

Set~1

Series 1HKPΩ6/C

कोड नं. 56/1/1

रोल नं.					परीक्षार्थी अवश्य ति	कोड तखें ।	को	उत्तर-पुस्तिका	के	मुख-
					1					

- कृपया जाँच कर लें कि इस प्रश्न-पत्र में मुद्रित पृष्ठ 10 हैं।
- प्रश्न-पत्र में दाहिने हाथ की ओर दिए गए कोड नम्बर को छात्र उत्तर-पुस्तिका के मुख-पृष्ठ पर लिखें ।
- कृपया जाँच कर लें कि इस प्रश्न-पत्र में 33 प्रश्न हैं।
- कृपया प्रश्न का उत्तर लिखना शुरू करने से पहले, प्रश्न का क्रमांक अवश्य लिखें।
- इस प्रश्न-पत्र को पढ़ने के लिए 15 मिनट का समय दिया गया है। प्रश्न-पत्र का वितरण पूर्वाह्न में 10.15 बजे किया जाएगा। 10.15 बजे से 10.30 बजे तक छात्र केवल प्रश्न-पत्र को पढ़ेंगे और इस अवधि के दौरान वे उत्तर-पुस्तिका पर कोई उत्तर नहीं लिखेंगे।

रसायन विज्ञान (सैद्धान्तिक)

निर्धारित समय: 3 घण्टे

अधिकतम अंक : 70

सामान्य निर्देश:

निम्नलिखित निर्देशों को बहुत सावधानी से पढ़िए और उनका सख़्ती से पालन कीजिए :

- (i) यह प्रश्न-पत्र **चार** खण्डों में विभाजित किया गया है **क, ख, ग** एवं **घ** । इस प्रश्न-पत्र में **33** प्रश्न हैं । **सभी** प्रश्न अनिवार्य हैं ।
- (ii) **खण्ड क** में प्रश्न संख्या 1 से 16 तक अति लघु-उत्तरीय प्रकार के प्रश्न हैं, प्रत्येक प्रश्न /भाग 1 अंक का है । प्रत्येक प्रश्न का उत्तर एक शब्द या एक वाक्य में दीजिए ।
- (iii) खण्ड ख में प्रश्न संख्या 17 से 25 तक लघु-उत्तरीय प्रकार के प्रश्न हैं, प्रत्येक प्रश्न 2 अंकों का है।
- (iv) **खण्ड ग** में प्रश्न संख्या **26** से **30** तक दीर्घ-उत्तरीय प्रकार-I के प्रश्न हैं, प्रत्येक प्रश्न **3** अंकों का है।
- (v) खण्ड घ में प्रश्न संख्या 31 से 33 तक दीर्घ-उत्तरीय प्रकार-II के प्रश्न हैं, प्रत्येक प्रश्न 5 अंकों का है।
- (vi) प्रश्न-पत्र में कोई समग्र विकल्प नहीं है। तथापि, एक-एक अंक के सात प्रश्नों lभागों में, दो-दो अंकों के तीन प्रश्नों में, तीन-तीन अंकों के दो प्रश्नों में तथा पाँच-पाँच अंकों के तीनों प्रश्नों में आन्तरिक विकल्प दिए गए हैं। ऐसे प्रश्नों में से केवल एक ही विकल्प का उत्तर दीजिए।
- (vii) इसके अतिरिक्त, आवश्यकतानुसार, प्रत्येक खण्ड और प्रश्न के साथ यथोचित निर्देश दिए गए हैं।
- (viii) कैल्कुलेटर अथवा लॉग टेबल के प्रयोग की अनुमति **नहीं** है।

56/1/1

Page 11 of 20

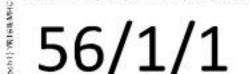
खण्ड क

नीचे दिए गए अनुच्छेद को पढ़िए तथा निम्नलिखित प्रश्नों के उत्तर दीजिए :

