



#### Useful data

 $\{a \in A : a \notin B\}$  $A \backslash B$ 

Set of all complex numbers  $\mathbb{C}$ 

 $\mathbb{C}^{m\times n}$ Set of all matrices of order  $m \times n$  with complex entries

 $\mathbb{C}^{\infty}(\Omega)$ Collection of all infinitely differentiable functions on the open domain  $\Omega$ 

i $\sqrt{-1}$ 

Ι Identity matrix of appropriate order

 $L^2(\mathbb{R})$  $:= L^2(\mathbb{R}, dx)$  $:= L^2([a,b],dx)$  $L^2[a,b]$ 

Set of all positive integers  $\mathbb{N}$  $\mathbb{Q}$ Set of all rational numbers  $\mathbb{R}$ Set of all real numbers

 $\mathbb{R}^{m \times n}$ Set of all matrices of order  $m \times n$  with real entries

 $\mathbb{S}^1$ 

 $\{ (x_1, x_2) \in \mathbb{R}^2 : x_1^2 + x_2^2 = 1 \}$   $\{ (x_1, x_2, x_3) \in \mathbb{R}^3 : x_1^2 + x_2^2 + x_3^2 = 1 \}$  $\mathbb{S}^2$ 

Set of all integers  $\mathbb{Z}$ 

MA



Pa





### GATE 2022 General Aptitude (GA)

#### Q.1 – Q.5 Carry ONE mark each.

| Q.1 | As you grow older, an injury to your may take longer to |
|-----|---------------------------------------------------------|
| (A) | heel / heel                                             |
| (B) | heal / heel                                             |
| (C) | heal / heal                                             |
| (D) | heel / heal                                             |

Page **2** of **66** 





| Q.2 | In a 500 m race, P and Q have speeds in the ratio of 3:4. Q starts the race when P has already covered 140 m.  What is the distance between P and Q (in m) when P wins the race? |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (A) | 20                                                                                                                                                                               |
| (B) | 40                                                                                                                                                                               |
| (C) | 60                                                                                                                                                                               |
| (D) | 140                                                                                                                                                                              |



| Q.3 | Three bells P, Q, and R are rung periodically in a school. P is rung every 20 minutes; Q is rung every 30 minutes and R is rung every 50 minutes. |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------|
|     | If all the three bells are rung at 12:00 PM, when will the three bells ring together again the next time?                                         |
| (A) | 5:00 PM                                                                                                                                           |
| (B) | 5:30 PM                                                                                                                                           |
| (C) | 6:00 PM                                                                                                                                           |
| (D) | 6:30 PM                                                                                                                                           |

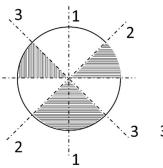


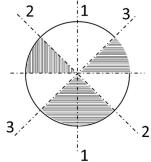
| Q.4 | Given below are two statements and four conclusions drawn based on the statements. |
|-----|------------------------------------------------------------------------------------|
|     | Statement 1: Some bottles are cups.                                                |
|     | Statement 2: All cups are knives.                                                  |
|     | Conclusion I: Some bottles are knives.                                             |
|     | Conclusion II: Some knives are cups.                                               |
|     | Conclusion III: All cups are bottles.                                              |
|     | Conclusion IV: All knives are cups.                                                |
|     | Which one of the following options can be logically inferred?                      |
| (A) | Only conclusion I and conclusion II are correct                                    |
| (B) | Only conclusion II and conclusion III are correct                                  |
| (C) | Only conclusion II and conclusion IV are correct                                   |
| (D) | Only conclusion III and conclusion IV are correct                                  |



Q.5 The figure below shows the front and rear view of a disc, which is shaded with identical patterns. The disc is flipped once with respect to any one of the fixed axes 1-1, 2-2 or 3-3 chosen uniformly at random.

What is the probability that the disc **DOES NOT** retain the same front and rear views after the flipping operation?





Front View

Rear View

- (A) 0
- (B)  $\left| \frac{1}{3} \right|$
- (C)  $\frac{2}{3}$
- (D) 1





#### Q. 6 – Q. 10 Carry TWO marks each.

| Q.6 | Altruism is the human concern for the wellbeing of others. Altruism has been shown to be motivated more by social bonding, familiarity and identification of belongingness to a group. The notion that altruism may be attributed to empathy or guilt has now been rejected. |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | Which one of the following is the CORRECT logical inference based on the information in the above passage?                                                                                                                                                                   |
| (A) | Humans engage in altruism due to guilt but not empathy                                                                                                                                                                                                                       |
| (B) | Humans engage in altruism due to empathy but not guilt                                                                                                                                                                                                                       |
| (C) | Humans engage in altruism due to group identification but not empathy                                                                                                                                                                                                        |
| (D) | Humans engage in altruism due to empathy but not familiarity                                                                                                                                                                                                                 |

| Q.7 | There are two identical dice with a single letter on each of the faces. The following six letters: Q, R, S, T, U, and V, one on each of the faces. Any of the |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | six outcomes are equally likely.                                                                                                                              |
|     | The two dice are thrown once independently at random.                                                                                                         |
|     | What is the probability that the outcomes on the dice were composed only of any combination of the following possible outcomes: Q, U and V?                   |
| (A) | $\frac{1}{4}$                                                                                                                                                 |
| (B) | $\frac{3}{4}$                                                                                                                                                 |
| (C) | $\frac{1}{6}$                                                                                                                                                 |
| (D) | <u>5</u> <u>36</u>                                                                                                                                            |





