Useful data $\{a \in A : a \notin B\}$ $A \backslash B$ Set of all complex numbers \mathbb{C} $\mathbb{C}^{m\times n}$ Set of all matrices of order $m \times n$ with complex entries $\mathbb{C}^{\infty}(\Omega)$ Collection of all infinitely differentiable functions on the open domain Ω i $\sqrt{-1}$ Ι Identity matrix of appropriate order $L^2(\mathbb{R})$ $:= L^2(\mathbb{R}, dx)$ $:= L^2([a,b],dx)$ $L^2[a,b]$ Set of all positive integers \mathbb{N} \mathbb{Q} Set of all rational numbers \mathbb{R} Set of all real numbers $\mathbb{R}^{m \times n}$ Set of all matrices of order $m \times n$ with real entries \mathbb{S}^1 $\{ (x_1, x_2) \in \mathbb{R}^2 : x_1^2 + x_2^2 = 1 \}$ $\{ (x_1, x_2, x_3) \in \mathbb{R}^3 : x_1^2 + x_2^2 + x_3^2 = 1 \}$ \mathbb{S}^2 Set of all integers \mathbb{Z} MA Pa ### GATE 2022 General Aptitude (GA) #### Q.1 – Q.5 Carry ONE mark each. | Q.1 | As you grow older, an injury to your may take longer to | |-----|---| | (A) | heel / heel | | (B) | heal / heel | | (C) | heal / heal | | (D) | heel / heal | Page **2** of **66** | Q.2 | In a 500 m race, P and Q have speeds in the ratio of 3:4. Q starts the race when P has already covered 140 m. What is the distance between P and Q (in m) when P wins the race? | |-----|--| | (A) | 20 | | (B) | 40 | | (C) | 60 | | (D) | 140 | | Q.3 | Three bells P, Q, and R are rung periodically in a school. P is rung every 20 minutes; Q is rung every 30 minutes and R is rung every 50 minutes. | |-----|---| | | If all the three bells are rung at 12:00 PM, when will the three bells ring together again the next time? | | (A) | 5:00 PM | | (B) | 5:30 PM | | (C) | 6:00 PM | | (D) | 6:30 PM | | Q.4 | Given below are two statements and four conclusions drawn based on the statements. | |-----|--| | | Statement 1: Some bottles are cups. | | | Statement 2: All cups are knives. | | | Conclusion I: Some bottles are knives. | | | Conclusion II: Some knives are cups. | | | Conclusion III: All cups are bottles. | | | Conclusion IV: All knives are cups. | | | Which one of the following options can be logically inferred? | | (A) | Only conclusion I and conclusion II are correct | | (B) | Only conclusion II and conclusion III are correct | | (C) | Only conclusion II and conclusion IV are correct | | (D) | Only conclusion III and conclusion IV are correct | Q.5 The figure below shows the front and rear view of a disc, which is shaded with identical patterns. The disc is flipped once with respect to any one of the fixed axes 1-1, 2-2 or 3-3 chosen uniformly at random. What is the probability that the disc **DOES NOT** retain the same front and rear views after the flipping operation? Front View Rear View - (A) 0 - (B) $\left| \frac{1}{3} \right|$ - (C) $\frac{2}{3}$ - (D) 1 #### Q. 6 – Q. 10 Carry TWO marks each. | Q.6 | Altruism is the human concern for the wellbeing of others. Altruism has been shown to be motivated more by social bonding, familiarity and identification of belongingness to a group. The notion that altruism may be attributed to empathy or guilt has now been rejected. | |-----|--| | | Which one of the following is the CORRECT logical inference based on the information in the above passage? | | (A) | Humans engage in altruism due to guilt but not empathy | | (B) | Humans engage in altruism due to empathy but not guilt | | (C) | Humans engage in altruism due to group identification but not