 $4\times1=4$

ऐमीनों को अमोनिया के व्युत्पन्न के रूप में माना जा सकता है तथा सामान्यत: ये नाइट्राइल, नाइट्रो, हैलाइड, ऐमाइड, इत्यादि से बनाए जाते हैं । ये हाइड्रोजन आबंधन दर्शाते हैं जो कि इनके भौतिक गुणों को प्रभावित करता है । ऐरोमैटिक ऐमीनों में इलेक्ट्रॉन दाता (निर्मोची) एवं इलेक्ट्रॉन अपनयक समूह इनके क्षारीय गुणधर्म में क्रमश: वृद्धि एवं हास करते हैं।

हिंसबर्ग परीक्षण को प्राथमिक, द्वितीयक तथा तृतीयक ऐमीनों की पहचान तथा विभेद में प्रयुक्त किया जाता है। निम्नलिखित प्रश्न बहुविकल्पीय प्रश्न हैं:


- एथिल ऐमीन को LiAlH₁ द्वारा किसके साथ क्रिया करके बनाया जा सकता है ? (i)
 - CH_3NO_2 (\mathbf{A})
 - $CH_3 CN$ (B)
 - $CH_3 NC$ (\mathbf{C})
 - $CH_3 CH_2 CONH_2$ (\mathbf{D})
- -निम्नलिखित में से कौन-सा अभिकर्मक ऐमीनों के हिंसबर्ग परीक्षण में प्रयुक्त किया जाता है ? (A) $C_{\varepsilon}H_{\varepsilon}COCl$ (ii) $ho_6 H_5 - SO_2 CI$ निम्नलिखित में से जलीय विलयन में प्रबलतम क्षार है : $\frac{(CH_3)_2 NH}{(CH_3)_3 N}$
- (iii)

 - $(CH_3)_3N$ (B)
 - $CH_3 NH_2$ (\mathbf{C})
 - $C_6H_5 NH_2$ (D)
- अमोनिया की अभिक्रिया CH₃ Cl के आधिक्य में करवाने पर मुख्यत: बनेगा : (iv)
 - C_2H_6 (A)
 - $(CH_3)_2NH$ (B)
 - $(CH_3)_4N^+Cl^ (\mathbf{C})$
 - $CH_3 NH_2$ (\mathbf{D})

अथवा

निम्नलिखित ऐमीनों में से किसका क्वथनांक निम्नतम अपेक्षित है ?

- (A) $C_2H_5 - NH_2$
- $(C_2H_5)_3N$ (B)
- $(C_2H_5)_2NH$ (\mathbf{C})
- $CH_3 NH_2$ (D)

Page 12 of 20

नीचे दिए गए अनुच्छेद को पढ़िए तथा निम्नलिखित प्रश्नों के उत्तर दीजिए : $4\times1=4$ 2. कणों के आकार के आधार पर कोलॉइडी विलयन वास्तविक विलयन एवं निलंबन के मध्य की स्थिति है। एक कोलॉइडी निकाय में दो प्रावस्थाएँ होती हैं — परिक्षिप्त प्रावस्था एवं परिक्षेपण माध्यम । परिक्षिप्त प्रावस्था एवं परिक्षेपण माध्यम के बीच अन्योन्यक्रिया की प्रकृति के आधार पर कोलॉइड दो प्रकार के होते हैं — द्रविवरागी एवं द्रवरागी कोलॉइड । कोलॉइडी कणों पर हमेशा विद्युत् आवेश रहता है । कोलॉइडी विलयन को अपोहन द्वारा

निम्नलिखित प्रश्न (प्रश्न संख्या 2 (i) – (iv)) में एक अभिकथन तथा इसके कारण का कथन दिया गया है । निम्नलिखित विकल्पों में से सही उत्तर चुनिए ।

- अभिकथन और कारण दोनों सही कथन हैं और कारण, अभिकथन की सही व्याख्या है। (\mathbf{A})
- अभिकथन और कारण दोनों सही कथन हैं, परन्तु कारण, अभिकथन की सही व्याख्या *नहीं* है। (\mathbf{B})
- अभिकथन सही कथन है, परन्तु कारण ग़लत कथन है। (\mathbf{C})