| Q.8 | The price of an item is 10% cheaper in an online store S compared to the price at another online store M. Store S charges ₹ 150 for delivery. There are no delivery charges for orders from the store M. A person bought the item from the store S and saved ₹ 100.  What is the price of the item at the online store S (in ₹) if there are no other charges than what is described above? |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (A) | 2500                                                                                                                                                                                                                                                                                                                                                                                        |
| (B) | 2250                                                                                                                                                                                                                                                                                                                                                                                        |
| (C) | 1750                                                                                                                                                                                                                                                                                                                                                                                        |
| (D) | 1500                                                                                                                                                                                                                                                                                                                                                                                        |



| Q.9 | The letters P, Q, R, S, T and U are to be placed one per vertex on a regular convex hexagon, but not necessarily in the same order. |
|-----|-------------------------------------------------------------------------------------------------------------------------------------|
|     | Consider the following statements:                                                                                                  |
|     | • The line segment joining R and S is longer than the line segment joining P and Q.                                                 |
|     | • The line segment joining R and S is perpendicular to the line segment joining P and Q.                                            |
|     | • The line segment joining R and U is parallel to the line segment joining T and Q.                                                 |
|     | Based on the above statements, which one of the following options is CORRECT?                                                       |
| (A) | The line segment joining R and T is parallel to the line segment joining Q and S                                                    |
| (B) | The line segment joining T and Q is parallel to the line joining P and U                                                            |
| (C) | The line segment joining R and P is perpendicular to the line segment joining U and Q                                               |
| (D) | The line segment joining Q and S is perpendicular to the line segment joining R and P                                               |





| Q.10 | P                                                                                                                                                                                                                                                                                                                                                            |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | An ant is at the bottom-left corner of a grid (point P) as shown above. It aims to move to the top-right corner of the grid. The ant moves only along the lines marked in the grid such that the current distance to the top-right corner strictly decreases.  Which one of the following is a part of a possible trajectory of the ant during the movement? |
| (A)  | P                                                                                                                                                                                                                                                                                                                                                            |
| (B)  | P                                                                                                                                                                                                                                                                                                                                                            |
| (C)  | P                                                                                                                                                                                                                                                                                                                                                            |
| (D)  | P                                                                                                                                                                                                                                                                                                                                                            |





Q.11-Q.35 Carry ONE mark each.

| Q.11 | Suppose that the characteristic equation of $M \in \mathbb{C}^{3\times 3}$ is                                                                                             |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | $\lambda^3 + \alpha \lambda^2 + \beta \lambda - 1 = 0,$ where $\alpha, \beta \in \mathbb{C}$ with $\alpha + \beta \neq 0$ .<br>Which of the following statements is TRUE? |
| (A)  | $M(I - \beta M) = M^{-1}(M + \alpha I)$                                                                                                                                   |
| (B)  | $M(I + \beta M) = M^{-1}(M - \alpha I)$                                                                                                                                   |
| (C)  | $M^{-1}(M^{-1} + \beta I) = M - \alpha I$                                                                                                                                 |
| (D)  | $M^{-1}(M^{-1} - \beta I) = M + \alpha I$                                                                                                                                 |
|      |                                                                                                                                                                           |
|      |                                                                                                                                                                           |







| Q.12 | Consider                                                                                                                                                                              |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | <b>P</b> : Let $M \in \mathbb{R}^{m \times n}$ with $m > n \geq 2$ . If $\operatorname{rank}(M) = n$ , then the system of linear equations $Mx = 0$ has $x = 0$ as the only solution. |
|      | <b>Q</b> : Let $E \in \mathbb{R}^{n \times n}$ , $n \geq 2$ be a non-zero matrix such that $E^3 = 0$ . Then $I + E^2$ is a singular matrix.                                           |
|      | Which of the following statements is TRUE?                                                                                                                                            |
| (A)  | Both ${f P}$ and ${f Q}$ are TRUE                                                                                                                                                     |
| (B)  | Both ${f P}$ and ${f Q}$ are FALSE                                                                                                                                                    |
| (C)  | ${f P}$ is TRUE and ${f Q}$ is FALSE                                                                                                                                                  |
| (D)  | ${f P}$ is FALSE and ${f Q}$ is TRUE                                                                                                                                                  |
|      |                                                                                                                                                                                       |
|      |                                                                                                                                                                                       |







Q.13 Consider the real function of two real variables given by  $u(x,y) = e^{2x} [\sin 3x \cos 2y \cosh 3y - \cos 3x \sin 2y \sinh 3y].$  Let v(x,y) be the harmonic conjugate of u(x,y) such that v(0,0) = 2. Let z = x + iy and f(z) = u(x,y) + iv(x,y), then the value of  $4 + 2if(i\pi)$  is  $(A) \quad e^{3\pi} + e^{-3\pi}$   $(B) \quad e^{3\pi} - e^{-3\pi}$   $(C) \quad -e^{3\pi} + e^{-3\pi}$   $(D) \quad -e^{3\pi} - e^{-3\pi}$ 







| Q.14 | The value of the integral $\int_C \frac{z^{100}}{z^{101}+1}dz$ where $C$ is the circle of radius 2 centred at the origin taken in the anti-clockwise direction is |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (A)  | $-2\pi i$                                                                                                                                                         |
| (B)  | $2\pi$                                                                                                                                                            |
| (C)  | 0                                                                                                                                                                 |
| (D)  | $2\pi i$                                                                                                                                                          |
|      |                                                                                                                                                                   |
|      |                                                                                                                                                                   |