empathy | | (D) | Humans engage in altruism due to empathy but not familiarity | | Q.7 | There are two identical dice with a single letter on each of the faces. The following six letters: Q, R, S, T, U, and V, one on each of the faces. Any of the | |-----|---| | | six outcomes are equally likely. | | | The two dice are thrown once independently at random. | | | What is the probability that the outcomes on the dice were composed only of any combination of the following possible outcomes: Q, U and V? | | (A) | $\frac{1}{4}$ | | (B) | $\frac{3}{4}$ | | (C) | $\frac{1}{6}$ | | (D) | <u>5</u> <u>36</u> | | Q.8 | The price of an item is 10% cheaper in an online store S compared to the price at another online store M. Store S charges ₹ 150 for delivery. There are no delivery charges for orders from the store M. A person bought the item from the store S and saved ₹ 100. What is the price of the item at the online store S (in ₹) if there are no other charges than what is described above? | |-----|---| | (A) | 2500 | | (B) | 2250 | | (C) | 1750 | | (D) | 1500 | | Q.9 | The letters P, Q, R, S, T and U are to be placed one per vertex on a regular convex hexagon, but not necessarily in the same order. | |-----|---| | | Consider the following statements: | | | • The line segment joining R and S is longer than the line segment joining P and Q. | | | • The line segment joining R and S is perpendicular to the line segment joining P and Q. | | | • The line segment joining R and U is parallel to the line segment joining T and Q. | | | Based on the above statements, which one of the following options is CORRECT? | | (A) | The line segment joining R and T is parallel to the line segment joining Q and S | | (B) | The line segment joining T and Q is parallel to the line joining P and U | | (C) | The line segment joining R and P is perpendicular to the line segment joining U and Q | | (D) | The line segment joining Q and S is perpendicular to the line segment joining R and P | | Q.10 | P | |------|--| | | An ant is at the bottom-left corner of a grid (point P) as shown above. It aims to move to the top-right corner of the grid. The ant moves only along the lines marked in the grid such that the current distance to the top-right corner strictly decreases. Which one of the following is a part of a possible trajectory of the ant during the movement? | | (A) | P | | (B) | P | | (C) | P | | (D) | P | Q.11-Q.35 Carry ONE mark each. | Q.11 | Suppose that the characteristic equation of $M \in \mathbb{C}^{3\times 3}$ is | |------|---| | | $\lambda^3 + \alpha \lambda^2 + \beta \lambda - 1 = 0,$ where $\alpha, \beta \in \mathbb{C}$ with $\alpha + \beta \neq 0$.
Which of the following statements is TRUE? | | (A) | $M(I - \beta M) = M^{-1}(M + \alpha I)$ | | (B) | $M(I + \beta M) = M^{-1}(M - \alpha I)$ | | (C) | $M^{-1}(M^{-1} + \beta I) = M - \alpha I$ | | (D) | $M^{-1}(M^{-1} - \beta I) = M + \alpha I$ | | | | | | | | Q.12 | Consider | |------|---| | | P : Let $M \in \mathbb{R}^{m \times n}$ with $m > n \geq 2$. If $\operatorname{rank}(M) = n$, then the system of linear equations $Mx = 0$ has $x = 0$ as the only solution. | | | Q : Let $E \in \mathbb{R}^{n \times n}$, $n \geq 2$ be a non-zero matrix such that $E^3 = 0$. Then $I + E^2$ is a singular matrix. | | | Which of the following statements is TRUE? | | (A) | Both ${f P}$ and ${f Q}$ are TRUE | | (B) | Both ${f P}$ and ${f Q}$ are FALSE | | (C) | ${f P}$ is TRUE and ${f Q}$ is FALSE | | (D) | ${f P}$ is FALSE and ${f Q}$ is TRUE | | | | | | | Q.13 Consider the real function of two real variables given by $u(x,y) = e^{2x} [\sin 3x \cos 2y \cosh 3y - \cos 3x \sin 2y \sinh 3y].