1.	2	21.	1	41.	2	61.	2	81.	3
2.	2	22.	4	42.	4	62.	1	82.	5
3.	5	23.	3	43.	5	63.	3	83.	1
4.	3	24.	4	44.	5	64.	5	84.	4
5.	4	25.	4	45.	2	65.	2	85.	5
6.	1	26.	3	46.	4	66.	5	86.	2
7.	2	27.	2	47.	5	67.	3	87.	4
8.	3	28.	3	48.	4	68.	4	88.	3
9.	5	29.	3	49.	5	69.	1	89.	4
10.	5	30.	1	50.	3	70.	5	90.	5
11.	3	31.	1	51.	3	71.	5		
12.	2	32.	4	52.	2	72.	2		
13.	3	33.	3	53.	2	73.	2		
14.	4	34.	3	54.	1	74.	1		
15.	1	35.	2	55.	1	75.	4		
16.	5	36.	1	56.	4	76.	3		
17.	1	37.	5	57.	3	77.	4		
18.	1	38.	5	58.	5	78.	2		
19.	5	39.	4	59.	3	79.	2		
20.	2	40.	1	60.	4	80.	1		

CAT 2008 Solutions

1.	Since amount of rice, in the end is zero, so last person		the total sum
	must have got $= 1 + 1 = 1$ by		$1 \times 39 = 39.$
	$\frac{1}{2} \frac{1}{2} \frac{1}$		Therefore, af
	So shopkeeper must have had $2+1=3$ kg		number that v
			will be 820 -
	So, 2^{nd} person will get = $1\frac{1}{2} + \frac{1}{2} = 2$ kg	9.	This is a func
	2 2		digital root (l
	After that shopkeeper had $3\frac{1}{2} + 3\frac{1}{2} = 7 \text{ kg}$		be calculated
			digital root 0
	originally.		multiples of (
2.	$f(3) = 9a + 3b + c = 0 - \dots - (1)$		These are 55
	$f(5) = -3 f(2) \implies 25a + 5b + c = -3(4a + 2b + c)$	10	
	\Rightarrow 25a + 5b + c = -12a - 6b - 3c	10.	C _
	\Rightarrow 37a + 11b + 4c = 0,(2)		$\sqrt{72}$
	Equation $2 - 4 \times (Equation 1)$		
	Given $a - b = 0$, $a = b$, if $a = b$, then sum $= -1$.		
	so other root = -4 .		
3.	Since $a = b$, thus		
	from Equation $1 \implies 12a + c = 0$		
	from Equation $2 \implies 48a + 4c = 0$		
	Can't be determined		
4.	In the first series the numbers are of the type $4n + 1$.		
	in second series the numbers are of the type $5m + 1$.		A
	Thus we need to find out the numbers of type		Area of triang
	20x + 1.		$1 (\sqrt{72} + \sqrt{72})$
	It is a series of 21, 41, 61, 401.		$\frac{1}{2}(\sqrt{2}+\sqrt{2})$
	Total number of terms is $= 20$.		
5.	No. of ways to reach from A to one corner of the park		Radius of a c
	$P = 4! / 2! \times 2! = 6$		On solving w
	No. of ways to reach from one corner to another	11	On seeing the
	No. of ways to reach from one corner to another corner of the park $P = 1$	11.	On seeing the 49, 43, 01 as
	No. of ways to reach from one corner to another corner of the park $P = 1$ No. of ways to reach from another corner of park P to $P = 61/(41 \times 21)$	11. 12.	On seeing the 49, 43, 01 as Let the roots
	No. of ways to reach from one corner to another corner of the park $P = 1$ No. of ways to reach from another corner of park P to $B = 6! / 4! \times 2!$ Total number of possible shortest paths from A to B	11.12.	On seeing the 49, 43, 01 as Let the roots $(\alpha - 1), \alpha, (\alpha$
	No. of ways to reach from one corner to another corner of the park P = 1 No. of ways to reach from another corner of park P to $B = 6! / 4! \times 2!$ Total number of possible shortest paths from A to B = 6 × 1 × 15 = 90	11. 12.	On seeing the 49, 43, 01 as Let the roots $(\alpha - 1), \alpha, (\alpha = \alpha - 1) + \alpha$
6	No. of ways to reach from one corner to another corner of the park P = 1 No. of ways to reach from another corner of park P to $B = 6! / 4! \times 2!$ Total number of possible shortest paths from A to B $= 6 \times 1 \times 15 = 90$	11. 12.	On seeing the 49, 43, 01 as Let the roots $(\alpha - 1), \alpha, (\alpha \Rightarrow \alpha (\alpha - 1) + \Rightarrow \alpha^2 - 1 + \alpha^2$
6.	No. of ways to reach from one corner to another corner of the park P = 1 No. of ways to reach from another corner of park P to $B = 6! / 4! \times 2!$ Total number of possible shortest paths from A to B $= 6 \times 1 \times 15 = 90$ Looking at the figure carefully and analyzing there are total of 13 ways to reach C from B or Vice Versa	11. 12.	On seeing the 49, 43, 01 as Let the roots $(\alpha - 1), \alpha, (\alpha \Rightarrow \alpha (\alpha - 1) + \alpha^2 - 1 + \alpha^2$ Thus, the min to 1 and this
6.	No. of ways to reach from one corner to another corner of the park $P = 1$ No. of ways to reach from another corner of park P to $B = 6! / 4! \times 2!$ Total number of possible shortest paths from A to B $= 6 \times 1 \times 15 = 90$ Looking at the figure carefully and analyzing there are total of 13 ways to reach C from B or Vice Versa. Using fundamental Laws of multiplication, the	11. 12.	On seeing the 49, 43, 01 as Let the roots $(\alpha - 1), \alpha, (\alpha = \alpha - 1) + \alpha = \alpha - 1 + \alpha^2$ Thus, the min to - 1 and this According to
6.	No. of ways to reach from one corner to another corner of the park $P = 1$ No. of ways to reach from another corner of park P to $B = 6! / 4! \times 2!$ Total number of possible shortest paths from A to B $= 6 \times 1 \times 15 = 90$ Looking at the figure carefully and analyzing there are total of 13 ways to reach C from B or Vice Versa. Using fundamental Laws of multiplication, the number of ways from her house at A to her club at C	11.12.13.	On seeing the 49, 43, 01 as Let the roots $(\alpha - 1), \alpha, (\alpha \rightarrow \alpha (\alpha - 1) + \alpha)$ $\Rightarrow \alpha^2 - 1 + \alpha^2$ Thus, the min to -1 and this According to two sides of a
6.	No. of ways to reach from one corner to another corner of the park P = 1 No. of ways to reach from another corner of park P to $B = 6! / 4! \times 2!$ Total number of possible shortest paths from A to B $= 6 \times 1 \times 15 = 90$ Looking at the figure carefully and analyzing there are total of 13 ways to reach C from B or Vice Versa. Using fundamental Laws of multiplication, the number of ways from her house at A to her club at C Via B = (No. of ways from A to B) \times	11. 12. 13.	On seeing the 49, 43, 01 as Let the roots $(\alpha - 1), \alpha, (\alpha + \alpha + \alpha) + \alpha$ $\Rightarrow \alpha (\alpha - 1) + \alpha^2$ Thus, the min to - 1 and this According to two sides of a Since it is an
