Sample Paper

General Instructions

1. The Question Paper contains three sections.
2. Section A has $\mathbf{2 5}$ questions. Attempt any 20 questions.
3. Section B has 24 questions. Attempt any 20 questions.
4. Section C has $\mathbf{6}$ questions. Attempt any 5 questions.
5. All questions carry equal marks.
6. \quad There is no negative marking.

SECTIO N-A

This section consists of 25 multiple choice questions with overall choice to attempt any 20 questions. In case more than desirable number of questions are attempted, ONLY first 20 will be considered for evaluation.

1. A D-carbohydrate is:
(a) Always dextrorotatory
(b) Always laevorotatory
(c) Always the mirror of the corresponding L-carbohydrate
(d) None of these.
2. Concentrated nitric acid, upon long standing, turns yellow brown due to the formation of
(a) NO
(b) NO_{2}
(c) $\mathrm{N}_{2} \mathrm{O}$
(d) $\mathrm{N}_{2} \mathrm{O}_{4}$
3. Ammonia on catalytic oxidation gives an oxide from which nitric acid is obtained. The oxide is :
(a) $\mathrm{N}_{2} \mathrm{O}_{3}$
(b) NO
(c) $\quad \mathrm{NO}_{2}$
(d) $\mathrm{N}_{2} \mathrm{O}_{5}$
4. Which is the least stable form of glucose ?
(a) α-D-Glucose
(b) β-D-Glucose
(c) Open chain structure
(d) All are equally stable
5. The best method for the conversion of an alcohol into an alkyl chloride is by treating the alcohol with
(a) PCl_{5}
(b) dry HCl in the presence of anhydrous ZnCl_{2}
(c) SOCl_{2} in presence of pyridine
(d) none of these
6. Nitrogen forms N_{2}, but phosphorus is converted into P_{4} from P , the reason is
(a) Triple bond is present between phosphorus atom
(b) $\mathrm{p}_{\pi}-\mathrm{p}_{\pi}$ bonding is strong
(c) $\mathrm{p}_{\pi}-\mathrm{p}_{\pi}$ bonding is weak
(d) Multiple bond is formed easily
7. Example of molecular solid is :
(a) $\mathrm{SO}_{2}(\mathrm{~s})$
(b) SiC
(c) C (graphite)
(d) NaCl
8. Colligative properties of the solution depend on
(a) Nature of solute
(b) Nature of solvent
(c) Number of particles present in the solution
(d) Number of moles of solvent only
9. CsCl crystallises in body centred cubic lattice. If ' a ' is its edge length then which of the following expressions is correct?
(a) $\mathrm{r}_{\mathrm{Cs}^{+}}+\mathrm{r}_{\mathrm{Cl}^{-}}=3 a$
(b) $\mathrm{r}_{\mathrm{Cs}^{+}}+\mathrm{r}_{\mathrm{Cl}^{-}}=\frac{3 a}{2}$
(c) $\mathrm{r}_{\mathrm{Cs}^{+}}+\mathrm{r}_{\mathrm{Cl}^{-}}=\frac{\sqrt{3}}{2} a$
(d) $\mathrm{r}_{\mathrm{Cs}^{+}}+\mathrm{r}_{\mathrm{Cl}^{-}}=\sqrt{3} a$
10. Benzene hexachloride is
(a) 1, 2, 3, 4, 5, 6-hexachlorocyclohexane
(b) 1, 1, 1, 6, 6, 6-hexachlorocyclohexane
(c) 1, 6-phenyl-1, 6-chlorohexane
(d) 1,1-phenyl-6, 6-chlorohexane
11. The two forms of D-glucopyranose obtained from the solution of D-glucose are better called
(a) isomers
(b) anomers
(c) epimers
(d) enantiomers
12. Which of the following reactions is an example of nucleophilic substitution reaction?
(a) $2 \mathrm{RX}+2 \mathrm{Na} \rightarrow \mathrm{R}-\mathrm{R}+2 \mathrm{NaX}$
(b) $\mathrm{RX}+\mathrm{H}_{2} \rightarrow \mathrm{RH}+\mathrm{HX}$
(c) $\mathrm{RX}+\mathrm{Mg} \rightarrow \mathrm{RMgX}$
(d) $\mathrm{RX}+\mathrm{KOH} \rightarrow \mathrm{ROH}+\mathrm{KX}$
13. Fluorine exhibits an oxidation state of only -1 because
(a) it can readily accept an electron
(b) it is very strongly electronegative
(c) it is a non-metal
(d) it belongs to halogen family
14. When phenol is treated with excess bromine water, it gives:
(a) m-bromophenol
(b) o - and p-bromophenol
(c) 2,4-dibromophenol
(d) 2, 4, 6-tribromophenol
15. Which of the following conditions favours the existence of a substance in the solid state?
(a) High temperature
(b) Low temperature
(c) High thermal energy
(d) Weak cohensive forces
16. How many alcohols with molecular formula $\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}$ are chiral in nature?
(a) 1
(b) 2
(c) 3
(d) 4
17. Pressure cooker reduces cooking time because
(a) the heat is more easily distributed
(b) the higher pressure tenderizes the food
(c) the boiling point of the water inside is elevated
(d) a larger flame is used
18. IUPAC name of the compound $\mathrm{CH}_{3}-\mathrm{CH}-\mathrm{OCH}_{3}$ is.
(a) 1-methoxy-1methylethane
CH_{3}
(b) 2-methoxy-2-methylethane
(c) 2-methoxypropane
(d) isopropylmethyl ether
19. In case of hydride of oxygen family, which of the following physical property change regularly on moving down the group.
(a) Melting point
(b) Thermal stability
(c) Boiling point
(d) Critical temperature
20. Which one is the absolutely specific term?
(a) A diastereomer
(b) An epimer
(c) An anomer
(d) None of the three.
21. The compound which contains all the four $1^{\circ}, 2^{\circ}, 3^{\circ}$ and 4° carbon atoms is
(a) 2,3-dimethylpentane
(b) 3-chloro-2, 3-dimethylpentane
(c) 2,3, 4-trimethylpentane
(d) 3,3-dimethylpentane
22. Sulphur does not exist as S_{2} molecule because
(b) It is less electronegative
(b) It has ability to exhibit catenation
(c) It is not able to constitute $\mathrm{p} \pi-\mathrm{p} \pi$ bond
(d) It has the tendency to show variable oxidation states
23. The total number of acyclic isomers including the stereoisomers with the molecular formula $\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{Cl}$
(a) 11
(b) 12
(c) 9
(d) 10
24. Which of the following units is useful in relating concentration of solution with its vapour pressure?
(a) Mole fraction
(b) Parts per milion
(c) Mass percentage
(d) Molality
25. Which of the following solutions does not change its colour on passing ozone through it?
(a) Starch iodide solution
(b) Alcoholic solution of benzidine
(c) Acidic solution of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{3}$
(d) Acidified solution of FeSO_{4}