$ Let v(x,y) be the harmonic conjugate of u(x,y) such that v(0,0) = 2. Let z = x + iy and f(z) = u(x,y) + iv(x,y), then the value of $4 + 2if(i\pi)$ is $(A) \quad e^{3\pi} + e^{-3\pi}$ $(B) \quad e^{3\pi} - e^{-3\pi}$ $(C) \quad -e^{3\pi} + e^{-3\pi}$ $(D) \quad -e^{3\pi} - e^{-3\pi}$ | Q.14 | The value of the integral $\int_C \frac{z^{100}}{z^{101}+1}dz$ where C is the circle of radius 2 centred at the origin taken in the anti-clockwise direction is | |------|---| | (A) | $-2\pi i$ | | (B) | 2π | | (C) | 0 | | (D) | $2\pi i$ | | | | | | | | Q.15 | Let X be a real normed linear space. Let $X_0 = \{x \in X : x = 1\}$. If X_0 contains two distinct points x and y and the line segment joining them, then, which of the following statements is TRUE? | |------|--| | (A) | x+y = x + y and x, y are linearly independent | | (B) | x+y = x + y and x, y are linearly dependent | | (C) | $ x+y ^2 = x ^2 + y ^2$ and x, y are linearly independent | | (D) | x+y = 2 x y and x, y are linearly dependent | | | | | | | | Q.16 | Let $\{e_k : k \in \mathbb{N}\}$ be an orthonormal basis for a Hilbert space H . Define $f_k = e_k + e_{k+1}, k \in \mathbb{N}$ and $g_j = \sum_{n=1}^{j} (-1)^{n+1} e_n, j \in \mathbb{N}$. Then $\sum_{k=1}^{\infty} \langle g_j, f_k \rangle ^2 =$ | |------|---| | (A) | 0 | | (B) | j^2 | | (C) | $4j^2$ | | (D) | 1 | | | | | | | MA Page | Q.17 | Consider \mathbb{R}^2 with the usual metric. Let $A = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \leq 1\}$ and $B = \{(x,y) \in \mathbb{R}^2 : (x-2)^2 + y^2 \leq 1\}$. Let $M = A \cup B$ and $N = \operatorname{interior}(A) \cup \operatorname{interior}(B)$. Then, which of the following statements is TRUE? | |------|---| | (A) | M and N are connected | | (B) | Neither M nor N is connected | | (C) | M is connected and N is not connected | | (D) | M is not connected and N is connected | | | | | | | | Q.18 | The real sequence generated by the iterative scheme $x_n = \frac{x_{n-1}}{2} + \frac{1}{x_{n-1}}, \ n \ge 1$ | |------|--| | (A) | converges to $\sqrt{2}$, for all $x_0 \in \mathbb{R} \setminus \{0\}$ | | (B) | converges to $\sqrt{2}$, whenever $x_0 > \sqrt{\frac{2}{3}}$ | | (C) | converges to $\sqrt{2}$, whenever $x_0 \in (-1,1) \setminus \{0\}$ | | (D) | diverges for any $x_0 \neq 0$ | | | | | | | | Q.19 | The initial value problem | |------|---| | | $\frac{dy}{dx} = \cos(xy), \ x \in \mathbb{R}, \ y(0) = y_0,$ | | | where y_0 is a real constant, has | | (A) | a unique solution | | (B) | exactly two solutions | | (C) | infinitely many solutions | | (D) | no solution | | | | | | | Q.20 If eigenfunctions corresponding to distinct eigenvalues λ of the Sturm-Liouville problem $$\frac{d^2y}{dx^2} - 3\frac{dy}{dx} = \lambda y, \ 0 < x < \pi,$$ $$y(0) = y(\pi) = 0$$ are orthogonal with respect to the weight function w(x), then w(x) is - (A) e^{-3x} - (B) e^{-2x} - (C) e^{2x} - (D) e^{3x} Q.21 The steady state solution for the heat equation $$\frac{\partial u}{\partial t} - \frac{\partial^2 u}{\partial x^2} = 0, \ 0 < x < 2, \ t > 0,$$ with the initial condition $u(x,0)=0,\ 0< x< 2$ and the boundary conditions u(0,t)=1 and $u(2,t)=3,\ t>0,$ at x=1 is - (A) 1 - (B) 2 - $(C) \mid 3$ - (D) 4 | Q.22 | Consider $([0,1], T_1)$, where T_1 is the subspace topology induced by the Euclidean topology on \mathbb{R} , and let T_2 be any topology on $[0,1]$. Consider the following statements: | | | | |------|--|--|--|--| | | P : If T_1 is a proper subset of T_2 , then $([0,1],T_2)$ is not compact. | | | | | | \mathbf{Q} : If T_2 is a proper subset of T_1 , then $([0,1],T_2)$ is not Hausdorff. | | | | | | Then | | | | | (A) | ${f P}$ is TRUE and ${f Q}$ is FALSE | | | | | (B) | Both ${f P}$ and ${f Q}$ are TRUE | | | | | (C) | Both ${f P}$ and ${f Q}$ are FALSE | | | | | (D) | ${f P}$ is FALSE and ${f Q}$ is TRUE | | | | | | | | | | | | | | | | | Q.23 | Let $p:([0,1],T_1) \to (\{0,1\},T_2)$ be the quotient map, arising from the characteristic function on $[\frac{1}{2},1]$, where T_1 is the subspace topology induced by the Euclidean topology on \mathbb{R} . Which of the following statements is TRUE? | |------|--| | (A) | p is an open map but not a closed map | | (B) | p is a closed map but not an open map | | (C) | p is a closed map as well as an open map | | (D) | p is neither an open map nor a closed map | | | | | | | Q.24 Set $X_n := \mathbb{R}$ for each $n \in \mathbb{N}$. Define $Y := \prod_{n \in \mathbb{N}} X_n$. Endow Y with the product topology, where the topology on each X_n is the Euclidean topology. Consider the set $\Delta = \{(x, x, x, \cdots) \mid x \in \mathbb{R}\}$ with the subspace topology induced from Y. Which of the following statements is TRUE? (A) Δ is open in Y(B) Δ is locally compact (C) Δ is dense in Y | Q.25 | Consider the linear system of | of equations A | $\mathbf{A}x = b$ | with | | |------|--|---|-------------------|----------------------|---| | | $A = \left(\begin{array}{c} \\ \end{array} \right)$ | $\begin{pmatrix} 3 & 1 & 1 \\ 1 & 4 & 1 \\ 2 & 0 & 3 \end{pmatrix}$ | and | $b = \left(\right.$ | $\begin{pmatrix} 2\\3\\4 \end{pmatrix}$. | Which of the following statements are TRUE? - (A) The Jacobi iterative matrix is $\begin{pmatrix} 0 & 1/4 & 1/3 \\ 1/3 & 0 & 1/3 \\ 2/3 & 0 & 0 \end{pmatrix}$ - (B) The Jacobi iterative method converges for any initial vector - (C) The Gauss-Seidel iterative method converges for any initial vector - (D) The spectral radius of the Jacobi iterative matrix is less than 1 | Q.26 | The number of non-isomorphic abelian groups of order $2^2.3^3.5^4$ is | |------|---| | | | | | | MA Page | Q.27 | The number of subgroups of a cyclic group of order 12 is | |------|--| | | | | | | | Q.28 | The radius of convergence of the series | |------|---| | | $\sum_{n\geq 0} 3^{n+1} z^{2n}, \ z \in \mathbb{C}$ | | | is (round off to TWO decimal places). | | | | | | | | Q.29 | The number of zeros of the polynomial | |------|--| | | $2z^7 - 7z^5 + 2z^3 - z + 1$ | | | in the unit disc $\{z \in \mathbb{C} : z < 1\}$ is | | | | | | | | | | | | | | Q.30 | If $P(x)$ is a polynomial of degree 5 and | |------|---| | | $\alpha = \sum_{i=0}^{6} P(x_i) \left(\prod_{j=0, j \neq i}^{6} (x_i - x_j)^{-1} \right),$ | | | where x_0, x_1, \dots, x_6 are distinct points in the interval [2, 3], then the value of $\alpha^2 - \alpha + 1$ is | | | | | | | | Q.31 | The maximum value of $f(x,y) = 49-x^2-y^2$ on the line $x+3y = 10$ is | |------|---| | | | | | | | Q.32 | If the function $f(x,y) = x^2 + xy + y^2 + \frac{1}{x} + \frac{1}{y}$, $x \neq 0, y \neq 