6.	No. of ways to reach from one corner to another corner of the park P = 1 No. of ways to reach from another corner of park P to $B = 6! / 4! \times 2!$ Total number of possible shortest paths from A to B $= 6 \times 1 \times 15 = 90$ Looking at the figure carefully and analyzing there are total of 13 ways to reach C from B or Vice Versa. Using fundamental Laws of multiplication, the number of ways from her house at A to her club at C Via B = (No. of ways from A to B) × (No. of ways from B to C)	11. 12. 13.	On seeing the 49, 43, 01 as Let the roots $(\alpha - 1), \alpha, (\alpha - 1) + \alpha^2$ $\Rightarrow \alpha (\alpha - 1) + \alpha^2$ Thus, the min to - 1 and this According to two sides of a Since it is an and c, so $a^2 + \alpha^2$
6.	No. of ways to reach from one corner to another corner of the park P = 1 No. of ways to reach from another corner of park P to $B = 6! / 4! \times 2!$ Total number of possible shortest paths from A to B $= 6 \times 1 \times 15 = 90$ Looking at the figure carefully and analyzing there are total of 13 ways to reach C from B or Vice Versa. Using fundamental Laws of multiplication, the number of ways from her house at A to her club at C Via B = (No. of ways from A to B) \times (No. of ways from B to C) Therefore the required no. of ways has to be multiple	11. 12. 13.	On seeing the 49, 43, 01 as Let the roots $(\alpha - 1), \alpha, (\alpha - 1) + \alpha^2$ $\Rightarrow \alpha (\alpha - 1) + \alpha^2$ Thus, the min to - 1 and this According to two sides of a Since it is an and c, so $a^2 + 1$ If x is taken a
6.	No. of ways to reach from one corner to another corner of the park P = 1 No. of ways to reach from another corner of park P to $B = 6! / 4! \times 2!$ Total number of possible shortest paths from A to B $= 6 \times 1 \times 15 = 90$ Looking at the figure carefully and analyzing there are total of 13 ways to reach C from B or Vice Versa. Using fundamental Laws of multiplication, the number of ways from her house at A to her club at C Via B = (No. of ways from A to B) \times (No. of ways from B to C) Therefore the required no. of ways has to be multiple of 13.	11.12.13.	On seeing the 49, 43, 01 as Let the roots $(\alpha - 1), \alpha, (\alpha - 1) + \alpha^2$ Thus, the min to - 1 and this According to two sides of a Since it is an and c, so $a^2 + 1$ If x is taken a be 18, 19, 20.
6.	No. of ways to reach from one corner to another corner of the park P = 1 No. of ways to reach from another corner of park P to $B = 6! / 4! \times 2!$ Total number of possible shortest paths from A to B $= 6 \times 1 \times 15 = 90$ Looking at the figure carefully and analyzing there are total of 13 ways to reach C from B or Vice Versa. Using fundamental Laws of multiplication, the number of ways from her house at A to her club at C Via B = (No. of ways from A to B) \times (No. of ways from B to C) Therefore the required no. of ways has to be multiple of 13. Out of the choices only option (1) is a multiple of 13.	11.12.13.	On seeing the 49, 43, 01 as Let the roots $(\alpha - 1), \alpha, (\alpha - 1) + \beta = \alpha^2 - 1 + \alpha^2$ Thus, the min to - 1 and this According to two sides of a Since it is an and c, so a ² + If x is taken a be 18, 19, 20 Also if we tal
6.	No. of ways to reach from one corner to another corner of the park P = 1 No. of ways to reach from another corner of park P to $B = 6! / 4! \times 2!$ Total number of possible shortest paths from A to B $= 6 \times 1 \times 15 = 90$ Looking at the figure carefully and analyzing there are total of 13 ways to reach C from B or Vice Versa. Using fundamental Laws of multiplication, the number of ways from her house at A to her club at C Via B = (No. of ways from A to B) \times (No. of ways from B to C) Therefore the required no. of ways has to be multiple of 13. Out of the choices only option (1) is a multiple of 13. i.e. 1170.	11. 12. 13.	On seeing the 49, 43, 01 as Let the roots $(\alpha - 1), \alpha, (\alpha - 1) + \Rightarrow \alpha^2 - 1 + \alpha^2$ Thus, the min to - 1 and this According to two sides of α Since it is an and c , so $\alpha^2 + 1$ If x is taken a be 18, 19, 20. Also if we tal side could be
6. 7.	No. of ways to reach from one corner to another corner of the park P = 1 No. of ways to reach from another corner of park P to $B = 6! / 4! \times 2!$ Total number of possible shortest paths from A to B $= 6 \times 1 \times 15 = 90$ Looking at the figure carefully and analyzing there are total of 13 ways to reach C from B or Vice Versa. Using fundamental Laws of multiplication, the number of ways from her house at A to her club at C Via B = (No. of ways from A to B) \times (No. of ways from B to C) Therefore the required no. of ways has to be multiple of 13. Out of the choices only option (1) is a multiple of 13. i.e. 1170. f(x) f(y) = f(xy),	11. 12. 13.	On seeing the 49, 43, 01 as Let the roots $(\alpha - 1), \alpha, (\alpha - 1) + \Rightarrow \alpha^2 - 1 + \alpha^2$ Thus, the min to - 1 and this According to two sides of a Since it is an and c, so $a^2 +$ If x is taken a be 18, 19, 20, Also if we tal side could be Thus 10 trian
6.	No. of ways to reach from one corner to another corner of the park P = 1 No. of ways to reach from another corner of park P to $B = 6! / 4! \times 2!$ Total number of possible shortest paths from A to B $= 6 \times 1 \times 15 = 90$ Looking at the figure carefully and analyzing there are total of 13 ways to reach C from B or Vice Versa. Using fundamental Laws of multiplication, the number of ways from her house at A to her club at C Via B = (No. of ways from A to B) \times (No. of ways from B to C) Therefore the required no. of ways has to be multiple of 13. Out of the choices only option (1) is a multiple of 13. i.e. 1170. f(x) f(y) = f(xy), f(2) = 4, f(2) f(1) = f(2),	11.12.13.14.	On seeing the 49, 43, 01 as Let the roots $(\alpha - 1), \alpha, (\alpha - 1) + \Rightarrow \alpha^2 - 1 + \alpha^2$ Thus, the min to - 1 and this According to two sides of a Since it is an and c, so $a^2 +$ If x is taken a be 18, 19, 20, Also if we tal side could be Thus 10 trian