शुद्धिकृत (शोधित) किया जाता है।

- अभिकथन ग़लत कथन है, परन्तु कारण सही कथन है। (D)
 - वास्तविक विलयन प्रकाश का प्रकीर्णन दर्शाता है। (i) वास्तविक विलयन में विलायक कणों का आकार प्रयुक्त प्रकाश के तरंगदैर्घ्य से बहुत कम कारण: होता है।
 - द्रवरागी सॉल, द्रवविरागी सॉल की तुलना में अधिक स्थायी होते हैं। अभिकथन : (ii) द्रवरागी सॉल विलयन में अधिकतम विलायकयोजित (विलायक संकरित) होते हैं। कारण:
 - कोलॉइडी विलयन को अपोहन के द्वारा शुद्धिकृत (शोधित) किया जाता है। अभिकथन : (iii) अपोहन में कोलॉइडी कण एक उपयुक्त झिल्ली में से निकल जाते हैं।
 - जब AgNO3 में KI को डाला जाता है तब एक धनावेशित सॉल बनता है। अभिकथन : (iv) यह Ag+ आयनों के अधिमान्य अधिशोषण के कारण होता है। कारण:

कोलॉइडी विलयन ब्राउनी गति दर्शाता है। अभिकथन:

कोलॉइड एक पदार्थ नहीं है परन्तु पदार्थ की अवस्था है। कारण:

निम्नलिखित प्रश्न (प्रश्न संख्या 3 से 11) बहुविकल्पीय प्रश्न हैं :

3.	प्रोटीनों र्व	ति हेलिक्स संरचना <u></u>	_ के द्वारा स्थायी होती है ।	1
	(A)	पेप्टाइड आबंध		

- हाइड्रोजन आबंध
- (B)
- डाइसल्फाइड आबंध (\mathbf{C})
- वान्डर वाल बलो (\mathbf{D})

अथवा

के बहुलक हैं। न्यूक्लीक अम्ल

- न्यूक्लिओसाइडों (A)
- D-राइबोस (B)
- ऐमीनो अम्लों (\mathbf{C})
- न्यूक्लिओटाइडों (D)

4.	निम्नलि	निखत में से कौन-सा प्रबल ऑक्सीकारक है ?	1
	(परमाप्	गु क्रमांक $\mathrm{Mn}=25,\ \mathrm{Zn}=30,\ \mathrm{Cr}=24,\ \mathrm{Sc}=21)$	
	(A)	Mn^{3+}	
	(B)	$\rm Zn^{2+}$	
	(C)	$ m Cr^{3+}$	
	(D)	$\mathrm{Sc^{3+}}$	
5.	P तथा	Q तत्त्वों का एक घनीय संरचना में क्रिस्टलीकृत होकर एक यौगिक बनता है, जहाँ P परमाणु घन के किनारों	
	पर तथ	ा Q परमाणु फलक के केन्द्रों पर हैं। यौगिक का सूत्र है:	1
	(A)	$\mathrm{P_{2}Q_{2}}$	
	(B)	PQ_3	
	(C)	\overline{PQ}	
	(\mathbf{D})	$\mathbf{P_{3}Q}$	
6.	नाइट्रोज	न पेन्टाहैलाइड बनाने में असमर्थ है क्योंकि :	1
	(A)	s तथा p कक्षकों की उपस्थिति होती है।	
	(B)	p तथा d दोनों कक्षकों की अनुपस्थिति होती है।	
	(C)	d-कक्षकों की अनुपस्थिति होती है।	
	(D)	इनमें से सभी।	
		अथवा	
	निम्निल	ाखित में से कौन-सा हाइड्रोजन हैलाइड सर्वाधिक वाष्पशील है ?	1
	(A)	H - F	
	(B)	H-I H-Br India's large	
	(C)		
	(\mathbf{D})	$H-Cl_{2}$	
7.	[Co(e	${f n)}_3]_2({f SO}_4)_3$ में ${f Co}$ की ऑक्सीकरण संख्या है :	1
	(A)	+2	
	(B)	+3	
	(C)	+4	
	(\mathbf{D})	+6	
8.	निम्निल	नखित लिगन्डों में से कौन-सा धातु आयन के साथ 'कीलेट' संकुल बनाता है ?	1
	(A)	$\mathrm{H_2O}$	
	(B)	$\overline{\mathrm{cn}}^-$	
	(C)	$\mathrm{C_2O_4^{2-}}$	
	(D)	Cl^-	
		अथवा ० २:	
	[CrCl	$[2] (\mathrm{ox})_2]^{3-}$ में Cr की उपसहसंयोजन संख्या है :	1
	(A)	6	
	(B)	5	
	(C)	4	
(yroehil YN SilaMHC(yroeh YN SilaM	MHC[Alcept] ARTEIPHIC	3	
56/1	/1	Page 14 of 20	