| Q.15 | Let X be a real normed linear space. Let $X_0 = \{x \in X :   x   = 1\}$ . If $X_0$ contains two distinct points x and y and the line segment joining them, then, which of the following statements is TRUE? |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (A)  | x+y   =   x   +   y   and $x, y$ are linearly independent                                                                                                                                                    |
| (B)  | x+y   =   x   +   y   and $x, y$ are linearly dependent                                                                                                                                                      |
| (C)  | $  x+y  ^2 =   x  ^2 +   y  ^2$ and $x, y$ are linearly independent                                                                                                                                          |
| (D)  | x+y   = 2  x    y   and $x, y$ are linearly dependent                                                                                                                                                        |
|      |                                                                                                                                                                                                              |
|      |                                                                                                                                                                                                              |







| Q.16 | Let $\{e_k : k \in \mathbb{N}\}$ be an orthonormal basis for a Hilbert space $H$ .  Define $f_k = e_k + e_{k+1}, k \in \mathbb{N}$ and $g_j = \sum_{n=1}^{j} (-1)^{n+1} e_n, j \in \mathbb{N}$ .  Then $\sum_{k=1}^{\infty}  \langle g_j, f_k \rangle ^2 =$ |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (A)  | 0                                                                                                                                                                                                                                                           |
| (B)  | $j^2$                                                                                                                                                                                                                                                       |
| (C)  | $4j^2$                                                                                                                                                                                                                                                      |
| (D)  | 1                                                                                                                                                                                                                                                           |
|      |                                                                                                                                                                                                                                                             |
|      |                                                                                                                                                                                                                                                             |

MA



Page





| Q.17 | Consider $\mathbb{R}^2$ with the usual metric. Let $A = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \leq 1\}$ and $B = \{(x,y) \in \mathbb{R}^2 : (x-2)^2 + y^2 \leq 1\}$ . Let $M = A \cup B$ and $N = \operatorname{interior}(A) \cup \operatorname{interior}(B)$ . Then, which of the following statements is TRUE? |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (A)  | M and $N$ are connected                                                                                                                                                                                                                                                                                         |
| (B)  | Neither $M$ nor $N$ is connected                                                                                                                                                                                                                                                                                |
| (C)  | M is connected and $N$ is not connected                                                                                                                                                                                                                                                                         |
| (D)  | M is not connected and $N$ is connected                                                                                                                                                                                                                                                                         |
|      |                                                                                                                                                                                                                                                                                                                 |
|      |                                                                                                                                                                                                                                                                                                                 |







| Q.18 | The real sequence generated by the iterative scheme $x_n = \frac{x_{n-1}}{2} + \frac{1}{x_{n-1}}, \ n \ge 1$ |
|------|--------------------------------------------------------------------------------------------------------------|
| (A)  | converges to $\sqrt{2}$ , for all $x_0 \in \mathbb{R} \setminus \{0\}$                                       |
| (B)  | converges to $\sqrt{2}$ , whenever $x_0 > \sqrt{\frac{2}{3}}$                                                |
| (C)  | converges to $\sqrt{2}$ , whenever $x_0 \in (-1,1) \setminus \{0\}$                                          |
| (D)  | diverges for any $x_0 \neq 0$                                                                                |
|      |                                                                                                              |
|      |                                                                                                              |







| Q.19 | The initial value problem                                     |
|------|---------------------------------------------------------------|
|      | $\frac{dy}{dx} = \cos(xy), \ x \in \mathbb{R}, \ y(0) = y_0,$ |
|      | where $y_0$ is a real constant, has                           |
| (A)  | a unique solution                                             |
| (B)  | exactly two solutions                                         |
| (C)  | infinitely many solutions                                     |
| (D)  | no solution                                                   |
|      |                                                               |
|      |                                                               |







Q.20 If eigenfunctions corresponding to distinct eigenvalues  $\lambda$  of the Sturm-Liouville problem

$$\frac{d^2y}{dx^2} - 3\frac{dy}{dx} = \lambda y, \ 0 < x < \pi,$$
$$y(0) = y(\pi) = 0$$

are orthogonal with respect to the weight function w(x), then w(x) is

- (A)  $e^{-3x}$
- (B)  $e^{-2x}$
- (C)  $e^{2x}$
- (D)  $e^{3x}$







Q.21 The steady state solution for the heat equation

$$\frac{\partial u}{\partial t} - \frac{\partial^2 u}{\partial x^2} = 0, \ 0 < x < 2, \ t > 0,$$

with the initial condition  $u(x,0)=0,\ 0< x< 2$  and the boundary conditions u(0,t)=1 and  $u(2,t)=3,\ t>0,$  at x=1 is

- (A) 1
- (B) 2
- $(C) \mid 3$
- (D) 4







| Q.22 | Consider $([0,1], T_1)$ , where $T_1$ is the subspace topology induced by the Euclidean topology on $\mathbb{R}$ , and let $T_2$ be $any$ topology on $[0,1]$ . Consider the following statements: |  |  |  |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|      | <b>P</b> : If $T_1$ is a proper subset of $T_2$ , then $([0,1],T_2)$ is not compact.                                                                                                               |  |  |  |
|      | $\mathbf{Q}$ : If $T_2$ is a proper subset of $T_1$ , then $([0,1],T_2)$ is not Hausdorff.                                                                                                         |  |  |  |
|      | Then                                                                                                                                                                                               |  |  |  |
| (A)  | ${f P}$ is TRUE and ${f Q}$ is FALSE                                                                                                                                                               |  |  |  |
| (B)  | Both ${f P}$ and ${f Q}$ are TRUE                                                                                                                                                                  |  |  |  |
| (C)  | Both ${f P}$ and ${f Q}$ are FALSE                                                                                                                                                                 |  |  |  |
| (D)  | ${f P}$ is FALSE and ${f Q}$ is TRUE                                                                                                                                                               |  |  |  |
|      |                                                                                                                                                                                                    |  |  |  |
|      |                                                                                                                                                                                                    |  |  |  |







| Q.23 | Let $p:([0,1],T_1) \to (\{0,1\},T_2)$ be the quotient map, arising from the characteristic function on $[\frac{1}{2},1]$ , where $T_1$ is the subspace topology induced by the Euclidean topology on $\mathbb{R}$ . Which of the following statements is TRUE? |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (A)  | p is an open map but not a closed map                                                                                                                                                                                                                          |
| (B)  | p is a closed map but not an open map                                                                                                                                                                                                                          |
| (C)  | p is a closed map as well as an open map                                                                                                                                                                                                                       |
| (D)  | p is neither an open map nor a closed map                                                                                                                                                                                                                      |
|      |                                                                                                                                                                                                                                                                |
|      |                                                                                                                                                                                                                                                                |