6.	No. of ways to reach from one corner to another corner of the park P = 1 No. of ways to reach from another corner of park P to $B = 6! / 4! \times 2!$ Total number of possible shortest paths from A to B $= 6 \times 1 \times 15 = 90$ Looking at the figure carefully and analyzing there are total of 13 ways to reach C from B or Vice Versa. Using fundamental Laws of multiplication, the number of ways from her house at A to her club at C Via B = (No. of ways from A to B) \times (No. of ways from B to C) Therefore the required no. of ways has to be multiple of 13. Out of the choices only option (1) is a multiple of 13. i.e. 1170. f(x) f(y) = f(xy), f(2) = 4, f(2) f(1) = f(2), $4 \times f(1) = 4$, So $f(1) = 1$, f(2) = 0 = 44	11.12.13.14.	On seeing the 49, 43, 01 as Let the roots $(\alpha - 1), \alpha, (\alpha \rightarrow \alpha (\alpha - 1) + \alpha $
6.	No. of ways to reach from one corner to another corner of the park P = 1 No. of ways to reach from another corner of park P to $B = 6! / 4! \times 2!$ Total number of possible shortest paths from A to B $= 6 \times 1 \times 15 = 90$ Looking at the figure carefully and analyzing there are total of 13 ways to reach C from B or Vice Versa. Using fundamental Laws of multiplication, the number of ways from her house at A to her club at C Via B = (No. of ways from A to B) \times (No. of ways from B to C) Therefore the required no. of ways has to be multiple of 13. Out of the choices only option (1) is a multiple of 13. i.e. 1170. f(x) f(y) = f(xy), f(2) = 4, f(2) f(1) = f(2), $4 \times f(1) = 4$, So $f(1) = 1$, f(2) f(2) = f(4)	11.12.13.14.	On seeing the 49, 43, 01 as Let the roots $(\alpha - 1), \alpha, (\alpha \rightarrow \alpha, (\alpha - 1) + \alpha)$ $\Rightarrow \alpha (\alpha - 1) + \alpha^2$ Thus, the min to - 1 and this According to two sides of a Since it is an and c, so a ² + If x is taken a be 18, 19, 20. Also if we tal side could be Thus 10 trian The first place
6.	No. of ways to reach from one corner to another corner of the park P = 1 No. of ways to reach from another corner of park P to $B = 6! / 4! \times 2!$ Total number of possible shortest paths from A to B $= 6 \times 1 \times 15 = 90$ Looking at the figure carefully and analyzing there are total of 13 ways to reach C from B or Vice Versa. Using fundamental Laws of multiplication, the number of ways from her house at A to her club at C Via B = (No. of ways from A to B) × (No. of ways from B to C) Therefore the required no. of ways has to be multiple of 13. Out of the choices only option (1) is a multiple of 13. i.e. 1170. f(x) f(y) = f(xy), f(2) = 4, f(2) f(1) = f(2), $4 \times f(1) = 4$, So $f(1) = 1$, f(2) f(2) = f(4) $4 \times 4 = f(4),$ So $f(4) = 16$, $f(4) f(1/2) = f(2), 16 \times f(1/2) = 4$	11.12.13.14.	On seeing the 49, 43, 01 as Let the roots $(\alpha - 1), \alpha, (\alpha - 1) + \beta \alpha^2 - 1 + \alpha^2$ Thus, the min to -1 and this According to two sides of a Since it is an and c, so $a^2 + 1$ If x is taken a be 18, 19, 20, Also if we tal side could be Thus 10 trian The first plac The second p
6.	No. of ways to reach from one corner to another corner of the park P = 1 No. of ways to reach from another corner of park P to B = $6! / 4! \times 2!$ Total number of possible shortest paths from A to B = $6 \times 1 \times 15 = 90$ Looking at the figure carefully and analyzing there are total of 13 ways to reach C from B or Vice Versa. Using fundamental Laws of multiplication, the number of ways from her house at A to her club at C Via B = (No. of ways from A to B) × (No. of ways from B to C) Therefore the required no. of ways has to be multiple of 13. Out of the choices only option (1) is a multiple of 13. i.e. 1170. f(x) f(y) = f(xy), f(2) = 4, f(2) f(1) = f(2), $4 \times f(1) = 4$, So $f(1) = 1,$ f(2) f(2) = f(4) $4 \times 4 = f(4),$ So $f(4) = 16,$ $f(4) f(1/2) = f(2), 16 \times f(1/2) = 4,$ f(1/2) = 1/4	11.12.13.14.	On seeing the 49, 43, 01 as Let the roots $(\alpha - 1), \alpha, (\alpha - 1) + \beta \alpha^2 - 1 + \alpha^2$ Thus, the min to - 1 and this According to two sides of a Since it is an and c, so $a^2 + 1f x$ is taken a be 18, 19, 20, Also if we tal side could be Thus 10 trian The first plac The second p The third plac
6. 7.	No. of ways to reach from one corner to another corner of the park P = 1 No. of ways to reach from another corner of park P to B = $6! / 4! \times 2!$ Total number of possible shortest paths from A to B = $6 \times 1 \times 15 = 90$ Looking at the figure carefully and analyzing there are total of 13 ways to reach C from B or Vice Versa. Using fundamental Laws of multiplication, the number of ways from her house at A to her club at C Via B = (No. of ways from A to B) × (No. of ways from B to C) Therefore the required no. of ways has to be multiple of 13. Out of the choices only option (1) is a multiple of 13. i.e. 1170. f(x) f(y) = f(xy), f(2) = 4, f(2) f(1) = f(2), $4 \times f(1) = 4$, So $f(1) = 1,$ f(2) f(2) = f(4) $4 \times 4 = f(4),$ So $f(4) = 16,$ $f(4) f(1/2) = f(2), 16 \times f(1/2) = 4,$ f(1/2) = 1/4 Total sum of the numbers written on the blackboard =	11.12.13.14.	On seeing the 49, 43, 01 as Let the roots $(\alpha - 1), \alpha, (\alpha - 1) + \alpha$ $\Rightarrow \alpha (\alpha - 1) + \alpha^2$ Thus, the min to - 1 and this According to two sides of a Since it is an and c, so $a^2 + 1f x$ is taken a be 18, 19, 20, Also if we tal side could be Thus 10 trian The first plac The second p The third play The fourth pl