SECTION-B

This section consists of 24 multiple choice questions with overall choice to attempt any 20 questions. In case more than desirable number of questions are attempted, ONLY first 20 will be considered for evaluation.
26. In both DNA and RNA, heterocylic base and phosphate ester linkages are at -
(a) C_{5}^{\prime} and C_{1}^{\prime} respectively of the sugar molecule
(b) C_{1}^{\prime} and C_{5}^{\prime} respectively of the sugar molecule
(c) C_{2}^{\prime} and C_{5}^{\prime} respectively of the sugar molecule
(d) C_{5}^{\prime} and C_{2}^{\prime} respectively of the sugar molecule
27. In the case of alkali metals, the covalent character decreases in the order:
(a) $\mathrm{MF}>\mathrm{MCl}>\mathrm{MBr}>\mathrm{MI}$
(b) $\mathrm{MF}>\mathrm{MCl}>\mathrm{MI}>\mathrm{MBr}$
(c) $\mathrm{MI}>\mathrm{MBr}>\mathrm{MCl}>\mathrm{MF}$
(d) $\mathrm{MCl}>\mathrm{MI}>\mathrm{MBr}>\mathrm{MF}$
28. Of the interhalogen AX_{3} compounds, ClF_{3} is most reactive but BrF_{3} has higher conductance in liquid state. This is because
(a) BrF_{3} has higher molecular mass
(b) ClF_{3} is more volatile
(c) BrF_{3} dissociates into BrF_{2}^{+}and BrF_{4}^{-}most easily
(d) Electrical conductance does not depend on concentration
29. Molarity of $\mathrm{H}_{2} \mathrm{SO}_{4}$ is 18 M . Its density is $1.8 \mathrm{~g} / \mathrm{mL}$. Hence molality is
(a) 36
(b) 200
(c) 500
(d) 18
30. How many grams of concentrated nitric acid solution should be used to prepare 250 mL of $2.0 \mathrm{M} \mathrm{HNO}_{3}$? The concentrated acid is $70 \% \mathrm{HNO}_{3}$
(a) 90.0 g conc. HNO_{3}
(b) 70.0 g conc. HNO_{3}
(c) $\quad 54.0 \mathrm{~g}$ conc. HNO_{3}
(d) 45.0 g conc. HNO_{3}
31. In the following groups :
(I) -OAc
(II) -OMe
(III) $-\mathrm{OSO}_{2} \mathrm{Me}$
(IV) $-\mathrm{OSO}_{2} \mathrm{CF}_{3}$
the order of leaving group ability is
(a) I $>$ II $>$ III $>$ IV
(b) IV $>$ III $>$ I $>$ II
(c) III $>$ II $>$ I $>$ IV
(d) II $>$ III $>$ IV $>$ I
32. Which one of the following reactions of xenon compounds is not feasible?
(a) $3 \mathrm{XeF}_{4}+6 \mathrm{H}_{2} \mathrm{O} \longrightarrow 2 \mathrm{Xe}+\mathrm{XeO}_{3}+12 \mathrm{HF}+1.5 \mathrm{O}_{2}$
(b) $2 \mathrm{XeF}_{2}+2 \mathrm{H}_{2} \mathrm{O} \longrightarrow 2 \mathrm{Xe}+4 \mathrm{HF}+\mathrm{O}_{2}$
(c) $\mathrm{XeF}_{6}+\mathrm{RbF} \longrightarrow \mathrm{Rb}\left[\mathrm{XeF}_{7}\right]$
(d) $\mathrm{XeO}_{3}+6 \mathrm{HF} \longrightarrow \mathrm{XeF}_{6}+3 \mathrm{H}_{2} \mathrm{O}$
33. The incorrect statement among the following is:
(a) α-D-glucose and β-D-glucose are anomers.
(b) α-D-glucose and β-D-glucose are enantiomers.
(c) Cellulose is a straight chain polysaccharide made up of only β-D-glucose units.
(d) The penta acetate of glucose does not react with hydroxyl amine.
34. Identify the compound Y in the following reaction.

