JEE-Main-28-06-2022-Shift-2 (Memory Based)

Chemistry

Question: Which of the following is the structure of Tagamet?

Options:

(a)

(b)

(c)

(d) None of these

Answer: (b)

Solution:

Question: In which of oxyacids of sulphur both sulphur have different oxidation state.

Options:

- (a) $H_2S_4O_6$
- (b) $H_2S_2O_8$
- (c) H₂S₂O₇
- (d) All of these

Answer: (a)

Solution:

Question: Match the following.

Column-I	Column-II
(i) Positively charged	(A) Gel
(ii) Negatively charged	(B) Starch
(iii) Macromolecular starch	(C) CuS
(iv) Cheese	(D) Fe ₂ CO ₃ .x H ₂ O

Options:

(a) (i)
$$\rightarrow$$
 (D); (ii) \rightarrow (C); (iii) \rightarrow (B); (iv) \rightarrow (A)

(b) (i)
$$\rightarrow$$
 (B); (ii) \rightarrow (C); (iii) \rightarrow (A); (iv) \rightarrow (D)

(c) (i)
$$\rightarrow$$
 (C); (ii) \rightarrow (B); (iii) \rightarrow (D); (iv) \rightarrow (A)

(d) (i)
$$\rightarrow$$
 (D); (ii) \rightarrow (A); (iii) \rightarrow (D); (iv) \rightarrow (B)

Answer: (a)

Solution:

- (i) Positively charged \Rightarrow Fe₂CO₃ .x H₂O
- (ii) Negatively charged ⇒ CuS
- (iii) Macromolecular starch ⇒ Starch
- (iv) Cheese \Rightarrow Gel

Question: A compound has 8% H, 70%C, 16% N, Molecular Mass is 160. Find the formula of compound.

Options:

- (a) $C_{12}H_{16}N_2$
- (b) $C_{12}H_{18}N_2$

- (c) C₁₁H₁₆N
- (d) $C_{12}H_{15}N$

Answer: (a)

Solution:

Compound contain 8% H, 70% C and 16% N

No. of moles of
$$C = \frac{70}{12} = 5.8 \approx 6$$

No. of moles of
$$H = \frac{8}{1} = 8$$

No. of moles of N =
$$\frac{16}{14}$$
 = 1 : 1 \approx 1

Mole ratio C : H : N = 6 : 8 : 1

Empirical formula = C_6H_8N

Molecular mass = 160

Empirical formula mass = $12 \times 6 + 2 \times 1 + 14 = 94$

n = 2

Formula of compound = $(C_6H_8N)_2 = C_{12}H_{16}N_2$

Question: What is correct about photochemical smog?

Options:

- (a) It is reducing in nature
- (b) It occurs in humid conditions
- (c) It is formed due to the action of sunlight on Hydrocarbons
- (d) All of these

Answer: (c)

Solution: Photochemical smog results from the action of sunlight on hydrocarbons.

Question: Which of the following is basic oxide?

Options:

- (a) CaO
- (b) SiO₂

- (c) Al₂O₃
- (d) NO

Answer: (a)

Solution: CaO - basic oxide

SiO₂ - acidic oxide,

Al₂O₃ - Amphoteric oxide,

NO - neutral oxide

Question: An ideal gas is stored in a vessel of volume 416 ml at temperature 300 K and Pressure 1.5 atm. What is the mass of gas? (Molecular mass of gas 100g/mol)

Options:

- (a) 3.32 g
- (b) 2.53 g
- (c) 3.01 g
- (d) 1.92 g

Answer: (b)

Solution:

$$PV = \frac{w}{M}RT$$

$$\therefore w = \frac{PVM}{RT} = \frac{1.5 \times 0.416 \times 100}{0.0821 \times 300} = 2.53 g$$

Question: 2.5 g of protein taken and made 500 ml of solution. Osmotic pressure of solution is 5.03×10^{-3} at 300 K. Find the no. of glycine unit.

Options:

- (a) 1.9×10^{16} units
- (b) 2.8×10^{15} units
- (c) 1.2×10^{15} units
- (d) 2.2×10^{10} units

Answer: (c)

Osmotic pressure $(\pi) = \left(\frac{n_2}{V}\right) RT$

$$\pi V = \frac{w_2 RT}{M_2}$$

$$M_2 = \frac{w_2 RT}{\pi} = \frac{2.5 \times 0.0821 \times 300}{5.03 \times 10^{-8}} = 12.2 \times 10^8 g$$

No. of glycine units =
$$\frac{2.5 \times 6.023 \times 10^{23}}{12.2 \times 10^8} = 1.2 \times 10^{15}$$
 units

Question: In SF₄ what is the bond angle?