Q.24 Set  $X_n := \mathbb{R}$  for each  $n \in \mathbb{N}$ . Define  $Y := \prod_{n \in \mathbb{N}} X_n$ . Endow Y with the product topology, where the topology on each  $X_n$  is the Euclidean topology. Consider the set  $\Delta = \{(x, x, x, \cdots) \mid x \in \mathbb{R}\}$  with the subspace topology induced from Y. Which of the following statements is TRUE?

(A)  $\Delta$  is open in Y(B)  $\Delta$  is locally compact

(C)  $\Delta$  is dense in Y







| Q.25 | Consider the linear system of                        | of equations A                                                      | $\mathbf{A}x = b$ | with                 |                                           |
|------|------------------------------------------------------|---------------------------------------------------------------------|-------------------|----------------------|-------------------------------------------|
|      | $A = \left( \begin{array}{c} \\ \end{array} \right)$ | $\begin{pmatrix} 3 & 1 & 1 \\ 1 & 4 & 1 \\ 2 & 0 & 3 \end{pmatrix}$ | and               | $b = \left( \right.$ | $\begin{pmatrix} 2\\3\\4 \end{pmatrix}$ . |

Which of the following statements are TRUE?

- (A) The Jacobi iterative matrix is  $\begin{pmatrix} 0 & 1/4 & 1/3 \\ 1/3 & 0 & 1/3 \\ 2/3 & 0 & 0 \end{pmatrix}$
- (B) The Jacobi iterative method converges for any initial vector
- (C) The Gauss-Seidel iterative method converges for any initial vector
- (D) The spectral radius of the Jacobi iterative matrix is less than 1





| Q.26 | The number of non-isomorphic abelian groups of order $2^2.3^3.5^4$ is |
|------|-----------------------------------------------------------------------|
|      |                                                                       |
|      |                                                                       |

MA



Page



| Q.27 | The number of subgroups of a cyclic group of order 12 is |
|------|----------------------------------------------------------|
|      |                                                          |
|      |                                                          |





| Q.28 | The radius of convergence of the series             |
|------|-----------------------------------------------------|
|      | $\sum_{n\geq 0} 3^{n+1} z^{2n}, \ z \in \mathbb{C}$ |
|      | is (round off to TWO decimal places).               |
|      |                                                     |
|      |                                                     |





| Q.29 | The number of zeros of the polynomial                |
|------|------------------------------------------------------|
|      | $2z^7 - 7z^5 + 2z^3 - z + 1$                         |
|      | in the unit disc $\{z \in \mathbb{C} :  z  < 1\}$ is |
|      |                                                      |
|      |                                                      |
|      |                                                      |
|      |                                                      |





| Q.30 | If $P(x)$ is a polynomial of degree 5 and                                                                             |
|------|-----------------------------------------------------------------------------------------------------------------------|
|      | $\alpha = \sum_{i=0}^{6} P(x_i) \left( \prod_{j=0, j \neq i}^{6} (x_i - x_j)^{-1} \right),$                           |
|      | where $x_0, x_1, \dots, x_6$ are distinct points in the interval [2, 3], then the value of $\alpha^2 - \alpha + 1$ is |
|      |                                                                                                                       |
|      |                                                                                                                       |





| Q.31 | The maximum value of $f(x,y) = 49-x^2-y^2$ on the line $x+3y = 10$ is |
|------|-----------------------------------------------------------------------|
|      |                                                                       |
|      |                                                                       |





| Q.32 | If the function $f(x,y) = x^2 + xy + y^2 + \frac{1}{x} + \frac{1}{y}$ , $x \neq 0, y \neq 0$ attains its local minimum value at the point $(a,b)$ , then the value of $a^3 + b^3$ is (round off to TWO decimal places). |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      |                                                                                                                                                                                                                         |
|      |                                                                                                                                                                                                                         |





| Q.33 | If the ordinary differential equation                                                                                                                   |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | $x^{2}\frac{d^{2}\phi}{dx^{2}} + x\frac{d\phi}{dx} + x^{2}\phi = 0, \ x > 0$                                                                            |
|      | has a solution of the form $\phi(x) = x^r \sum_{n=0}^{\infty} a_n x^n$ , where $a_n$ 's are constants and $a_0 \neq 0$ , then the value of $r^2 + 1$ is |
|      |                                                                                                                                                         |
|      |                                                                                                                                                         |







| Q.34 | The Bessel functions $J_{\alpha}(x)$ , $x > 0$ , $\alpha \in \mathbb{R}$ satisfy $J_{\alpha-1}(x) + J_{\alpha+1}(x) = \frac{2\alpha}{x}J_{\alpha}(x)$ .<br>Then, the value of $(\pi J_{\frac{3}{2}}(\pi))^2$ is |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      |                                                                                                                                                                                                                 |
|      |                                                                                                                                                                                                                 |