6. 7. 8.	No. of ways to reach from one corner to another corner of the park P = 1 No. of ways to reach from another corner of park P to B = $6! / 4! \times 2!$ Total number of possible shortest paths from A to B = $6 \times 1 \times 15 = 90$ Looking at the figure carefully and analyzing there are total of 13 ways to reach C from B or Vice Versa. Using fundamental Laws of multiplication, the number of ways from her house at A to her club at C Via B = (No. of ways from A to B) × (No. of ways from B to C) Therefore the required no. of ways has to be multiple of 13. Out of the choices only option (1) is a multiple of 13. i.e. 1170. f(x) f(y) = f(xy), f(2) = 4, f(2) f(1) = f(2), $4 \times f(1) = 4$, So $f(1) = 1,$ f(2) f(2) = f(4) $4 \times 4 = f(4),$ So $f(4) = 16,$ $f(4) f(1/2) = f(2), 16 \times f(1/2) = 4,$ f(1/2) = 1/4 Total sum of the numbers written on the blackboard = $40 \times 41/2 = 820$	11.12.13.14.	On seeing the 49, 43, 01 as Let the roots $(\alpha - 1), \alpha, (\alpha - 1) + \beta = \alpha^2 - 1 + \alpha^2$ Thus, the minitian to -1 and this According to two sides of a Since it is an and c, so $a^2 + 1$ If x is taken a be 18, 19, 20, Also if we tall side could be Thus 10 trian The first plac The second p The third plac The fourth place So that total 1
6.7.8.	No. of ways to reach from one corner to another corner of the park P = 1 No. of ways to reach from another corner of park P to B = $6! / 4! \times 2!$ Total number of possible shortest paths from A to B = $6 \times 1 \times 15 = 90$ Looking at the figure carefully and analyzing there are total of 13 ways to reach C from B or Vice Versa. Using fundamental Laws of multiplication, the number of ways from her house at A to her club at C Via B = (No. of ways from A to B) × (No. of ways from B to C) Therefore the required no. of ways has to be multiple of 13. Out of the choices only option (1) is a multiple of 13. i.e. 1170. f(x) f(y) = f(xy), f(2) = 4, f(2) f(1) = f(2), $4 \times f(1) = 4$, So $f(1) = 1$, f(2) f(2) = f(4) $4 \times 4 = f(4),$ So $f(4) = 16,$ $f(4) f(1/2) = f(2),$ $16 \times f(1/2) = 4,$ f(1/2) = 1/4 Total sum of the numbers written on the blackboard = $40 \times 41/2 = 820$ When two numbers 'a' and 'b' are erased and	 11. 12. 13. 14. 	On seeing the 49, 43, 01 as Let the roots $(\alpha - 1), \alpha, (\alpha - 1) + \beta = \alpha^2 - 1 + \alpha^2$ Thus, the minitian to -1 and this According to two sides of a Since it is an and c, so $a^2 + 1$ If x is taken a be 18, 19, 20, Also if we tall side could be Thus 10 trian The first plac The second p The third plac The fourth plac The fourth place The fourth place Th
6.7.8.	No. of ways to reach from one corner to another corner of the park P = 1 No. of ways to reach from another corner of park P to $B = 6! / 4! \times 2!$ Total number of possible shortest paths from A to B $= 6 \times 1 \times 15 = 90$ Looking at the figure carefully and analyzing there are total of 13 ways to reach C from B or Vice Versa. Using fundamental Laws of multiplication, the number of ways from her house at A to her club at C Via B = (No. of ways from A to B) × (No. of ways from B to C) Therefore the required no. of ways has to be multiple of 13. Out of the choices only option (1) is a multiple of 13. i.e. 1170. f(x) f(y) = f(xy), f(2) = 4, f(2) f(1) = f(2), $4 \times f(1) = 4$, So $f(1) = 1,$ f(2) f(2) = f(4) $4 \times 4 = f(4),$ So $f(4) = 16,$ $f(4) f(1/2) = f(2), 16 \times f(1/2) = 4,$ f(1/2) = 1/4 Total sum of the numbers written on the blackboard = $40 \times 41/2 = 820$ When two numbers 'a' and 'b' are erased and replaced by a new number $a + b - 1$, the total sum of	 11. 12. 13. 14. 15. 	On seeing the 49, 43, 01 as Let the roots $(\alpha - 1), \alpha, (\alpha - 1) + \beta \alpha^2 - 1 + \alpha^2$ Thus, the minitian to - 1 and this According to two sides of a Since it is an and c, so $a^2 + 1$ If x is taken a be 18, 19, 20, Also if we tall side could be Thus 10 trian The first plac The second p The third plac The fourth pl
6.7.8.	No. of ways to reach from one corner to another corner of the park P = 1 No. of ways to reach from another corner of park P to B = $6! / 4! \times 2!$ Total number of possible shortest paths from A to B = $6 \times 1 \times 15 = 90$ Looking at the figure carefully and analyzing there are total of 13 ways to reach C from B or Vice Versa. Using fundamental Laws of multiplication, the number of ways from her house at A to her club at C Via B = (No. of ways from A to B) × (No. of ways from B to C) Therefore the required no. of ways has to be multiple of 13. Out of the choices only option (1) is a multiple of 13. i.e. 1170. f(x) f(y) = f(xy), f(2) = 4, f(2) f(1) = f(2), $4 \times f(1) = 4$, So $f(1) = 1,$ f(2) f(2) = f(4) $4 \times 4 = f(4),$ So $f(4) = 16,$ $f(4) f(1/2) = f(2), 16 \times f(1/2) = 4,$ f(1/2) = 1/4 Total sum of the numbers written on the blackboard = $40 \times 41/2 = 820$ When two numbers 'a' and 'b' are erased and replaced by a new number a + b - 1, the total sum of the numbers written on the blackboard is reduced by	 11. 12. 13. 14. 15. 	On seeing the 49, 43, 01 as Let the roots $(\alpha - 1), \alpha, (\alpha - 1) + \beta - \alpha^2 - 1 + \alpha^2$ Thus, the minitian to -1 and this According to two sides of a Since it is an and c, so $a^2 + 1$ If x is taken a be 18, 19, 20, Also if we tall side could be Thus 10 trian The first plac The second p The third plac The fourth play So that total n So 375 + 1 (4) Number of the tall so 375 + 1 (4)