(a)

(b)

(c)

(d)

35. Elements of group- 15 form compounds in +5 oxidation state. However, bismuth forms only one well characterised compound in +5 oxidation state. The compound is
(a) $\mathrm{Bi}_{2} \mathrm{O}_{5}$
(b) BiF_{5}
(c) BiCl_{5}
(d) $\quad \mathrm{Bi}_{2} \mathrm{~S}_{5}$
36. The number of atoms in 100 g of an $f c c$ crystal with density, $d=10 \mathrm{~g} / \mathrm{cm}^{3}$ and cell edge equal to 100 pm , is equal to
(a) 1×10^{25}
(b) 2×10^{25}
(c) 3×10^{25}
(d) 4×10^{25}
37. A set of compounds in which the reactivity of halogen atom in the ascending order is
(a) chlorobenzene, vinyl chloride, chloroethane
(b) chloroethane, chlorobenzene, vinyl chloride
(c) vinyl chloride, chlorobenzene, chloroethane
(d) vinyl chloride, chloroethane, chlorobenzene
38. At room temperature, HCl is a gas while HF is a low boiling liquid. This is because
(a) $\mathrm{H}-\mathrm{F}$ bond is covalent
(b) $\mathrm{H}-\mathrm{F}$ bond is ionic
(c) HF has metallic bond
(d) HF has hydrogen bond
39. The normal boiling point of water is 373 K . Vapour pressure of water at temperature T is 19 mm Hg . If enthalpy of vaporisation is $40.67 \mathrm{~kJ} / \mathrm{mol}$, then temperature T would be (Use : $\log 2=0.3$, $\mathrm{R}: 8.3 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$):
(a) 250 K
(b) 291.4 K
(c) 230 K
(d) 290 K
40. Mark the correct increasing order of reactivity of the following compounds with $\mathrm{HBr} / \mathrm{HCl}$.

(a) I $<$ II $<$ III
(b) II $<$ I $<$ III
(c) II $<$ III $<$ I
(d) III $<$ II $<$ I
41. $\mathrm{NH}_{4} \mathrm{ClO}_{4}+\mathrm{HNO}_{3}$ (dil.) $\longrightarrow \mathrm{HClO}_{4}+[\mathrm{X}]$
$[\mathrm{X}] \xrightarrow{\Delta} \mathrm{Y}(\mathrm{g})$
$[\mathrm{X}]$ and $[\mathrm{Y}]$ are respectively -
(a) $\mathrm{NH}_{4} \mathrm{NO}_{3} \& \mathrm{~N}_{2} \mathrm{O}$
(b) $\mathrm{NH}_{4} \mathrm{NO}_{2} \& \mathrm{~N}_{2}$
(c) $\mathrm{HNO}_{4} \& \mathrm{O}_{2}$
(d) None of these
42. The edge length of a face centered cubic cell of an ionic substance is 508 pm . If the radius of the cation is 110 pm , the radius of the anion is
(a) 288 pm
(b) 398 pm
(c) 618 pm
(d) 144 pm
43. A metal ' M ' reacts with nitrogen gas to give ' $M_{3} N$ '. ' $M_{3} N$ ' on heating at high temperature gives back ' M ' and on reaction with water produces a gas ' B '. Gas ' B ' reacts with aqueous solution of CuSO_{4} to form a deep blue compound. ' M ' and ' B ' respectively are :
(a) Li and NH_{3}
(b) Ba and N_{2}
(c) Na and NH_{3}
(d) Al and N_{2}
44.