0$ attains its local minimum value at the point (a,b) , then the value of $a^3 + b^3$ is (round off to TWO decimal places). | |------|---| | | | | | | | Q.33 | If the ordinary differential equation | |------|---| | | $x^{2}\frac{d^{2}\phi}{dx^{2}} + x\frac{d\phi}{dx} + x^{2}\phi = 0, \ x > 0$ | | | has a solution of the form $\phi(x) = x^r \sum_{n=0}^{\infty} a_n x^n$, where a_n 's are constants and $a_0 \neq 0$, then the value of $r^2 + 1$ is | | | | | | | | Q.34 | The Bessel functions $J_{\alpha}(x)$, $x > 0$, $\alpha \in \mathbb{R}$ satisfy $J_{\alpha-1}(x) + J_{\alpha+1}(x) = \frac{2\alpha}{x}J_{\alpha}(x)$.
Then, the value of $(\pi J_{\frac{3}{2}}(\pi))^2$ is | |------|---| | | | | | | | Q.35 | The partial differential equation | |------|--| | | $7\frac{\partial^2 u}{\partial x^2} + 16\frac{\partial^2 u}{\partial x \partial y} + 4\frac{\partial^2 u}{\partial y^2} = 0$ | | | is transformed to $A\frac{\partial^2 u}{\partial \xi^2} + B\frac{\partial^2 u}{\partial \xi \partial \eta} + C\frac{\partial^2 u}{\partial \eta^2} = 0,$ | | | using $\xi = y - 2x$ and $\eta = 7y - 2x$.
Then, the value of $\frac{1}{12^3}(B^2 - 4AC)$ is | | | Then, the value of $\frac{1}{12^3}(B^2-4AC)$ is | | | | | | | | | | ### Q.36-Q.65 Carry TWO marks each. | Q.36 | Let $\mathbb{R}[X]$ denote the ring of polynomials in X with real coefficients. Then, the quotient ring $\mathbb{R}[X]/(X^4+4)$ is | |------|--| | (A) | a field | | (B) | an integral domain, but not a field | | (C) | not an integral domain, but has 0 as the only nilpotent element | | (D) | a ring which contains non-zero nilpotent elements | | | | | | | MA Page Q.37 Consider the following conditions on two proper non-zero ideals J_1 and J_2 of a non-zero commutative ring R. **P:** For any $r_1, r_2 \in R$, there exists a unique $r \in R$ such that $r - r_1 \in J_1$ and $r - r_2 \in J_2$. **Q:** $J_1 + J_2 = R$ Then, which of the following statements is TRUE? - (A) P implies Q but Q does not imply P - (B) **Q** implies **P** but **P** does not imply **Q** - (C) P implies Q and Q implies P - (D) $\mid \mathbf{P} \text{ does not imply } \mathbf{Q} \text{ and } \mathbf{Q} \text{ does not imply } \mathbf{P}$ - Q.38 Let $f: [-\pi, \pi] \to \mathbb{R}$ be a continuous function such that $f(x) > \frac{f(0)}{2}$, $|x| < \delta$ for some δ satisfying $0 < \delta < \pi$. Define $P_{n,\delta}(x) = (1 + \cos x \cos \delta)^n$, for $n = 1, 2, 3, \cdots$. Then, which of the following statements is TRUE? - (A) $\lim_{n \to \infty} \int_{0}^{2\delta} f(x) P_{n,\delta}(x) dx = 0$ - (B) $\lim_{n \to \infty} \int_{-2\delta}^{0} f(x) P_{n,\delta}(x) dx = 0$ - (C) $\lim_{n \to \infty} \int_{-\delta}^{\delta} f(x) P_{n,\delta}(x) dx = 0$ - (D) $\lim_{n \to \infty} \int_{[-\pi,\pi] \setminus [-\delta,\delta]} f(x) P_{n,\delta}(x) dx = 0$ | Q.39 | P: Suppose that $\sum_{n=0}^{\infty} a_n x^n$ converges at $x=-3$ and diverges at $x=6$. Then $\sum_{n=0}^{\infty} (-1)^n a_n$ converges. Q: The interval of convergence of the series $\sum_{n=2}^{\infty} \frac{(-1)^n x^n}{4^n \log_e n}$ is $[-4,4]$. Which of the following statements is TRUE? | |------|--| | (A) | ${f P}$ is true and ${f Q}$ is true | | (B) | ${f P}$ is false and ${f Q}$ is false | | (C) | ${f P}$ is true and ${f Q}$ is false | | (D) | ${f P}$ is false and ${f Q}$ is true | | | | | | | | Q.40 | Let $f_n(x) = \frac{x^2}{x^2 + (1 - nx)^2}, \ x \in [0, 1], \ n = 1, 2, 3, \cdots.