1000
回路数据

उपसहसंयोजक यौगिक टेट्राऐम्मीनक्लोरीडोनाइट्रिटो-N-कोबाल्ट(III)क्लोराइड का सूत्र है : 9.

- $[\mathrm{Co(NH_3)_4Cl(ONO)}]\mathrm{Cl_2}$ (A)
- $[Co(NH_3)_4Cl_2(NO_2)]Cl$ (B)
- $[Co(NH_3)_4Cl(NO_2)]Cl$ (\mathbf{C})
- $[Co(NH_3)_4(NO_2)]Cl_3$ (D)
- नीचे दी गई अभिक्रिया: **10.**

कहलाती है :

- वुर्ज़ अभिक्रिया (\mathbf{A})
- वुर्ज़ फिटिग अभिक्रिया (B)
- फिटिग अभिक्रिया (**C**)
- उपर्युक्त में से कोई नहीं (D)

अथवा

निम्नलिखित अभिक्रियाओं में से कौन-सी समान दशाओं में तीव्र होगी ?

- (A)
- (B)
- (D)

 \sim_2 $\mathrm{H}_5\mathrm{Cl} + \mathrm{H}_2\mathrm{O}$ $\mathrm{C}_2\mathrm{H}_5\mathrm{Br} + \mathrm{H}_2\mathrm{O}$ $\mathrm{C}_2\mathrm{H}_5\mathrm{OH} + \mathrm{HF} \longrightarrow \mathrm{C}_2\mathrm{H}_5\mathrm{F} + \mathrm{H}_2\mathrm{O}$ गोलों का घनीय निविड संकल प्र समान आकार के गोलों का घनीय निविड संकुलन __ 11.

- ACB ACB ACB ... (\mathbf{A})
- AB AB AB ... (B)
- ABC ABC ABC ... (\mathbf{C})
- AB AC AC AB ... (D)

निम्नलिखित प्रश्न (प्रश्न संख्या 12 से 16) में एक अभिकथन तथा इसके कारण का कथन दिया गया है । निम्नलिखित विकल्पों में से सही उत्तर को चुनिए।

- अभिकथन और कारण दोनों सही कथन हैं और कारण, अभिकथन की सही व्याख्या है। (\mathbf{A})
- अभिकथन और कारण दोनों सही कथन हैं, परन्तु कारण, अभिकथन की सही व्याख्या *नहीं* है। (B)
- अभिकथन सही कथन है, परन्तु कारण ग़लत कथन है। (\mathbf{C})
- अभिकथन ग़लत कथन है, परन्तु कारण सही कथन है। (D)
- फ़ीनॉल की तुलना में ऑर्थो-नाइट्रोफ़ीनॉल अधिक अम्लीय है। अभिकथन : **12.**

नाइट्रो समूह इलेक्ट्रॉन दाता समूह है जो कि ऑर्थो-नाइट्रोफिनॉक्साइड आयन को स्थायित्व देता कारण :

Cl – Cl आबंध की तुलना में F – F आबंध की आबंध वियोजन एन्थैल्पी कम है। अभिकथन : **13.**

फ्लुओरीन केवल एक ऑक्सोअम्ल बनाता है। कारण :