Product of the reaction is:
(a)

(b)

(c)

(d)

Given below are two statements labelled as Assertion (A) and Reason (R). Select the most appropriate answer from the options given below:
(a) Both A and R are true and R is the correct explanation of A.
(b) Both A and R are true but R is not the correct explanation of A.
(c) A is true but R is false.
(d) A is false and R is also false.
45. Assertion : The bond angle in alcohols is slightly less than the tetrahedral angle.

Reason : In alcohols, the oxygen of - OH group is attached to $s p^{3}$ hybridized carbon atom.
46. Assertion : Atoms in S_{8} molecule undergo $s p^{3}$ hybridization and contain two lone pair on each atom.

Reason: S_{8} has a V-shape.
47. Assertion : Ethers behave as bases in the presence of mineral acids.

Reason : Due to the presence of lone pairs of electrons on oxygen.
48. Assertion : High concentration of nucleophile favour $\mathrm{S}_{\mathrm{N}} \mathrm{I}$ mechanism.

Reason : 2° alkyl halides are more reactive than 1° alkyl halides towards $\mathrm{S}_{\mathrm{N}} \mathrm{I}$ reactions.
49. Assertion : When a metal is treated with conc. HNO_{3} it generally yields a nitrate, NO_{2} and $\mathrm{H}_{2} \mathrm{O}$.

Reason : Conc. HNO_{3} reacts with metal and first produces a metal nitrate and nascent hydrogen. The nascent hydrogen then further reduces HNO_{3} to NO_{2}.

SECTIO N-C

This section consists of 6 multiple choice questions with an overall choice to attempt any 5. In case more than desirable number of questions are attempted, ONLY first 5 will be considered for evaluation.
50. Match the columns

Column-I
(A) $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}_{2} \mathrm{Cl}$
(B) $\mathrm{CH}_{2}=\mathrm{CHX}$
(C) $\mathrm{CH}_{3} \mathrm{CHCl}_{2}$
(D) $\mathrm{CH}_{2} \mathrm{ClCH}_{2} \mathrm{Cl}$
(a) $\mathrm{A}-(\mathrm{r}), \mathrm{B}-(\mathrm{q}), \mathrm{C}-(\mathrm{p}), \mathrm{D}-(\mathrm{s})$
(c) $\mathrm{A}-(\mathrm{s}), \mathrm{B}-(\mathrm{q}), \mathrm{C}-(\mathrm{p}), \mathrm{D}-(\mathrm{r})$
51. Complete the following analogy :

A : Ideal solution : : B : Non Ideal solution
(a) A:n-Heptane $+n$-Hexane: : $\mathrm{B}: \mathrm{CCl}_{4}+\mathrm{SiCl}_{4}$
(b) $\mathrm{A}: \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Br}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{I}:: \mathrm{B}: \mathrm{HNO}_{3}+\mathrm{H}_{2} \mathrm{O}$
(c) $\mathrm{A}: \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}+\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Br}:: \mathrm{B}: \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}+\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}$
(d) A:Chloroform + Benzene : : B : Acetone + Aniline
52. Choose the correct anology for oxides of Nitrogen and their structure.
(a) $\mathrm{N}_{2} \mathrm{O}: \mathrm{N}_{2} \mathrm{O}_{3}: \mathrm{NO}_{2}:$: linear : Angular : Planar
(b) $\mathrm{NO}_{2}: \mathrm{N}_{2} \mathrm{O}: \mathrm{N}_{2} \mathrm{O}_{3}:$: Planar : Planar : Angular
(c) $\mathrm{N}_{2} \mathrm{O}: \mathrm{N}_{2} \mathrm{O}_{3}: \mathrm{NO}_{2}:$: linear : Planar : Angular
(d) $\mathrm{N}_{2} \mathrm{O}_{3}: \mathrm{NO}_{2}: \mathrm{N}_{2} \mathrm{O}:$:Angular :Angular :Planar