$ Then, which of the following statements is TRUE? | |------|--| | (A) | $\{f_n\}$ is not equicontinuous on $[0,1]$ | | (B) | $\{f_n\}$ is uniformly convergent on $[0,1]$ | | (C) | $\{f_n\}$ is equicontinuous on $[0,1]$ | | (D) | $\{f_n\}$ is uniformly bounded and has a subsequence converging uniformly on $[0,1]$ | | | | | | | | Q.41 | Let (\mathbb{Q}, d) be the metric space with $d(x, y) = x - y $. Let $E = \{p \in \mathbb{Q} : 2 < p^2 < 3\}$. Then, the set E is | |------|--| | (A) | closed but not compact | | (B) | not closed but compact | | (C) | compact | | (D) | neither closed nor compact | | | | | | | | Q.42 | Let $T: L^2[-1,1] \to L^2[-1,1]$ be defined by $Tf = \tilde{f}$, where $\tilde{f}(x) = f(-x)$ almost everywhere. If M is the kernel of $I - T$, then the distance between the function $\phi(t) = e^t$ and M is | |------|---| | (A) | $\frac{1}{2}\sqrt{(e^2 - e^{-2} + 4)}$ | | (B) | $\frac{1}{2}\sqrt{(e^2 - e^{-2} - 2)}$ | | (C) | $\frac{1}{2}\sqrt{(e^2-4)}$ | | (D) | $\frac{1}{2}\sqrt{(e^2 - e^{-2} - 4)}$ | | | | | | | | Q.43 | Let X, Y and Z be Banach spaces. Suppose that $T: X \to Y$ is linear and $S: Y \to Z$ is linear, bounded and injective. In addition, if $S \circ T: X \to Z$ is bounded, then, which of the following statements is TRUE? | |------|---| | (A) | T is surjective | | (B) | T is bounded but not continuous | | (C) | T is bounded | | (D) | T is not bounded | | | | | | | MA Page Q.44 The first derivative of a function $f \in C^{\infty}(-3,3)$ is approximated by an interpolating polynomial of degree 2, using the data $$(-1, f(-1)), (0, f(0)) \text{ and } (2, f(2)).$$ It is found that $$f'(0) \approx -\frac{2}{3}f(-1) + \alpha f(0) + \beta f(2).$$ Then, the value of $\frac{1}{\alpha\beta}$ is - (A) 3 - (B) 6 - (C) 9 - (D) 12 | Q.45 | The work done by the force $F = (x + y)\hat{i} - (x^2 + y^2)\hat{j}$, where \hat{i} and \hat{j} are unit vectors in \overrightarrow{OX} and \overrightarrow{OY} directions, respectively, along the upper half of the circle $x^2 + y^2 = 1$ from $(1,0)$ to $(-1,0)$ in the xy -plane is | |------|--| | (A) | $-\pi$ | | (B) | $- rac{\pi}{2}$ | | (C) | $\frac{\pi}{2}$ | | (D) | π | | | | | | | Q.46 Let u(x,t) be the solution of the wave equation $$\frac{\partial^2 u}{\partial t^2} - \frac{\partial^2 u}{\partial x^2} = 0, \ 0 < x < \pi, \ t > 0,$$ with the initial conditions $$u(x,0) = \sin x + \sin 2x + \sin 3x, \ \frac{\partial u}{\partial t}(x,0) = 0, \ 0 < x < \pi$$ and the boundary conditions $u(0,t)=u(\pi,t)=0,\ t\geq 0.$ Then, the value of $u\left(\frac{\pi}{2},\pi\right)$ is - (A) -1/2 - $(B) \mid 0$ - (C) 1/2 - (D) 1 MA Page Q.47 Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation defined by $$T((1,2)) = (1,0)$$ and $T((2,1)) = (1,1)$. For $p, q \in \mathbb{R}$, let $T^{-1}((p, q)) = (x, y)$. Which of the following statements is TRUE? - (A) x = p q; y = 2p q - (B) x = p + q; y = 2p q - (C) x = p + q; y = 2p + q - (D) x = p q; y = 2p + q Q.48 Let $y = (\alpha, -1)^T$, $\alpha \in \mathbb{R}$ be a feasible solution for the dual problem of the linear programming problem Maximize: $5x_1 + 12x_2$ subject to: $x_1 + 2x_2 + x_3 \le 10$ $2x_1 - x_2 + 3x_3 = 8$ $x_1, x_2, x_3 \ge 0.