| Q.35 | The partial differential equation                                                                                                                        |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | $7\frac{\partial^2 u}{\partial x^2} + 16\frac{\partial^2 u}{\partial x \partial y} + 4\frac{\partial^2 u}{\partial y^2} = 0$                             |
|      | is transformed to $A\frac{\partial^2 u}{\partial \xi^2} + B\frac{\partial^2 u}{\partial \xi \partial \eta} + C\frac{\partial^2 u}{\partial \eta^2} = 0,$ |
|      | using $\xi = y - 2x$ and $\eta = 7y - 2x$ .<br>Then, the value of $\frac{1}{12^3}(B^2 - 4AC)$ is                                                         |
|      | Then, the value of $\frac{1}{12^3}(B^2-4AC)$ is                                                                                                          |
|      |                                                                                                                                                          |
|      |                                                                                                                                                          |
|      |                                                                                                                                                          |







### Q.36-Q.65 Carry TWO marks each.

| Q.36 | Let $\mathbb{R}[X]$ denote the ring of polynomials in $X$ with real coefficients. Then, the quotient ring $\mathbb{R}[X]/(X^4+4)$ is |
|------|--------------------------------------------------------------------------------------------------------------------------------------|
| (A)  | a field                                                                                                                              |
| (B)  | an integral domain, but not a field                                                                                                  |
| (C)  | not an integral domain, but has 0 as the only nilpotent element                                                                      |
| (D)  | a ring which contains non-zero nilpotent elements                                                                                    |
|      |                                                                                                                                      |
|      |                                                                                                                                      |

MA



Page





Q.37 Consider the following conditions on two proper non-zero ideals  $J_1$  and  $J_2$  of a non-zero commutative ring R.

**P:** For any  $r_1, r_2 \in R$ , there exists a unique  $r \in R$  such that  $r - r_1 \in J_1$  and  $r - r_2 \in J_2$ .

**Q:**  $J_1 + J_2 = R$ 

Then, which of the following statements is TRUE?

- (A) P implies Q but Q does not imply P
- (B) **Q** implies **P** but **P** does not imply **Q**
- (C) P implies Q and Q implies P
- (D)  $\mid \mathbf{P} \text{ does not imply } \mathbf{Q} \text{ and } \mathbf{Q} \text{ does not imply } \mathbf{P}$







- Q.38 Let  $f: [-\pi, \pi] \to \mathbb{R}$  be a continuous function such that  $f(x) > \frac{f(0)}{2}$ ,  $|x| < \delta$  for some  $\delta$  satisfying  $0 < \delta < \pi$ . Define  $P_{n,\delta}(x) = (1 + \cos x \cos \delta)^n$ , for  $n = 1, 2, 3, \cdots$ . Then, which of the following statements is TRUE?
  - (A)  $\lim_{n \to \infty} \int_{0}^{2\delta} f(x) P_{n,\delta}(x) dx = 0$
  - (B)  $\lim_{n \to \infty} \int_{-2\delta}^{0} f(x) P_{n,\delta}(x) dx = 0$
  - (C)  $\lim_{n \to \infty} \int_{-\delta}^{\delta} f(x) P_{n,\delta}(x) dx = 0$
  - (D)  $\lim_{n \to \infty} \int_{[-\pi,\pi] \setminus [-\delta,\delta]} f(x) P_{n,\delta}(x) dx = 0$







| Q.39 | P: Suppose that $\sum_{n=0}^{\infty} a_n x^n$ converges at $x=-3$ and diverges at $x=6$ . Then $\sum_{n=0}^{\infty} (-1)^n a_n$ converges.  Q: The interval of convergence of the series $\sum_{n=2}^{\infty} \frac{(-1)^n x^n}{4^n \log_e n}$ is $[-4,4]$ .  Which of the following statements is TRUE? |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (A)  | ${f P}$ is true and ${f Q}$ is true                                                                                                                                                                                                                                                                      |
| (B)  | ${f P}$ is false and ${f Q}$ is false                                                                                                                                                                                                                                                                    |
| (C)  | ${f P}$ is true and ${f Q}$ is false                                                                                                                                                                                                                                                                     |
| (D)  | ${f P}$ is false and ${f Q}$ is true                                                                                                                                                                                                                                                                     |
|      |                                                                                                                                                                                                                                                                                                          |
|      |                                                                                                                                                                                                                                                                                                          |





| Q.40 | Let $f_n(x) = \frac{x^2}{x^2 + (1 - nx)^2}, \ x \in [0, 1], \ n = 1, 2, 3, \cdots.$ Then, which of the following statements is TRUE? |
|------|--------------------------------------------------------------------------------------------------------------------------------------|
| (A)  | $\{f_n\}$ is not equicontinuous on $[0,1]$                                                                                           |
| (B)  | $\{f_n\}$ is uniformly convergent on $[0,1]$                                                                                         |
| (C)  | $\{f_n\}$ is equicontinuous on $[0,1]$                                                                                               |
| (D)  | $\{f_n\}$ is uniformly bounded and has a subsequence converging uniformly on $[0,1]$                                                 |
|      |                                                                                                                                      |
|      |                                                                                                                                      |







| Q.41 | Let $(\mathbb{Q}, d)$ be the metric space with $d(x, y) =  x - y $ . Let $E = \{p \in \mathbb{Q} : 2 < p^2 < 3\}$ . Then, the set $E$ is |
|------|------------------------------------------------------------------------------------------------------------------------------------------|
| (A)  | closed but not compact                                                                                                                   |
| (B)  | not closed but compact                                                                                                                   |
| (C)  | compact                                                                                                                                  |
| (D)  | neither closed nor compact                                                                                                               |
|      |                                                                                                                                          |
|      |                                                                                                                                          |