अथवा

Page 15 of 20

ETS-60-182	अभिक	थन :	उत्कृष्ट (नोबल) गैसें मुख्यत: फ्लुओरीन एवं ऑक्सीजन के साथ यौगिक बनाते हैं ।	
	कारण.	● & > ()	फ्लुओरीन एवं ऑक्सीजन सर्वाधिक विद्युत्-ऋणात्मक तत्त्व हैं ।	1
14.	अभिक	थन :	आयरन की अभिक्रिया HCl से करने पर FeCl_3 देता है न कि FeCl_2 ।	
	कारण .	•	अभिक्रिया में बनने वाली हाइड्रोजन गैस FeCl_2 का FeCl_3 में ऑक्सीकरण को रोकता है।	1
15.	अभिक	थन :	ग्लूकोस अपचायक शर्करा है।	
	कारण.		ग्लूकोस में ऐल्डिहाइडिक समूह होने के उपरान्त भी 2,4-DNP परीक्षण नहीं देता है।	1
16.	अभिक कारण		बेन्ज़ोइक अम्ल फ्रीडेल-क्राफ्ट्स अभिक्रिया नहीं देता है। कार्बोक्सिल समूह निष्क्रियण है तथा लुईस अम्ल AlCl_3 से बंधित हो जाता है।	1
			खण्ड ख	
निम्नलि	खित प्रश्न	(प्रश्न संख	त्या 17 से 25) लघु-उत्तरीय प्रश्न हैं और प्रत्येक प्रश्न 2 अंकों का है :	9×2=18
17.	(a)	उत्पादों र	की संरचनाएँ लिखिए जब :	2×1=2
		(i)	प्रोपेन-2-ऑल को Cu के साथ 573 K पर गर्म करते हैं।	
		(ii)	सैलिसिलिक अम्ल की क्रिया ${ m (CH_3CO)}_2{ m O/H^+}$ से करवाई जाती है ।	
			अथवा	
	(b)	निम्नर्लि		2×1=2
		(i)	खेत रूपान्तरणों को कीजिए : फ़ीनॉल से ऐनिसॉल	
		(ii)	ऐनिलीन से फ़ीनॉल	
18.	क्लोरोप	जॉर्म एवं ऐस	ीटोन के मिश्रण से राउल्ट नियम में किस प्रकार का विचलन देखा गया ? क्लोरोफॉर्म एवं ऐसी	टोन
	के मिश्र	ण से वाष्प	दाब में कमी क्यों होती है ?	2
19.	(a)	निम्नर्लि	खत संकुल की संकरण एवं चुम्बकीय प्रवृत्ति लिखिए :	2×1=2
		(i)	$[\mathrm{CoF}_{6}]^{3-}$	
		(ii)	$[\mathrm{Ni(CN)}_4]^{2-}$	
		[परमाणु	क्रमांक $Co = 27$, $Ni = 28$]	
			अथवा	
	(b)	(i)	$[\mathrm{Mn(H_2O)}_6]\mathrm{SO}_4$ का IUPAC नाम लिखिए ।	
		(ii)	$[{ m Fe(CN)}_6]^{4-}$ प्रतिचुम्बकीय है जबिक $[{ m FeF}_6]^{3-}$ अनुचुम्बकीय है, क्यों $?$	
			[परमाणु क्रमांक Fe = 26]	2×1=2
20.	निम्नलि	खित अभि	क्रिया जल में की गई है :	
		$Br_2 + 5$	$2I^- \longrightarrow 2Br^- + I_2$	
	I^- की	प्रारम्भिक र	सांद्रता $0.30~\mathrm{M}$ थी तथा 10 मिनट पश्चात् सांद्रता कम होकर $0.28~\mathrm{M}$ हो गई । I^- के विल्	नु प्त