$ Which of the following statements is TRUE? - (A) $\alpha < 3$ - (B) $3 \le \alpha < 5.5$ - (C) $5.5 \le \alpha < 7$ - (D) $\alpha \geq 7$ | Q.49 | Let K denote the subset of $\mathbb C$ consisting of elements algebraic over $\mathbb Q$. Then, which of the following statements are TRUE? | |------|--| | (A) | No element of $\mathbb{C}\backslash K$ is algebraic over \mathbb{Q} | | (B) | K is an algebraically closed field | | (C) | For any bijective ring homomorphism $f: \mathbb{C} \longrightarrow \mathbb{C}$, we have $f(K) = K$ | | (D) | There is no bijection between K and \mathbb{Q} | | | | | | | | Q.50 | Let T be a Möbius transformation such that $T(0) = \alpha$, $T(\alpha) = 0$ and $T(\infty) = -\alpha$, where $\alpha = (-1+i)/\sqrt{2}$. Let L denote the straight line passing through the origin with slope -1 , and let C denote the circle of unit radius centred at the origin. Then, which of the following statements are TRUE? | |------|---| | (A) | T maps L to a straight line | | (B) | T maps L to a circle | | (C) | T^{-1} maps C to a straight line | | (D) | T^{-1} maps C to a circle | | | | | | | | Q.51 | Let $a > 0$. Define $D_a : L^2(\mathbb{R}) \to L^2(\mathbb{R})$ by $(D_a f)(x) = \frac{1}{\sqrt{a}} f\left(\frac{x}{a}\right)$, almost everywhere, for $f \in L^2(\mathbb{R})$. Then, which of the following statements are TRUE? | |------|--| | (A) | D_a is a linear isometry | | (B) | D_a is a bijection | | (C) | $D_a \circ D_b = D_{a+b}, \ b > 0$ | | (D) | D_a is bounded from below | | | | | | | | Q.52 | Let $\{\phi_0, \phi_1, \phi_2, \cdots\}$ be an orthonormal set in $L^2[-1, 1]$ such that $\phi_n = C_n P_n$, where C_n is a constant and P_n is the Legendre polynomial of degree n , for each $n \in \mathbb{N} \cup \{0\}$. Then, which of the following statements are TRUE? | |------|---| | (A) | $\phi_6(1) = 1$ | | (B) | $\phi_7(-1) = 1$ | | (C) | $\phi_7(1) = \sqrt{\frac{15}{2}}$ | | (D) | $\phi_6(-1) = \sqrt{\frac{13}{2}}$ | | | | | | | ## GATE 2022 Mathematics $(\overline{\text{MA}})$ | Q.53 | Let $X = (\mathbb{R}, T)$, where T is the smallest topology on \mathbb{R} in which all the singleton sets are closed. Then, which of the following statements are TRUE? | |------|--| | (A) | [0,1) is compact in X | | (B) | X is not first countable | | (C) | X is second countable | | (D) | X is first countable | | | | | | | # GATE 2022 Mathematics $(\overline{\text{MA}})$ | Q.54 | Consider (\mathbb{Z}, T) , where T is the topology generated by sets of the form $A_{m,n} = \{m + nk \mid k \in \mathbb{Z}\},\$ | | | | | |------|---|--|--|--|--| | | for $m, n \in \mathbb{Z}$ and $n \neq 0$. Then, which of the following statements are TRUE? | | | | | | (A) | $\mathbb{Z},T)$ is connected | | | | | | (B) | Each $A_{m,n}$ is a closed subset of (\mathbb{Z},T) | | | | | | (C) | (\mathbb{Z},T) is Hausdorff | | | | | | (D) | (\mathbb{Z},T) is metrizable | | | | | | | | | | | | | | | | | | | Q.55 Let $A \in \mathbb{R}^{m \times n}$, $c \in \mathbb{R}^n$ and $b \in \mathbb{R}^m$. Consider the linear programming primal problem Minimize: $c^T x$ subject to: Ax = b $x \ge 0$. Let x^0 and y^0 be feasible solutions of the primal and its dual, respectively. Which of the following statements are TRUE? - $(A) \mid c^T x^0 \ge b^T y^0$ - (B) $c^T x^0 = b^T y^0$ - (C) If $c^T x^0 = b^T y^0$, then x^0 is optimal for the primal - (D) If $c^T x^0 = b^T y^0$, then y^0 is optimal for the dual Q.56 Consider \mathbb{R}^3 as a vector space with the usual operations of vector addition and scalar multiplication. Let $x \in \mathbb{R}^3$ be denoted by $x = (x_1, x_2, x_3)$. Define subspaces W_1 and W_2 by $$W_1 := \{ x \in \mathbb{R}^3 : x_1 + 2x_2 - x_3 = 0 \}$$ and $$W_2 := \{ x \in \mathbb{R}^3 : 2x_1 + 3x_3 = 0 \}.