Case Study : Read the following paragraph and answers the questions.
The word "colligative" has been adapted or taken from the Latin word "colligatus" which translates to "bound together". A colligative property is a property of a solution that is dependent on the ratio between the total number of solute particles (in the solution) to the total number of solvent particles. Colligative properties are not dependent on the chemical nature of the solution's components. Dilute solution containing non-volatile solute exhibit some properties which depend only on the number of solute particles present and not on the type of solute present. These properties are called colligative properties. These properties are mostly seen in dilute solutions. There are different types of colligative properties of a solution. These include, vapour pressure lowering, boiling point elevation, freezing point depression and osmotic pressure.
53. Which one of the following is a colligative property?
(a) Boiling point
(b) Vapour pressure
(c) Osmotic pressure
(d) Freezing point
54. The relative lowering of the vapour pressure is equal to the ratio between the number of
(a) solute molecules to the solvent molecules
(b) solute molecules to the total molecules in the solution
(c) solvent molecules to the total molecules in the solution
(d) solvent molecules to the total number of ions of the solute.
55. Someone has added a non electrolyte solid to the pure liquid but forgot that among which of the two beakers he has added that solid. This problem can be solved by checking
(a) relative lower in vapour pressure
(b) elevation in boiling point
(c) depression in Freezing point
(d) all above

OMR ANSWER SHEET
 Sample Paper No - 4

* Use Blue / Black Ball pen only.
* Please do not make any atray marks on the answer sheet.
* Rough work must not be done on the answer sheet.
* Darken one circle deeply for each question in the OMR Answer sheet, as faintly darkend / half darkened circle might by rejected.

Start time : \qquad End time \qquad Time taken

1. Name (in Block Letters)

2. Date of Exam

3. Candidate's Signature

SECTION-A

1.	(a)	(b)	(C)	(d)	9.	(a)	(b)	(C)	(d)	18.	(a)	(b)	(C)	(d)
2.	(a)	(b)	(c)	(d)	10.	(a)	(b)	(C)	(d)	19.	(a)	(b)	(C)	(d)
3.	(a)	(b)	(C)	(d)	11.	(a)	(b)	(C)	(d)	20.	(a)	(b)	(C)	(d)
4.	(a)	(b)	(C)	(d)	12.	(a)	(b)	(C)	(d)	21.	(a)	(b)	(C)	(d)
5.	(a)	(b)	(C)	(d)	13.	(a)	(b)	(C)	(d)	22.	(a)	(b)	(C)	(d)
6.	(a)	(b)	(C)	(d)	14.	(a)	(b)	(C)	(d)	23.	(a)	(b)	(C)	(d)
7.	(a)	(b)	(C)	(d)	15.	(a)	(b)	(C)	(d)	24.	(a)	(b)	(C)	(d)
8.	(a)	(b)	(C)	(d)	16.	(a)	(b)	(C)	(d)	25.	(a)	(b)	(C)	(d)
9.	(a)	(b)	(C)	(d)	17.	(a)	(b)	(C)	(d)					

SECTION-B

26.	(a)	(b)	(C)	(d)	34.	(a)	(b)	(C)	(d)	42.	(a)	(b)	(C)	(d)
27.	(a)	(b)	(C)	(d)	35.	(a)	(b)	(C)	(d)	43.	(a)	(b)	(C)	(d)
28.	(a)	(b)	(C)	(d)	36.	(a)	(b)	(C)	(d)	44.	(a)	(b)	(C)	(d)
29.	(a)	(b)	(C)	(d)	37.	(a)	(b)	(C)	(d)	45.	(a)	(b)	(C)	(d)
30.	(a)	(b)	(c)	(d)	38.	(a)	(b)	(C)	(d)	46.	(a)	(b)	(C)	(d)
31.	(a)	(b)	(C)	(d)	39.	(a)	(b)	(C)	(d)	47.	(a)	(b)	(C)	(d)
32.	(a)	(b)	(C)	(d)	40.	(a)	(b)	(C)	(d)	48.	(a)	(b)	(C)	(d)
33.	(a)	(b)	(C)	(d)	41.	(a)	(b)	(C)	(d)	49.	(a)	(b)	(C)	(d)

SECTION-C

| 50. | (a) | (b) | (c) | (d) | 52. | (a) | (b) | (c) | (d) | 54. | (a) | (b) | (c) | (d) |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 51. | (a) | (b) | (c) | (d) | 53. | (a) | (b) | (c) | (d) | 55. | (a) | (b) | (c) | (d) |

No. of Qns. Attempted		Correct		Incorrect		Marks

