane :: B: CCl_4 + SiCl ₄	(b)	$A: C_2H_5Br + C_2H_5I: :B: HNO_3 + H_2O$
(c) $A: C_6H_5Cl + C_6H_5Br: : B: C_6H_5CH_3 + C_6H_5OH$	(d)	A: Chloroform + Benzene :: B: Acetone + Aniline
Choose the correct anology for oxides of Nitrogen and	their	structure.
(a) $N_2O: N_2O_3: NO_2: : linear: Angular: Planar$	(b)	$NO_2 : N_2O : N_2O_3 : : Planar : Planar : Angular$
(c) $N_2O: N_2O_2: NO_2: :$ linear : Planar : Angular	(d)	N_2O_2 : NO ₂ : N_2O : : Angular : Angular : Planar
	Column - I (A) $CH_2 = CH - CH_2Cl$ (B) $CH_2 = CHX$ (C) CH_3CHCl_2 (D) CH_2ClCH_2Cl (a) $A - (r), B - (q), C - (p), D - (s)$ (c) $A - (s), B - (q), C - (p), D - (r)$ Complete the following analogy : A : Ideal solution :: B : Non Ideal solution (a) A : <i>n</i> -Heptane + <i>n</i> -Hexane :: B : $CCl_4 + SiCl_4$ (c) A : $C_6H_5Cl + C_6H_5Br$:: B : $C_6H_5CH_3 + C_6H_5OH$ Choose the correct anology for oxides of Nitrogen and (a) $N_2O: N_2O_3: NO_2:$: linear : Angular : Planar (c) $N_2O: N_2O_3: NO_2:$: linear : Planar : Angular	Column - I(A) $CH_2 = CH - CH_2Cl$ (p)(B) $CH_2 = CHX$ (q)(C) CH_3CHCl_2 (r)(D) CH_2ClCH_2Cl (s)(a) $A - (r), B - (q), C - (p), D - (s)$ (b)(c) $A - (s), B - (q), C - (p), D - (r)$ (d)Complete the following analogy :A : Ideal solution :: B : Non Ideal solution(a) $A : n$ -Heptane + n -Hexane :: B : $CCl_4 + SiCl_4$ (b)(c) $A : C_6H_5Cl + C_6H_5Br :: B : C_6H_5CH_3 + C_6H_5OH$ (d)Choose the correct anology for oxides of Nitrogen and their(a) $N_2O : N_2O_3 : NO_2 :: linear : Angular : Planar$ (b)(c) $N_3O : N_3O_2 :: NO_2 :: linear : Planar : Angular(d)$

Case Study : Read the following paragraph and answers the questions.

The word "colligative" has been adapted or taken from the Latin word "colligatus" which translates to "bound together". A colligative property is a property of a solution that is dependent on the ratio between the total number of solute particles (in the solution) to the total number of solvent particles. Colligative properties are not dependent on the chemical nature of the solution's components. Dilute solution containing non-volatile solute exhibit some properties which depend only on the number of solute particles present and not on the type of solute present. These properties are called colligative properties. These properties are mostly seen in dilute solutions. There are different types of colligative properties of a solution. These include, vapour pressure lowering, boiling point elevation, freezing point depression and osmotic pressure.

sp-27

sp-28

- **53.** Which one of the following is a colligative property ?
 - (a) Boiling point

- (b) Vapour pressure(d) Freezing point
- (c) Osmotic pressure(d) Freezing point54. The relative lowering of the vapour pressure is equal to the ratio between the number of
 - (a) solute molecules to the solvent molecules
 - (b) solute molecules to the total molecules in the solution
 - (c) solvent molecules to the total molecules in the solution
 - (d) solvent molecules to the total number of ions of the solute.
- **55.** Someone has added a non electrolyte solid to the pure liquid but forgot that among which of the two beakers he has added that solid. This problem can be solved by checking
 - (a) relative lower in vapour pressure
- (b) elevation in boiling point
- (c) depression in Freezing point
- (d) all above

OMR ANSWER SHEET

Sample Paper No -4

★ Use Blue / Black Ball pen only.

Г

- * Please do not make any atray marks on the answer sheet.
- ★ Rough work must not be done on the answer sheet.
- ★ Darken one circle deeply for each question in the OMR Answer sheet, as faintly darkend / half darkened circle might by rejected.

٦

Start t	Start time : End time Time taken													
1. N	1. Name (in Block Letters)													
Γ						1				1				
2. D	2. Date of Exam													
Γ														
3 C	Candidate's Signature													
0. 0														
1.	a	(b)	\bigcirc		9.	\overline{a}				18.	a	(b)	\bigcirc	(d)
2.		(b)	\bigcirc		10.		(b)	$\overset{\bigcirc}{\odot}$		19.		(b)	\bigcirc	
3.	a	b	Ċ	ď	11.	a	Ď	Ċ	ď	20.	a	b	Ċ	ď
4.	a	b	C	d	12.	a	b	C	d	21.	a	b	C	d
5.	a	b	C	d	13.	a	b	Ċ	d	22.		b	Ċ	d
6.	(a)	(b)	\bigcirc	$\begin{pmatrix} d \end{pmatrix}$	14.	(a)	(b)	\bigcirc	$\begin{pmatrix} d \end{pmatrix}$	23.		(b)	\bigcirc	
7.			\bigcirc		15.	(a)		\bigcirc		24.			()	
8.			\bigcirc		16.			\bigcirc		25.		\bigcirc	C	
	\bigcirc				11/1	$\overline{}$	SECTI	ON-B						
26.	(a)	(b)	\bigcirc	(d)	34.	(a)	(b)	\bigcirc	(d)	42.	(a)	(b)	\bigcirc	(d)
27.	a	b	Ċ	ď	35.	a	b	Ċ	d	43.		(b)	$\overset{\smile}{\odot}$	d
28.	a	b	Ċ	d	36.	a	b	Ċ	d	44.	a	b	Ċ	d
29.	a	b	C	d	37.	a	b	C	d	45.		b	C	d
30.	a	b	C	d	38.	(a)	b	C	d	46.		b	C	d
31.	(a)	(b)	\bigcirc		39.	(a)	(b)	(c)		47.		(b)	\bigcirc	
32.			\bigcirc		40.			\bigcirc		48.			\bigcirc	
33.	Ű	$\underline{\bigcirc}$	\odot	Ű	41.	<u> </u>	SFCT1		U	49.		\odot	\odot	U
50					52					51		h		
51.		(b)	\bigcirc		52.		(b)	\bigcirc		55.		(b)	0	
	<u> </u>	<u> </u>					<u> </u>		<u> </u>		· <u> </u>	<u> </u>		\smile
No. of Qns. Attempted Correct Incorrect Marks														