6. 7. 8.	No. of ways to reach from one corner to another corner of the park P = 1 No. of ways to reach from another corner of park P to B = $6! / 4! \times 2!$ Total number of possible shortest paths from A to B = $6 \times 1 \times 15 = 90$ Looking at the figure carefully and analyzing there are total of 13 ways to reach C from B or Vice Versa. Using fundamental Laws of multiplication, the number of ways from her house at A to her club at C Via B = (No. of ways from A to B) × (No. of ways from B to C) Therefore the required no. of ways has to be multiple of 13. Out of the choices only option (1) is a multiple of 13. i.e. 1170. f(x) f(y) = f(xy), f(2) = 4, f(2) f(1) = f(2), $4 \times f(1) = 4$, So $f(1) = 1,$ f(2) f(2) = f(4) $4 \times 4 = f(4),$ So $f(4) = 16,$ $f(4) f(1/2) = f(2), 16 \times f(1/2) = 4,$ f(1/2) = 1/4 Total sum of the numbers written on the blackboard = $40 \times 41/2 = 820$ When two numbers 'a' and 'b' are erased and replaced by a new number a + b - 1, the total sum of the numbers written on the blackboard is reduced by 1. Since, this operation is repeated 39 times, therefore,	 11. 12. 13. 14. 15. 	On seeing the 49, 43, 01 as Let the roots $(\alpha - 1), \alpha, (\alpha - 1) + \beta - \alpha^2 - 1 + \alpha^2$ Thus, the minitian to -1 and this According to two sides of a Since it is an and c, so $a^2 + 1$ If x is taken a be 18, 19, 20, Also if we tall side could be Thus 10 trian The first plac The second p The third plac The fourth play So that total n So 375 + 1 (4) Number of tea the non-nega a + b + c = 20

of the numbers will be reduced by ter 39 operations there will be only 1 will be left on the blackboard and that 39 = 781. ction in which we need to find out the he process in which sum of the digit is to till a single digit result). And in the asking about the no. of integers having 9, 18, 27, ----- 495 (all the 9 < 500) in number. $\sqrt{295}$ 17.5 R gle will be = $\overline{295}$)×3= $\frac{1}{2}$ (8.5+17.2)×3 ircumcircle is always = $R = \frac{abc}{4\Delta}$ e get 26.25 as answer. cyclicity of last 2 digits of 7, we get 07, the last 2 digits, so the answer is 01. of the above cubic equation be +1) $\alpha (\alpha + 1) + (\alpha + 1) (\alpha - 1) = b$ $+ \alpha + \alpha^{2} - 1 = b \Rightarrow 3\alpha^{2} - 1 = b$ imum possible value of 'b' will be equal value is attained at $\alpha = 0$. basic property of triangle, sum of any triangle must be greater than third side. obtuse angled triangle of say sides a, b $b^2 < c^2$. is the largest side then the third side can 21 and 22. ke 15 as the largest side, then the third 8, 9, 10, 11 and 12. gles exist. 1 2 3 4 the can be filled in 3 ways (1, 2, 3)blace can be filled in 5 ways (0, 1, 2, 3, 4)ce can be filled in 5 ways (0, 1, 2, 3, 4)ace can be filled in 5 ways (0, 1, 2, 3, 4)numbers = $3 \times 5 \times 5 \times 5 = 375$. 4000) = 376.rms in the given expansion is nothing but tive integral solutions of the equation

mula

16. Through symmetry,
$$A^{\Gamma} = C_{1} = \frac{2}{2} 2C_{1} = 231$$

17. Check $M = C_{2} = M = \frac{2}{2}$ we $\frac{MT}{MT} = \tan 30^{\circ}$
 $\approx P = 1 = AH \tan 30^{\circ} = \frac{\pi}{2} \times \frac{1}{\sqrt{3}} = \frac{\pi}{2\sqrt{3}}$
 \therefore Area of $A = P =$
 $\frac{1}{2} \times AD \times PH = \frac{1}{2} \times x \times \frac{\pi}{\sqrt{3}} = \frac{\pi}{2\sqrt{3}}$
 \therefore Area of $A = P =$
 $\frac{1}{2} \times AD \times PH = \frac{1}{2} \times x \times \frac{\pi}{\sqrt{3}} = \frac{\pi}{2\sqrt{3}}$
 \therefore Area of $A = P =$
 $\frac{1}{2} \times AD \times PH = \frac{1}{2} \times x \times \frac{\pi}{\sqrt{3}} = \frac{\pi}{2\sqrt{3}}$
 \therefore Area of $A = P =$
 $\frac{1}{2} \times AD \times PH = \frac{1}{2} \times x \times \frac{\pi}{\sqrt{3}} = \frac{\pi}{2\sqrt{3}}$
 \therefore Area of $A = D = x^{2} - \frac{\pi}{2\sqrt{3}} = \frac{1}{2\sqrt{3}} - \frac{1}{\sqrt{3}}$
 $\frac{1}{\sqrt{1}} - \frac{1}{12} + \frac{1}{2} + \frac{1}{\sqrt{1}} + \frac{1}{2} + \frac{1}{\sqrt{2}}$
 $\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} = \frac{1}{2\sqrt{3}} - \frac{1}{\sqrt{3}}$
 $\frac{\pi}{2\sqrt{3}} + \frac{\pi}{2\sqrt{3}} = \frac{\pi}{2\sqrt{3}} - \frac{1}{\sqrt{3}}$
 $\frac{\pi}{2\sqrt{3}} + \frac{\pi}{2\sqrt{3}} + \frac{\pi}{2\sqrt$

С

	$\mathbf{S} = 20 \pi x - 3\pi x^2$	26.	Since we have to maximize Aditya's marks, let us
	$\rightarrow \mathbf{For} \mathbf{s} ds$		take the base values of 50 marks in each section and
	$-700 \text{ S}_{\text{max}} = 20\pi - 6\pi x = 0$		try to reduce that by minimum values to ensure he
	10		doesn't get any call. We notice that by reducing the
	$\Rightarrow x = \frac{10}{2}$ cm.		1. 2. 3 & 5 are ruled out. Now for colleges 4×6
	.2		reducing the marks obtained in section D to 43
	$\frac{d^2s}{d^2s} = -6\pi < 0$		ensures these colleges are als20 ruled out. Please note
	dx^2 on x^3		that we are reducing the score to 1 less than the
	Thus for Radius = 10 we get Surface area		minimum cut-off across all colleges for that particular
	$\frac{-3}{3}$ cm $\frac{3}{3}$		section.
	$(10)^2$ $(10)^2$ $(10)(5)$		In the other two sections A and B, Aditya may score
	$=\pi \left \frac{10}{2} \right +\pi \left \frac{10}{2} \right +2\pi \left \frac{10}{2} \right \frac{5}{2} \right $		50 each. So, the maximum possible aggregate marks
	(3) (3) (3)		= 50 + 50 + 41 + 43 = 184.
	$=\frac{100}{\pi}$	27.	According to question, Bhama need to clear cut off in
	- 3 <i>n</i>		all the sections for all the colleges.
	Alternatively : Surface area =		For minimum total we need to assign: Score in Section $\Lambda = 45$
	$\pi x^{2} + \pi x^{2} + 2\pi x 10 - 2.5x = 20\pi x - 3\pi x^{2}$		Section $B = 45$
	Substituting Surface area attains max around		Section $C = 46$.
	$r \sim 3 \implies \text{surface Area (Max)} = 100\pi$		Section $D = 45$,
	$x \equiv 3 \implies$ surface Area (Max) =3		Total Score = 181 .