56/1/1

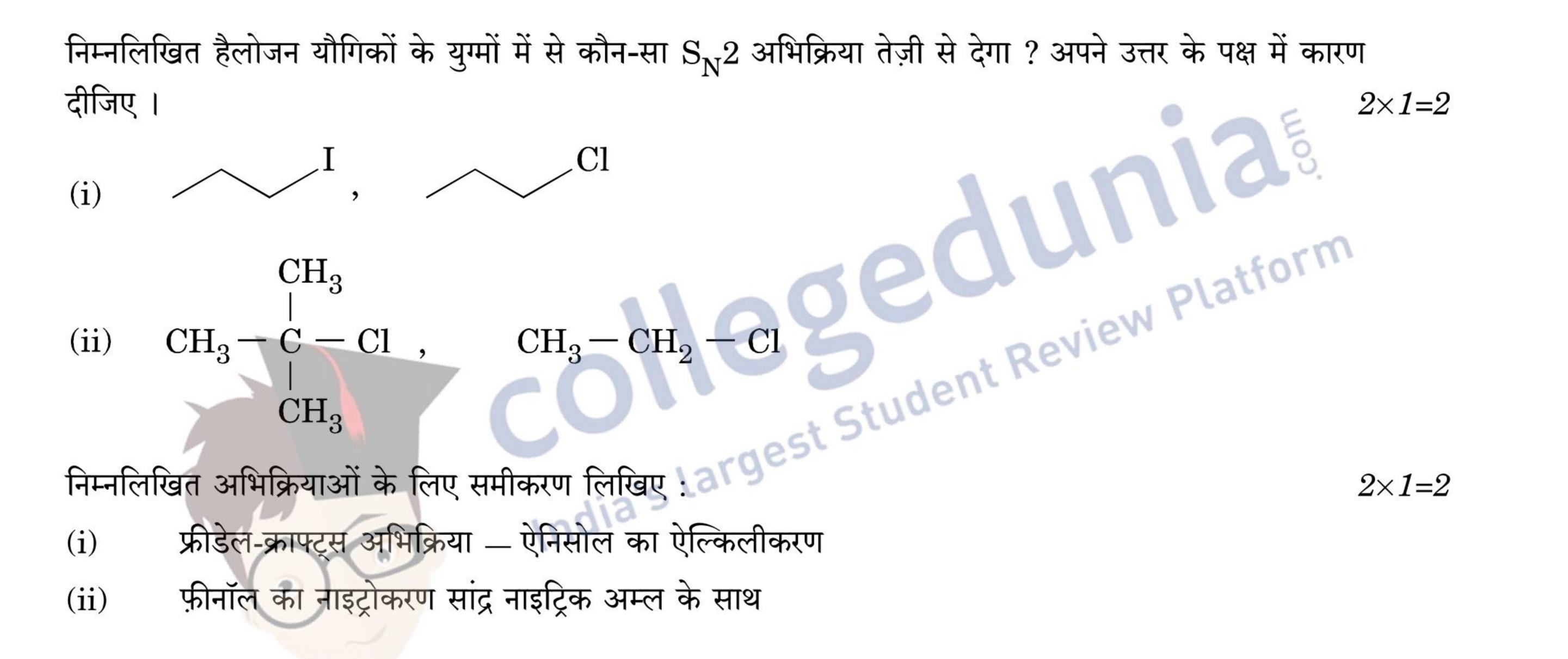
Page 16 of 20

होने की दर तथा ${f I}_2$ के बनने की दर की गणना कीजिए ।

निम्नलिखित के लिए कारण दीजिए: 21. (a)

 $2\times1=2$

- संक्रमण धातुएँ अधिक संख्या में संकुल यौगिक बनाते हैं। (i)
- Cr^{2+} एक प्रबल अपचायक है । (ii)


अथवा

- संक्रमण तत्त्व परिवर्तनशील ऑक्सीकरण अवस्था क्यों दर्शाते हैं ? संक्रमण धातुएँ, p-ब्लॉक तत्त्वों से (b) परिवर्तनशील ऑक्सीकरण अवस्थाओं के संदर्भ में कैसे भिन्न हैं ?
- निम्नलिखित अभिक्रियाओं में सम्मिलित समीकरणों को लिखिए: 22.

 $2\times1=2$

- कार्बिलऐमीन अभिक्रिया (i)
- हॉफमान ब्रोमैमाइड निम्नीकरण अभिक्रिया (ii)
- **23.**

$$(i)$$
 \mathcal{I} , \mathcal{C}

24.