| Q.42 | Let $T: L^2[-1,1] \to L^2[-1,1]$ be defined by $Tf = \tilde{f}$ , where $\tilde{f}(x) = f(-x)$ almost everywhere. If $M$ is the kernel of $I - T$ , then the distance between the function $\phi(t) = e^t$ and $M$ is |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (A)  | $\frac{1}{2}\sqrt{(e^2 - e^{-2} + 4)}$                                                                                                                                                                                |
| (B)  | $\frac{1}{2}\sqrt{(e^2 - e^{-2} - 2)}$                                                                                                                                                                                |
| (C)  | $\frac{1}{2}\sqrt{(e^2-4)}$                                                                                                                                                                                           |
| (D)  | $\frac{1}{2}\sqrt{(e^2 - e^{-2} - 4)}$                                                                                                                                                                                |
|      |                                                                                                                                                                                                                       |
|      |                                                                                                                                                                                                                       |







| Q.43 | Let $X, Y$ and $Z$ be Banach spaces. Suppose that $T: X \to Y$ is linear and $S: Y \to Z$ is linear, bounded and injective. In addition, if $S \circ T: X \to Z$ is bounded, then, which of the following statements is TRUE? |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (A)  | T is surjective                                                                                                                                                                                                               |
| (B)  | T is bounded but not continuous                                                                                                                                                                                               |
| (C)  | T is bounded                                                                                                                                                                                                                  |
| (D)  | T is not bounded                                                                                                                                                                                                              |
|      |                                                                                                                                                                                                                               |
|      |                                                                                                                                                                                                                               |

MA Page







Q.44 The first derivative of a function  $f \in C^{\infty}(-3,3)$  is approximated by an interpolating polynomial of degree 2, using the data

$$(-1, f(-1)), (0, f(0)) \text{ and } (2, f(2)).$$

It is found that

$$f'(0) \approx -\frac{2}{3}f(-1) + \alpha f(0) + \beta f(2).$$

Then, the value of  $\frac{1}{\alpha\beta}$  is

- (A) 3
- (B) 6
- (C) 9
- (D) 12







| Q.45 | The work done by the force $F = (x + y)\hat{i} - (x^2 + y^2)\hat{j}$ , where $\hat{i}$ and $\hat{j}$ are unit vectors in $\overrightarrow{OX}$ and $\overrightarrow{OY}$ directions, respectively, along the upper half of the circle $x^2 + y^2 = 1$ from $(1,0)$ to $(-1,0)$ in the $xy$ -plane is |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (A)  | $-\pi$                                                                                                                                                                                                                                                                                               |
| (B)  | $-rac{\pi}{2}$                                                                                                                                                                                                                                                                                      |
| (C)  | $\frac{\pi}{2}$                                                                                                                                                                                                                                                                                      |
| (D)  | $\pi$                                                                                                                                                                                                                                                                                                |
|      |                                                                                                                                                                                                                                                                                                      |
|      |                                                                                                                                                                                                                                                                                                      |







Q.46 Let u(x,t) be the solution of the wave equation

$$\frac{\partial^2 u}{\partial t^2} - \frac{\partial^2 u}{\partial x^2} = 0, \ 0 < x < \pi, \ t > 0,$$

with the initial conditions

$$u(x,0) = \sin x + \sin 2x + \sin 3x, \ \frac{\partial u}{\partial t}(x,0) = 0, \ 0 < x < \pi$$

and the boundary conditions  $u(0,t)=u(\pi,t)=0,\ t\geq 0.$  Then, the value of  $u\left(\frac{\pi}{2},\pi\right)$  is

- (A) -1/2
- $(B) \mid 0$
- (C) 1/2
- (D) 1

MA



Page





Q.47 Let  $T: \mathbb{R}^2 \to \mathbb{R}^2$  be a linear transformation defined by

$$T((1,2)) = (1,0)$$
 and  $T((2,1)) = (1,1)$ .

For  $p, q \in \mathbb{R}$ , let  $T^{-1}((p, q)) = (x, y)$ .

Which of the following statements is TRUE?

- (A) x = p q; y = 2p q
- (B) x = p + q; y = 2p q
- (C) x = p + q; y = 2p + q
- (D) x = p q; y = 2p + q







Q.48 Let  $y = (\alpha, -1)^T$ ,  $\alpha \in \mathbb{R}$  be a feasible solution for the dual problem of the linear programming problem

Maximize:  $5x_1 + 12x_2$ 

subject to:  $x_1 + 2x_2 + x_3 \le 10$ 

 $2x_1 - x_2 + 3x_3 = 8$ 

 $x_1, x_2, x_3 \ge 0.$ 

Which of the following statements is TRUE?

- (A)  $\alpha < 3$
- (B)  $3 \le \alpha < 5.5$
- (C)  $5.5 \le \alpha < 7$
- (D)  $\alpha \geq 7$







| Q.49 | Let $K$ denote the subset of $\mathbb C$ consisting of elements algebraic over $\mathbb Q$ . Then, which of the following statements are TRUE? |
|------|------------------------------------------------------------------------------------------------------------------------------------------------|
| (A)  | No element of $\mathbb{C}\backslash K$ is algebraic over $\mathbb{Q}$                                                                          |
| (B)  | K is an algebraically closed field                                                                                                             |
| (C)  | For any bijective ring homomorphism $f: \mathbb{C} \longrightarrow \mathbb{C}$ , we have $f(K) = K$                                            |
| (D)  | There is no bijection between $K$ and $\mathbb{Q}$                                                                                             |
|      |                                                                                                                                                |
|      |                                                                                                                                                |