22.	Going by options, one by one.	28.	As the least and second least aggregate cut off marks
	Considering the case G W S B R, so 1^{st} and 2^{nd}		are 171 & 175.
	option can be true.		Here, we need to find the minimum score in any
	Considering the case $\underline{B} \underline{G} \underline{W} \underline{R} \underline{S}$, so 3^{rd} and 5^{th}		section.
	options can be true.		Let the student score a total of 1/5 marks and let the marks of the student in the section A. Section P and
	If we consider 4 th option, then Red can be first and		Section C to be 50
	thus Raju will get atleast Rs. 12000 or otherwise if		In that case, the minimum marks in the Section D will
	white horse is first, then Raju will get atleast Rs.		become 25, which will be our answer.
	So there can never be three borses between white and	29.	Required percentage change =
	red.		90/180-120/380
23.	<u>_ W_ G</u>		$90/180 \times 100 \cong 30.84\%$
23.	$\frac{W}{If we assume that white came in second, then in no$	30.	$\frac{1}{90/180} \times 100 \cong 30.84\%$ Actual subscription in Europe = 600.
23.	$\underline{W} \underline{G} \underline{G}$ If we assume that white came in second, then in no way Raju ends up at no profit and no loss because	30.	$\frac{100 \pm 30.84\%}{90/180}$ Actual subscription in Europe = 600, Subscription based on given assumption =
23.	\underline{W} <u>G</u> <u>G</u> If we assume that white came in second, then in no way Raju ends up at no profit and no loss because white at second place gives Rs. 6000 to Raju.	30.	$\frac{1}{90/180} \times 100 \approx 36.84\%$ Actual subscription in Europe = 600, Subscription based on given assumption = $\frac{500 \times 120}{500} = 100$
23.	<u>W</u> <u>G</u> <u>G</u> If we assume that white came in second, then in no way Raju ends up at no profit and no loss because white at second place gives Rs. 6000 to Raju. But out of the Red and Black horses one has to come at 3^{rd} place so Raju would be getting higher amount	30.	$\frac{90/180}{90/180} \times 100 \cong 30.84\%$ Actual subscription in Europe = 600, Subscription based on given assumption = $500 + \frac{500 \times 120}{380} = 657 \cong 50$
23.	$\underline{W} \underline{G} \underline{G}$ If we assume that white came in second, then in no way Raju ends up at no profit and no loss because white at second place gives Rs. 6000 to Raju. But out of the Red and Black horses one has to come at 3 rd place, so Raju would be getting higher amount than what he has spent	30.	$\frac{90/180}{90/180} \times 100 \cong 30.84\%$ Actual subscription in Europe = 600, Subscription based on given assumption = $500 + \frac{500 \times 120}{380} = 657 \cong 50$ No. of map = 60
23.	$_$ <u>W</u> _ <u>G</u> If we assume that white came in second, then in no way Raju ends up at no profit and no loss because white at second place gives Rs. 6000 to Raju. But out of the Red and Black horses one has to come at 3 rd place, so Raju would be getting higher amount than what he has spent. So white can never come in second.	30. 31.	$\frac{90/180}{90/180} \times 100 \cong 30.84\%$ Actual subscription in Europe = 600, Subscription based on given assumption = $500 + \frac{500 \times 120}{380} = 657 \cong 50$ No. of men = 60 No. of women = 40
23.	<u>W</u> <u>G</u> <u>G</u> If we assume that white came in second, then in no way Raju ends up at no profit and no loss because white at second place gives Rs. 6000 to Raju. But out of the Red and Black horses one has to come at 3^{rd} place, so Raju would be getting higher amount than what he has spent. So white can never come in second. The question cannot be answered by using statement	30. 31.	Actual subscription in Europe = 600, Subscription based on given assumption = $500 + \frac{500 \times 120}{380} = 657 \cong 50$ No. of men = 60 No. of women = 40 As per given condition
23. 24.	<u>W</u> <u>G</u> <u>G</u> If we assume that white came in second, then in no way Raju ends up at no profit and no loss because white at second place gives Rs. 6000 to Raju. But out of the Red and Black horses one has to come at 3^{rd} place, so Raju would be getting higher amount than what he has spent. So white can never come in second. The question cannot be answered by using statement A because we do not know the number of byes got by	30. 31.	Actual subscription in Europe = 600, Subscription based on given assumption = $500 + \frac{500 \times 120}{380} = 657 \cong 50$ No. of men = 60 No. of women = 40 As per given condition No. of men in 2010 = 60 × (1.05) ⁷ = 84
23. 24.	<u>W</u> <u>G</u> <u>G</u> If we assume that white came in second, then in no way Raju ends up at no profit and no loss because white at second place gives Rs. 6000 to Raju. But out of the Red and Black horses one has to come at 3^{rd} place, so Raju would be getting higher amount than what he has spent. So white can never come in second. The question cannot be answered by using statement A because we do not know the number of byes got by the champion.	30.	Actual subscription in Europe = 600, Subscription based on given assumption = $500 + \frac{500 \times 120}{380} = 657 \cong 50$ No. of men = 60 No. of women = 40 As per given condition No. of men in 2010 = 60 × (1.05) ⁷ = 84 No. of women in 2010 = 40 × (1.1) ⁷ = 78.