- एक तत्त्व जिसका मोलर द्रव्यमान $27~\mathrm{g~mol^{-1}},\,300~\mathrm{pm}$ कोर लम्बाई की घनीय एकक कोष्ठिका बनाता है। यदि **25.** इसका घनत्व $6.6~\mathrm{g~cm^{-3}}$ है, तो घनीय एकक कोष्ठिका की प्रकृति को पहचानिए।

खण्ड ग

प्रश्न संख्या 26 से 30 दीर्घ-उत्तरीय प्रकार-I के प्रश्न हैं और प्रत्येक प्रश्न 3 अंकों का है।

 $5\times3=15$

 ${
m E}^{\circ}\,(Cu^{2+}\,|\,Cu)$ अपवादस्वरूप धनात्मक क्यों है ? ${
m Cu}^+$ आयन का $3d^{10}$ विन्यास होते हुए भी जलीय **26.** (a) विलयन में अस्थायी है । क्यों ? Cu^{2+} का Cu^{+} आयन से अधिक स्थायित्व का क्या कारण है ?

अथवा

निम्नलिखित के लिए कारण दीजिए: (b)

 $3\times1=3$

- संक्रमण धातुएँ मिश्रधातुएँ बनाती हैं। (i)
- ज़िंक की कणन एन्थैल्पी न्यूनतम है। (ii)
- मैंगनीज़ फ्लुओरीन के साथ +4 की उच्च ऑक्सीकरण अवस्था दर्शाता है जबकि ऑक्सीजन के (iii) साथ +7 दर्शाता है।

Page 17 of 20

निम्नलिखित में विभेद कीजिए: **27.** (a)

 $3\times1=3$

- रेशेदार प्रोटीन तथा गोलिकाकार प्रोटीन (i)
- आवश्यक ऐमीनो अम्ल तथा अनावश्यक ऐमीनो अम्ल (ii)
- (iii) DNA तथा RNA

अथवा

ग्लूकोस के साथ अभिक्रिया लिखिए: (b)

 $3\times1=3$

- HCN (i)
- (ii) Br_2
- (iii) HI
- दी गई अभिक्रिया के लिए निम्नलिखित डेटा प्राप्त हुए: **28.**

 $X + Y \longrightarrow 3$ तपाद

प्रयोग	[X]/M	[Y]/M	प्रारम्भिक दर M min ⁻¹
1	0·1 M	0·2 M	0.05
2	0·2 M	0·2 M	0.10
3	0·1 M	0·1 M	0.05 Re

- (i) X तथा Y के सापेक्ष अभिक्रिया की कोटि ज्ञात कीजिए।
 (ii) वेग नियम व्यंजक लिखिए।
 (iii) वेग स्थिरांक ज्ञात कीजिए।
- वेग स्थिरांक ज्ञात कीजिए। (iii)

 $3\times1=3$

- जल का 293 K पर वाष्प दाब 17.536 mm Hg है । जब 20 g ग्लूकोस (मोलर द्रव्यमान = 180 g mol^{-1}) **29.** को 500 g जल में विलेय किया जाता है, तो जलीय विलयन के वाष्प दाब की गणना कीजिए।
- निम्नलिखित के लिए कारण दीजिए: **30.**

 $3\times1=3$

- हैलोऐरीनों में इलेक्ट्रॉनरागी प्रतिस्थापन धीरे होता है। (i)
- ऐल्कोहॉल की KI से अभिक्रिया के दौरान सल्फ्यूरिक अम्ल का उपयोग नहीं किया जाता है। (ii)
- ऐल्किल हैलाइड KCN के साथ नाइट्राइल तथा AgCN के साथ आइसोनाइट्राइल देते हैं। (iii)

खण्ड घ

प्रश्न संख्या 31 से 33 दीर्घ-उत्तरीय प्रकार-II के प्रश्न हैं और प्रत्येक प्रश्न 5 अंकों का है।

 $3\times5=15$

- निम्नलिखित के लिए कारण दीजिए : 31. (i)(a)
 - वर्ग-16 में ऑक्सीजन से पोलोनियम तक -2 ऑक्सीकरण अवस्था दर्शाने की प्रवृत्ति (I)घटती है।
 - उत्कृष्ट गैसों में से केवल जीनॉन रासायनिक यौगिक बनाने के लिए जानी जाती है। (II)
 - ${
 m BrF}_3$ की संरचना में ${
 m Br}-{
 m F}$ अक्षीय आबंध थोड़े से झुक जाते हैं। (III)