| Q.50 | Let $T$ be a Möbius transformation such that $T(0) = \alpha$ , $T(\alpha) = 0$ and $T(\infty) = -\alpha$ , where $\alpha = (-1+i)/\sqrt{2}$ . Let $L$ denote the straight line passing through the origin with slope $-1$ , and let $C$ denote the circle of unit radius centred at the origin. Then, which of the following statements are TRUE? |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (A)  | T maps $L$ to a straight line                                                                                                                                                                                                                                                                                                                     |
| (B)  | T maps $L$ to a circle                                                                                                                                                                                                                                                                                                                            |
| (C)  | $T^{-1}$ maps $C$ to a straight line                                                                                                                                                                                                                                                                                                              |
| (D)  | $T^{-1}$ maps $C$ to a circle                                                                                                                                                                                                                                                                                                                     |
|      |                                                                                                                                                                                                                                                                                                                                                   |
|      |                                                                                                                                                                                                                                                                                                                                                   |







| Q.51 | Let $a > 0$ . Define $D_a : L^2(\mathbb{R}) \to L^2(\mathbb{R})$ by $(D_a f)(x) = \frac{1}{\sqrt{a}} f\left(\frac{x}{a}\right)$ , almost everywhere, for $f \in L^2(\mathbb{R})$ . Then, which of the following statements are TRUE? |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (A)  | $D_a$ is a linear isometry                                                                                                                                                                                                           |
| (B)  | $D_a$ is a bijection                                                                                                                                                                                                                 |
| (C)  | $D_a \circ D_b = D_{a+b}, \ b > 0$                                                                                                                                                                                                   |
| (D)  | $D_a$ is bounded from below                                                                                                                                                                                                          |
|      |                                                                                                                                                                                                                                      |
|      |                                                                                                                                                                                                                                      |







| Q.52 | Let $\{\phi_0, \phi_1, \phi_2, \cdots\}$ be an orthonormal set in $L^2[-1, 1]$ such that $\phi_n = C_n P_n$ , where $C_n$ is a constant and $P_n$ is the Legendre polynomial of degree $n$ , for each $n \in \mathbb{N} \cup \{0\}$ . Then, which of the following statements are TRUE? |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (A)  | $\phi_6(1) = 1$                                                                                                                                                                                                                                                                         |
| (B)  | $\phi_7(-1) = 1$                                                                                                                                                                                                                                                                        |
| (C)  | $\phi_7(1) = \sqrt{\frac{15}{2}}$                                                                                                                                                                                                                                                       |
| (D)  | $\phi_6(-1) = \sqrt{\frac{13}{2}}$                                                                                                                                                                                                                                                      |
|      |                                                                                                                                                                                                                                                                                         |
|      |                                                                                                                                                                                                                                                                                         |





## GATE 2022 Mathematics $(\overline{\text{MA}})$

| Q.53 | Let $X = (\mathbb{R}, T)$ , where $T$ is the smallest topology on $\mathbb{R}$ in which all the singleton sets are closed. Then, which of the following statements are TRUE? |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (A)  | [0,1) is compact in $X$                                                                                                                                                      |
| (B)  | X is not first countable                                                                                                                                                     |
| (C)  | X is second countable                                                                                                                                                        |
| (D)  | X is first countable                                                                                                                                                         |
|      |                                                                                                                                                                              |
|      |                                                                                                                                                                              |







# GATE 2022 Mathematics $(\overline{\text{MA}})$

| Q.54 | Consider $(\mathbb{Z}, T)$ , where $T$ is the topology generated by sets of the form $A_{m,n} = \{m + nk \mid k \in \mathbb{Z}\},\$ |  |  |  |  |
|------|-------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|      | for $m, n \in \mathbb{Z}$ and $n \neq 0$ . Then, which of the following statements are TRUE?                                        |  |  |  |  |
| (A)  | $\mathbb{Z},T)$ is connected                                                                                                        |  |  |  |  |
| (B)  | Each $A_{m,n}$ is a closed subset of $(\mathbb{Z},T)$                                                                               |  |  |  |  |
| (C)  | $(\mathbb{Z},T)$ is Hausdorff                                                                                                       |  |  |  |  |
| (D)  | $(\mathbb{Z},T)$ is metrizable                                                                                                      |  |  |  |  |
|      |                                                                                                                                     |  |  |  |  |
|      |                                                                                                                                     |  |  |  |  |







Q.55 Let  $A \in \mathbb{R}^{m \times n}$ ,  $c \in \mathbb{R}^n$  and  $b \in \mathbb{R}^m$ . Consider the linear programming primal problem

Minimize:  $c^T x$ 

subject to: Ax = b

 $x \ge 0$ .

Let  $x^0$  and  $y^0$  be feasible solutions of the primal and its dual, respectively. Which of the following statements are TRUE?

- $(A) \mid c^T x^0 \ge b^T y^0$
- (B)  $c^T x^0 = b^T y^0$
- (C) If  $c^T x^0 = b^T y^0$ , then  $x^0$  is optimal for the primal
- (D) If  $c^T x^0 = b^T y^0$ , then  $y^0$  is optimal for the dual







Q.56 Consider  $\mathbb{R}^3$  as a vector space with the usual operations of vector addition and scalar multiplication. Let  $x \in \mathbb{R}^3$  be denoted by  $x = (x_1, x_2, x_3)$ . Define subspaces  $W_1$  and  $W_2$  by

$$W_1 := \{ x \in \mathbb{R}^3 : x_1 + 2x_2 - x_3 = 0 \}$$

and

$$W_2 := \{ x \in \mathbb{R}^3 : 2x_1 + 3x_3 = 0 \}.$$

Let  $\dim(U)$  denote the dimension of the subspace U.