23. 24.	<u>W</u> <u>G</u> <u>G</u> If we assume that white came in second, then in no way Raju ends up at no profit and no loss because white at second place gives Rs. 6000 to Raju. But out of the Red and Black horses one has to come at 3^{rd} place, so Raju would be getting higher amount than what he has spent. So white can never come in second. The question cannot be answered by using statement A because we do not know the number of byes got by the champion. The question cannot be answered by using statement	30.	Actual subscription in Europe = 600, Subscription based on given assumption = $500 + \frac{500 \times 120}{380} = 657 \cong 50$ No. of men = 60 No. of women = 40 As per given condition No. of men in 2010 = 60 × (1.05) ⁷ = 84 No. of women in 2010 = 40 × (1.1) ⁷ = 78. Hence total new population = 84+78 = 162
23. 24.	<u>W</u> <u>G</u> <u>G</u> If we assume that white came in second, then in no way Raju ends up at no profit and no loss because white at second place gives Rs. 6000 to Raju. But out of the Red and Black horses one has to come at 3^{rd} place, so Raju would be getting higher amount than what he has spent. So white can never come in second. The question cannot be answered by using statement A because we do not know the number of byes got by the champion. The question cannot be answered by using statement B because we do not know the exact number of	30.	Actual subscription in Europe = 600, Subscription based on given assumption = $500 + \frac{500 \times 120}{380} = 657 \approx 50$ No. of men = 60 No. of women = 40 As per given condition No. of men in 2010 = 60 × (1.05) ⁷ = 84 No. of women in 2010 = 40 × (1.1) ⁷ = 78. Hence total new population = 84+78 = 162 Therefore net percentage growth of subscriber is 62%
23. 24.	<u>W</u> <u>G</u> <u>G</u> <u>G</u> If we assume that white came in second, then in no way Raju ends up at no profit and no loss because white at second place gives Rs. 6000 to Raju. But out of the Red and Black horses one has to come at 3^{rd} place, so Raju would be getting higher amount than what he has spent. So white can never come in second. The question cannot be answered by using statement A because we do not know the number of byes got by the champion. The question cannot be answered by using statement B because we do not know the exact number of players in the tournament. Combining beth the statement togethern	30. 31. 32.	Actual subscription in Europe = 600, Subscription based on given assumption = $500 + \frac{500 \times 120}{380} = 657 \cong 50$ No. of men = 60 No. of women = 40 As per given condition No. of men in 2010 = 60 × (1.05) ⁷ = 84 No. of women in 2010 = 40 × (1.1) ⁷ = 78. Hence total new population = 84+78 = 162 Therefore net percentage growth of subscriber is 62% Maximum absolute value of the change is in
23.	<u>W</u> <u>G</u> <u>G</u> If we assume that white came in second, then in no way Raju ends up at no profit and no loss because white at second place gives Rs. 6000 to Raju. But out of the Red and Black horses one has to come at 3^{rd} place, so Raju would be getting higher amount than what he has spent. So white can never come in second. The question cannot be answered by using statement A because we do not know the number of byes got by the champion. The question cannot be answered by using statement B because we do not know the exact number of players in the tournament. Combining both the statements together: If there are 83 players, then there will be 7 rounds in	30. 31. 32.	Actual subscription in Europe = 600, Subscription based on given assumption = $500 + \frac{500 \times 120}{380} = 657 \cong 50$ No. of men = 60 No. of women = 40 As per given condition No. of men in 2010 = $60 \times (1.05)^7 = 84$ No. of women in 2010 = $40 \times (1.1)^7 = 78$. Hence total new population = $84+78 = 162$ Therefore net percentage growth of subscriber is 62% Maximum absolute value of the change is in year $08 - 09$ which is 45%
23.	<u>W</u> <u>G</u> <u>G</u> <u>G</u> If we assume that white came in second, then in no way Raju ends up at no profit and no loss because white at second place gives Rs. 6000 to Raju. But out of the Red and Black horses one has to come at 3^{rd} place, so Raju would be getting higher amount than what he has spent. So white can never come in second. The question cannot be answered by using statement A because we do not know the number of byes got by the champion. The question cannot be answered by using statement B because we do not know the exact number of players in the tournament. Combining both the statements together: If there are 83 players, then there will be 7 rounds in the tournament and we know that the champion	30. 31. 32. 33.	Actual subscription in Europe = 600, Subscription based on given assumption = $500 + \frac{500 \times 120}{380} = 657 \cong 50$ No. of men = 60 No. of women = 40 As per given condition No. of men in 2010 = 60 × (1.05) ⁷ = 84 No. of women in 2010 = 40 × (1.1) ⁷ = 78. Hence total new population = 84+78 = 162 Therefore net percentage growth of subscriber is 62% Maximum absolute value of the change is in year 08 – 09 which is 45% To increase the average of Finance by one we need to transfer a man from marketing to finance of a age of
23.	<u>W</u> <u>G</u> <u>G</u> <u></u> If we assume that white came in second, then in no way Raju ends up at no profit and no loss because white at second place gives Rs. 6000 to Raju. But out of the Red and Black horses one has to come at 3^{rd} place, so Raju would be getting higher amount than what he has spent. So white can never come in second. The question cannot be answered by using statement A because we do not know the number of byes got by the champion. The question cannot be answered by using statement B because we do not know the exact number of players in the tournament. Combining both the statements together: If there are 83 players, then there will be 7 rounds in the tournament and we know that the champion received only one bye, therefore the total number of	30. 31. 32. 33.	Actual subscription in Europe = 600, Subscription based on given assumption = $500 + \frac{500 \times 120}{380} = 657 \cong 50$ No. of men = 60 No. of women = 40 As per given condition No. of men in 2010 = 60 × (1.05) ⁷ = 84 No. of women in 2010 = 40 × (1.1) ⁷ = 78. Hence total new population = 84+78 = 162 Therefore net percentage growth of subscriber is 62% Maximum absolute value of the change is in year 08 – 09 which is 45% To increase the average of Finance by one we need to transfer a man from marketing to finance of a age of 50 years.
23.	<u>W</u> <u>G</u> <u>G</u> If we assume that white came in second, then in no way Raju ends up at no profit and no loss because white at second place gives Rs. 6000 to Raju. But out of the Red and Black horses one has to come at 3^{rd} place, so Raju would be getting higher amount than what he has spent. So white can never come in second. The question cannot be answered by using statement A because we do not know the number of byes got by the champion. The question cannot be answered by using statement B because we do not know the exact number of players in the tournament. Combining both the statements together: If there are 83 players, then there will be 7 rounds in the tournament and we know that the champion received only one bye, therefore the total number of matches played by the tournament will be 7 - 1 = 6.	30. 31. 32. 33.	Actual subscription in Europe = 600, Subscription based on given assumption = $500 + \frac{500 \times 120}{380} = 657 \approx 50$ No. of men = 60 No. of women = 40 As per given condition No. of men in 2010 = 60 × (1.05) ⁷ = 84 No. of women in 2010 = 40 × (1.1) ⁷ = 78. Hence total new population = 84+78 = 162 Therefore net percentage growth of subscriber is 62% Maximum absolute value of the change is in year 08 – 09 which is 45% To increase the average of Finance by one we need to transfer a man from marketing to finance of a age of 50 years. To cover this gap, the man who is being transferred to
23. 24. 25.	<u>W</u> <u>G</u> <u></u> If we assume that white came in second, then in no way Raju ends up at no profit and no loss because white at second place gives Rs. 6000 to Raju. But out of the Red and Black horses one has to come at 3^{rd} place, so Raju would be getting higher amount than what he has spent. So white can never come in second. The question cannot be answered by using statement A because we do not know the number of byes got by the champion. The question cannot be answered by using statement B because we do not know the exact number of players in the tournament. Combining both the statements together: If there are 83 players, then there will be 7 rounds in the tournament and we know that the champion received only one bye, therefore the total number of matches played by the tournament will be 7 - 1 = 6. Using statement A:	30. 31. 32. 33.	Actual subscription in Europe = 600, Subscription based on given assumption = $500 + \frac{500 \times 120}{380} = 657 \approx 50$ No. of men = 60 No. of women = 40 As per given condition No. of men in 2010 = $60 \times (1.05)^7 = 84$ No. of women in $2010 = 40 \times (1.1)^7 = 78$. Hence total new population = $84+78 = 162$ Therefore net percentage growth of subscriber is 62% Maximum absolute value of the change is in year $08 - 09$ which is 45% To increase the average of Finance by one we need to transfer a man from marketing to finance of a age of 50 years. To cover this gap, the man who is being transferred to marketing from finance has to be 30 only.