$$ Let $\dim(U)$ denote the dimension of the subspace U. Which of the following statements are TRUE? - $(A) \mid \dim(W_1) = \dim(W_2)$ - (B) $\dim(W_1) + \dim(W_2) \dim(\mathbb{R}^3) = 1$ - (C) $\dim(W_1 + W_2) = 2$ - (D) $\dim(W_1 \cap W_2) = 1$ MA Page | Q.57 | Three companies C_1, C_2 and C_3 submit bids for three jobs J_1, J_2 and J_3 . The costs involved per unit are given in the table below: | | | | |------|--|--|--|--| | | $\begin{array}{c cccc} & J_1 & J_2 & J_3 \\ C_1 & 10 & 12 & 8 \\ C_2 & 9 & 15 & 10 \\ C_3 & 15 & 10 & 9 \end{array}$ | | | | | | Then, the cost of the optimal assignment is | | | | | | | | | | | | | | | | Q.58 The initial value problem $\frac{dy}{dx} = f(x,y), \ y(x_0) = y_0$ is solved by using the following second order Runge-Kutta method: $K_1 = hf(x_i, \ y_i)$ $K_2 = hf(x_i + \alpha h, \ y_i + \beta K_1)$ $y_{i+1} = y_i + \frac{1}{4}(K_1 + 3K_2), \ i \geq 0,$ where h is the uniform step length between the points x_0, x_1, \dots, x_n and $y_i = y(x_i)$. The value of the product $\alpha\beta$ is ______ (round off to TWO decimal places). | Q.59 | The surface area of the paraboloid $z = x^2 + y^2$ between the planes $z = 0$ and $z = 1$ is (round off to ONE decimal place). | |------|--| | | | | | | | Q.60 | The rate of change of $f(x, y, z) = x + x \cos z - y \sin z + y$ at P_0 in the direction from $P_0(2, -1, 0)$ to $P_1(0, 1, 2)$ is | |------|--| | | | | | | | Q.61 | If the Laplace equation | | | | | |------|--|--|--|--|--| | | $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0, \ 1 < x < 2, \ 1 < y < 2$ | | | | | | | with the boundary conditions | | | | | | | $\frac{\partial u}{\partial x}(1,y) = y, \ \frac{\partial u}{\partial x}(2,y) = 5, \ 1 < y < 2$ | | | | | | | and $\frac{\partial u}{\partial y}(x,1) = \frac{\alpha x^2}{7}, \ \frac{\partial u}{\partial y}(x,2) = x, \ 1 < x < 2$ | | | | | | | has a solution, then the constant α is | Q.62 | Let $u(x,y)$ be the solution of the first order partial differential equation | | | |------|---|--|--| | | $x\frac{\partial u}{\partial x} + (x^2 + y)\frac{\partial u}{\partial y} = u$, for all $x, y \in \mathbb{R}$ | | | | | satisfying $u(2,y)=y-4,\ y\in\mathbb{R}$. Then, the value of $u(1,2)$ is | | | | | | | | | | | | | | | | | | | Q.63 | The optimal value for the linear programming problem | | | | |------|---|--|--|--| | | Maximize: $6x_1 + 5x_2$
subject to: $3x_1 + 2x_2 \le 12$
$-x_1 + x_2 \le 1$ | | | | | | $x_1, x_2 \ge 0$ is | | | | | | | | | | | | | | | | Q.64 A certain product is manufactured by plants P_1 , P_2 and P_3 whose capacities are 15, 25 and 10 units, respectively. The product is shipped to markets M_1 , M_2 , M_3 and M_4 , whose requirements are 10, 10, 10 and 20, respectively. The transportation costs per unit are given in the table below. | | | M_1 | M_2 | M_3 | M_4 | | |---|-------|-------|-------|-------|-------|----| | | P_1 | 1 | 3 | 1 | 3 | 15 | | • | P_2 | 2 | 2 | 4 | 1 | 25 | | | P_3 | 2 | 1 | 1 | 2 | 10 | | • | | 10 | 10 | 10 | 20 | | Then the cost corresponding to the starting basic solution by the Northwest-corner method is ______. | Q.65 | Let M be a 3×3 real matrix such that $M^2 = 2M + 3I$. If the determinant of M is -9 , then the trace of M equals | |------|--| | | | | | |