Which of the following statements are TRUE?

- $(A) \mid \dim(W_1) = \dim(W_2)$
- (B)  $\dim(W_1) + \dim(W_2) \dim(\mathbb{R}^3) = 1$
- (C)  $\dim(W_1 + W_2) = 2$
- (D)  $\dim(W_1 \cap W_2) = 1$

MA



Page





| Q.57 | Three companies $C_1, C_2$ and $C_3$ submit bids for three jobs $J_1, J_2$ and $J_3$ . The costs involved per unit are given in the table below: |  |  |  |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|      | $\begin{array}{c cccc} & J_1 & J_2 & J_3 \\ C_1 & 10 & 12 & 8 \\ C_2 & 9 & 15 & 10 \\ C_3 & 15 & 10 & 9 \end{array}$                             |  |  |  |
|      | Then, the cost of the optimal assignment is                                                                                                      |  |  |  |
|      |                                                                                                                                                  |  |  |  |
|      |                                                                                                                                                  |  |  |  |





Q.58 The initial value problem  $\frac{dy}{dx} = f(x,y), \ y(x_0) = y_0$  is solved by using the following second order Runge-Kutta method:  $K_1 = hf(x_i, \ y_i)$   $K_2 = hf(x_i + \alpha h, \ y_i + \beta K_1)$   $y_{i+1} = y_i + \frac{1}{4}(K_1 + 3K_2), \ i \geq 0,$ where h is the uniform step length between the points  $x_0, x_1, \dots, x_n$  and  $y_i = y(x_i)$ . The value of the product  $\alpha\beta$  is \_\_\_\_\_\_ (round off to TWO decimal places).





| Q.59 | The surface area of the paraboloid $z = x^2 + y^2$ between the planes $z = 0$ and $z = 1$ is (round off to ONE decimal place). |
|------|--------------------------------------------------------------------------------------------------------------------------------|
|      |                                                                                                                                |
|      |                                                                                                                                |





| Q.60 | The rate of change of $f(x, y, z) = x + x \cos z - y \sin z + y$ at $P_0$ in the direction from $P_0(2, -1, 0)$ to $P_1(0, 1, 2)$ is |
|------|--------------------------------------------------------------------------------------------------------------------------------------|
|      |                                                                                                                                      |
|      |                                                                                                                                      |







| Q.61 | If the Laplace equation                                                                                                |  |  |  |  |
|------|------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|      | $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0, \ 1 < x < 2, \ 1 < y < 2$                  |  |  |  |  |
|      | with the boundary conditions                                                                                           |  |  |  |  |
|      | $\frac{\partial u}{\partial x}(1,y) = y, \ \frac{\partial u}{\partial x}(2,y) = 5, \ 1 < y < 2$                        |  |  |  |  |
|      | and $\frac{\partial u}{\partial y}(x,1) = \frac{\alpha x^2}{7}, \ \frac{\partial u}{\partial y}(x,2) = x, \ 1 < x < 2$ |  |  |  |  |
|      | has a solution, then the constant $\alpha$ is                                                                          |  |  |  |  |
|      |                                                                                                                        |  |  |  |  |
|      |                                                                                                                        |  |  |  |  |
|      |                                                                                                                        |  |  |  |  |





| Q.62 | Let $u(x,y)$ be the solution of the first order partial differential equation                                 |  |  |
|------|---------------------------------------------------------------------------------------------------------------|--|--|
|      | $x\frac{\partial u}{\partial x} + (x^2 + y)\frac{\partial u}{\partial y} = u$ , for all $x, y \in \mathbb{R}$ |  |  |
|      | satisfying $u(2,y)=y-4,\ y\in\mathbb{R}$ . Then, the value of $u(1,2)$ is                                     |  |  |
|      |                                                                                                               |  |  |
|      |                                                                                                               |  |  |
|      |                                                                                                               |  |  |





| Q.63 | The optimal value for the linear programming problem                              |  |  |  |
|------|-----------------------------------------------------------------------------------|--|--|--|
|      | Maximize: $6x_1 + 5x_2$<br>subject to: $3x_1 + 2x_2 \le 12$<br>$-x_1 + x_2 \le 1$ |  |  |  |
|      | $x_1, x_2 \ge 0$ is                                                               |  |  |  |
|      |                                                                                   |  |  |  |
|      |                                                                                   |  |  |  |







Q.64 A certain product is manufactured by plants  $P_1$ ,  $P_2$  and  $P_3$  whose capacities are 15, 25 and 10 units, respectively. The product is shipped to markets  $M_1$ ,  $M_2$ ,  $M_3$  and  $M_4$ , whose requirements are 10, 10, 10 and 20, respectively. The transportation costs per unit are given in the table below.

|   |       | $M_1$ | $M_2$ | $M_3$ | $M_4$ |    |
|---|-------|-------|-------|-------|-------|----|
|   | $P_1$ | 1     | 3     | 1     | 3     | 15 |
| • | $P_2$ | 2     | 2     | 4     | 1     | 25 |
|   | $P_3$ | 2     | 1     | 1     | 2     | 10 |
| • |       | 10    | 10    | 10    | 20    |    |

Then the cost corresponding to the starting basic solution by the Northwest-corner method is \_\_\_\_\_\_.





| Q.65 | Let $M$ be a $3 \times 3$ real matrix such that $M^2 = 2M + 3I$ . If the determinant of $M$ is $-9$ , then the trace of $M$ equals |
|------|------------------------------------------------------------------------------------------------------------------------------------|
|      |                                                                                                                                    |
|      |                                                                                                                                    |