Page 18 of 20

 XeF_6 एवं XeF_2 की संरचनाएँ बनाइए। (ii)

3+2=5

अथवा

- जब MnO_2 को सान्द्र HCl के साथ गर्म किया जाता है, तो एक तीक्ष्ण रंगीन गैस (A) (b) (i) निकलती है। (A) की अभिक्रिया आधिक्य NH3 से करवाने पर रंगहीन गैस (B) देता है। जबिक NH3 को आधिक्य (A) से अभिक्रिया करवाते हैं, तो एक विस्फोटक (C) बनता है। (A), (B) तथा (C) को पहचानिए तथा समीकरण लिखिए।
 - निम्नलिखित को दिए गए गुण के आधार पर बढ़ते हुए क्रम में व्यवस्थित कीजिए : (ii)
 - Xe, Kr, Ar, Ne, He क्वथनांक (I)
 - HF, HCl, HBr, HI तापीय स्थायित्व (II)

3+2=5

निम्नलिखित अभिक्रियाओं में A, B तथा C को पहचानिए : **32.** (a) (i)

(II)
$$CH_3 - CH_2OH \xrightarrow{CrO_3} A \xrightarrow{\overline{cq} NaOH} B \xrightarrow{\triangle} C$$

- - ऐसीटोन तथा ऐसीटिक अम्ल

3+2=5

अथवा

निम्नलिखित अभिक्रियाओं में प्रयुक्त होने वाले अभिकर्मकों के नाम लिखिए: (b) (i)

(I)
$$CH_2CH_3$$
 ? COO^-K^+

(II)
$$CH_2 = CH - CHO \xrightarrow{?} CH_2 = CH - CH_2 - OH$$

- प्रोपेनैल के ऑक्सिम की संरचना लिखिए। (ii)
- ऐल्डिहाइड एवं कीटोन की अभिक्रियाएँ कार्बोक्सिलिक अम्ल क्यों नहीं देते हैं ? (iii)
- निम्नलिखित को नाभिकरागी योगज (संकलन) अभिक्रिया के प्रति अभिक्रियाशीलता के बढ़ते (iv)हुए क्रम में व्यवस्थित कीजिए:

2+1+1+1=5

Page 19 of 20

निम्नलिखित सेल के लिए 298 K पर वि.वा.बल (emf) की गणना कीजिए : **33.** (i)(a)

$$Al\,(s)\,\mid\,Al^{3+}\,(0\cdot 1\,\,M)\,\parallel\,Cu^{2+}\,(0\cdot 01\,\,M)\,\mid\,Cu\,(s)$$

दिया गया है : $E_{Her}^{\circ} = 2.00 \text{ V} (\log 10 = 1)$

मोलर चालकता को परिभाषित कीजिए। तनु करने पर HCOOH की मोलर चालकता तीव्र (ii)क्यों बढ़ती है, जबिक HCOONa की धीरे-धीरे बढ़ती है ? 3+2=5

अथवा

- 0·02 M NaOH विलयन के कॉलम का वैद्युत प्रतिरोध 5·00 × 10³ ohm है । इसका व्यास (b) (i) 1·40 cm एवं लम्बाई 44 cm है । इसकी प्रतिरोधकता, चालकता तथा मोलर चालकता का परिकलन कीजिए।
 - उस गैल्वेनी सेल को दर्शाइए जिसमें निम्नलिखित अभिक्रिया होती है : (ii)

Ni (s) +
$$2Ag^+$$
 (aq) \longrightarrow Ni²⁺ (aq) + $2Ag$ (s) अब दिखाइए :
(I) कौन-सा इलेक्ट्रोड धनात्मक आवेशित है ?
(II) बाहरी परिपथ में विद्युत् धारा के वाहक हैं । $3+2=5$

अब दिखाइए :

- (I)
- (II)