Options:

- (a) 90°, 120°
- (b) 90°, 117°
- (c) 89°, 120°
- (d) 89°, 117°

Answer: (d)

Solution:

Question: The volume of $0.01~M~KMnO_4$ solution which can oxidize 20~ml of 0.05~M~Mohr salt solution in acidic medium is

Options:

- (a) 10 ml
- (b) 20 ml
- (c) 30 ml
- (d) 40 ml

Answer: (b)

Solution: $M_1V_1Z_1 = M_2V_2Z_2$

$$0.01 \times V_1 \times 5 = 0.05 \times 20 \times 1$$

$$V_1 = 20 \ ml$$

Question: In the buffer solution, having pH = 4 and $Pk_a = 1.3 \times 10^{-5}$, find the ratio of salt/acid is

Options:

- (a) $10^{-0.8}$
- (b) 0.1
- (c) $10^{0.8}$
- (d) $10^{-2.1}$

Answer: (a)

Solution:
$$pK_a = -log (1.3 \times 10^{-3})$$

$$= 5 - \log 1.3$$

$$=4.85$$

$$pH = pKa + log \frac{[salt]}{[acid]}$$

$$4 = 4.8 - \log \frac{[\text{salt}]}{[\text{acid}]}$$

$$-0.8 = \log \frac{[\text{salt}]}{[\text{acid}]}$$

$$\frac{\text{salt}}{\text{acid}} = 10^{-0.8}$$

Question: Nitration of aniline with HNO₃ + H₂SO₄ gives

Options:

- (a) p-nitroaniline
- (b) m-nitroaniline
- (c) o-nitroaniline
- (d) All of these

Answer: (d)

Question: Assertion: Natural form of rubber is cis 1,4 polyisoprene

Reason: There are weak vander waals forces giving its coiled structure

Options:

(a) Both assertion and reason are true, reason is correct explanation of assertion.

(b) Both assertion and reason are true, but reason is not a correct explanation of assertion.

(c) Assertion is true, but reason is false

(d) Assertion is false, but reason is true

Answer: (b)

Solution: Both assertion and reason are true, but reason is not correct explanation of A

Natural rubber may be considered as a linear polymer of isoprene (2-methyl-1, 3-butadiene) and is also called as cis-1, 4-polyisoprene.

The cis-polyisoprene molecule consists of various chains held together by weak van der Waals interactions and has a coiled structure. Thus. It can be stretched like a spring and exhibits elastic properties.

Question: In extraction of copper FeO and FeSiO3 are respectively

Options:

- (a) slag, gangue
- (b) gangue, slag
- (c) both are slag
- (d) both are gangue

Answer: (b)

Solution: FeO is gangue and SiO₂ is flux to form slag FeSiO₃.

$$\underset{\text{basic impurity}}{\text{FeO}} + \underset{\text{acidic flux}}{\text{SiO}_2} \rightarrow \underset{\text{slag}}{\text{FeSiO}_3}$$

Question: Isobutyraldehyde reacts with K₂CO₃ and formaldehyde to give A. A reacts with HCN to give B. Hydrolysis of B gives a stable carboxylic acid C. What is C?

Options:

(a)

(b)

(c)

(d)

Answer: (d)

Question: The isotopes of Hydrogen differ in the following property

Options:

- (a) Electronic configuration
- (b) No of protons
- (c) Atomic number
- (d) Atomic mass

Answer: (d)

Solution: The three isotopes of hydrogen differ in mass numbers which are 1, 2 and 3 respectively known as protium, deuterium and tritium.

Question: X reacts with Br₂/H₂O to give gluconic acid and reacts with HNO₃ to give saccharic acid. Name X

Options:

- (a) Maltose
- (b) Starch
- (c) Fructose
- (d) Glucose

Answer: (d)

$$\begin{array}{c} \text{CHO} \\ | \\ | \\ \text{CHOH} \\ | \\ \text{CH}_2\text{OH} \end{array} \xrightarrow{\text{Br}_2 \text{ water}} \begin{array}{c} \text{COOH} \\ | \\ | \\ \text{CHOH} \\ | \\ \text{CH}_2\text{OH} \end{array}$$

Gluconic acid

$$\begin{array}{c|c} \text{CHO} & & \text{COOH} \\ | & \text{Oxidation} \\ | & \text{CHOH})_4 \end{array} \xrightarrow{\text{COOH}} \begin{array}{c} \text{COOH} \\ | & \text{CHOH})_4 \\ | & \text{COOH} \end{array}$$

Saccharic acid

Question: Comparison of KE for wavelengths λ and 3 λ , keeping work function constant

Options:

(a)
$$K.E_2 = 9 K.E_1$$

(b) K.E₂ =
$$\frac{1}{9}$$
 K.E₁

(c)
$$K.E_2 = 3 K.E_1$$

(d) K.E₂ =
$$\frac{1}{3}$$
 K.E₁

Answer: (b)

Solution:
$$\lambda = \frac{h}{\sqrt{2m \text{ K.E}}}$$

$$\frac{\lambda}{3\lambda} = \frac{\frac{h}{\sqrt{2m \text{ K.E}_1}}}{\frac{h}{\sqrt{2m \text{ K.E}_2}}}$$

$$K.E_2 = \frac{1}{9} K.E_1$$

Question: Product will have how many Br......

Answer: 1.00

Solution:

Question: How many of the following contain N - N bond N₂O, N₂O₃, N₂O₄, N₂O₅?

Answer: 2.00

Solution: N_2O_4 and N_2O_3 has one N-N bond as shown below

Question: Consider the following complexes $[Fe(CN)_6]^{3-}$, $[Ni(CN)_4]^{2-}$ and $[Fe(CN)_6]^{4-}$. How many complex(es) is/are paramagnetic?

Answer: 1.00

Solution:

 $[Fe(CN)_6]^{3-} \rightarrow Fe^{3+} \rightarrow 3d^5 \rightarrow paramagnetic$

 $[Ni(CN)_4]^{2-} \rightarrow Ni^{2+} \rightarrow 3d^8 \rightarrow diamagnetic$

 $[Fe(CN)_6]^{4-} \rightarrow Fe^{2+} \rightarrow 3d^6 \rightarrow diamagnetic$