23.24.25.	<u>W</u> <u>G</u> <u></u> If we assume that white came in second, then in no way Raju ends up at no profit and no loss because white at second place gives Rs. 6000 to Raju. But out of the Red and Black horses one has to come at 3^{rd} place, so Raju would be getting higher amount than what he has spent. So white can never come in second. The question cannot be answered by using statement A because we do not know the number of byes got by the champion. The question cannot be answered by using statement B because we do not know the exact number of players in the tournament. Combining both the statements together: If there are 83 players, then there will be 7 rounds in the tournament and we know that the champion received only one bye, therefore the total number of matches played by the tournament will be 7 - 1 = 6. Using statement A: When n = 127, exactly one bye is given in round 1.	30. 31. 32. 33.	Actual subscription in Europe = 600, Subscription based on given assumption = $500 + \frac{500 \times 120}{380} = 657 \cong 50$ No. of men = 60 No. of women = 40 As per given condition No. of men in 2010 = $60 \times (1.05)^7 = 84$ No. of women in $2010 = 40 \times (1.1)^7 = 78$. Hence total new population = $84+78 = 162$ Therefore net percentage growth of subscriber is 62% Maximum absolute value of the change is in year $08 - 09$ which is 45% To increase the average of Finance by one we need to transfer a man from marketing to finance of a age of 50 years. To cover this gap, the man who is being transferred to marketing from finance has to be 30 only. Final effect goes to HR department where person who
23.24.25.	<u>W</u> <u>G</u> <u>G</u> If we assume that white came in second, then in no way Raju ends up at no profit and no loss because white at second place gives Rs. 6000 to Raju. But out of the Red and Black horses one has to come at 3^{rd} place, so Raju would be getting higher amount than what he has spent. So white can never come in second. The question cannot be answered by using statement A because we do not know the number of byes got by the champion. The question cannot be answered by using statement B because we do not know the exact number of players in the tournament. Combining both the statements together: If there are 83 players, then there will be 7 rounds in the tournament and we know that the champion received only one bye, therefore the total number of matches played by the tournament will be $7 - 1 = 6$. Using statement A: When n = 127, exactly one bye is given in round 1. When = 96, exactly one bye is given in round 6.	30. 31. 32. 33.	Actual subscription in Europe = 600, Subscription based on given assumption = $500 + \frac{500 \times 120}{380} = 657 \cong 50$ No. of men = 60 No. of women = 40 As per given condition No. of men in 2010 = $60 \times (1.05)^7 = 84$ No. of women in $2010 = 40 \times (1.1)^7 = 78$. Hence total new population = $84+78 = 162$ Therefore net percentage growth of subscriber is 62% Maximum absolute value of the change is in year $08 - 09$ which is 45% To increase the average of Finance by one we need to transfer a man from marketing to finance of a age of 50 years. To cover this gap, the man who is being transferred to marketing from finance has to be 30 only. Final effect goes to HR department where person who is being transferred to HR has to be age of age
23.24.25.	<u>W</u> <u>G</u> <u>G</u> If we assume that white came in second, then in no way Raju ends up at no profit and no loss because white at second place gives Rs. 6000 to Raju. But out of the Red and Black horses one has to come at 3^{rd} place, so Raju would be getting higher amount than what he has spent. So white can never come in second. The question cannot be answered by using statement A because we do not know the number of byes got by the champion. The question cannot be answered by using statement B because we do not know the exact number of players in the tournament. Combining both the statements together: If there are 83 players, then there will be 7 rounds in the tournament and we know that the champion received only one bye, therefore the total number of matches played by the tournament will be $7 - 1 = 6$. Using statement A: When n = 127, exactly one bye is given in round 1. When = 96, exactly one bye is given in round 6. As no unique value of n can be determined hence, retarement A shore is net sufficient.	30. 31. 32. 33.	Actual subscription in Europe = 600, Subscription based on given assumption = $500 + \frac{500 \times 120}{380} = 657 \cong 50$ No. of men = 60 No. of women = 40 As per given condition No. of men in 2010 = $60 \times (1.05)^7 = 84$ No. of women in $2010 = 40 \times (1.1)^7 = 78$. Hence total new population = $84+78 = 162$ Therefore net percentage growth of subscriber is 62% Maximum absolute value of the change is in year $08 - 09$ which is 45% To increase the average of Finance by one we need to transfer a man from marketing to finance of a age of 50 years. To cover this gap, the man who is being transferred to marketing from finance has to be 30 only. Final effect goes to HR department where person who is being transferred to HR has to be age of age 35 - 20 = 15.
23. 24. 25.	<u>w</u> <u>G</u> <u></u> If we assume that white came in second, then in no way Raju ends up at no profit and no loss because white at second place gives Rs. 6000 to Raju. But out of the Red and Black horses one has to come at 3^{rd} place, so Raju would be getting higher amount than what he has spent. So white can never come in second. The question cannot be answered by using statement A because we do not know the number of byes got by the champion. The question cannot be answered by using statement B because we do not know the exact number of players in the tournament. Combining both the statements together: If there are 83 players, then there will be 7 rounds in the tournament and we know that the champion received only one bye, therefore the total number of matches played by the tournament will be $7 - 1 = 6$. Using statement A: When n = 127, exactly one bye is given in round 1. When = 96, exactly one bye is given in round 6. As no unique value of n can be determined hence, statement A alone is not sufficient.	30. 31. 32. 33.	Actual subscription in Europe = 600, Subscription based on given assumption = $500 + \frac{500 \times 120}{380} = 657 \approx 50$ No. of men = 60 No. of women = 40 As per given condition No. of men in 2010 = $60 \times (1.05)^7 = 84$ No. of women in 2010 = $40 \times (1.1)^7 = 78$. Hence total new population = $84+78 = 162$ Therefore net percentage growth of subscriber is 62% Maximum absolute value of the change is in year $08 - 09$ which is 45% To increase the average of Finance by one we need to transfer a man from marketing to finance of a age of 50 years. To cover this gap, the man who is being transferred to marketing from finance has to be 30 only. Final effect goes to HR department where person who is being transferred to HR has to be age of age 35 - 20 = 15. So final average age of HR department = [(5x45)(1x)(5)1)(511) = 40 upper
23. 24. 25.	<u>w</u> <u>G</u> <u></u> If we assume that white came in second, then in no way Raju ends up at no profit and no loss because white at second place gives Rs. 6000 to Raju. But out of the Red and Black horses one has to come at 3^{rd} place, so Raju would be getting higher amount than what he has spent. So white can never come in second. The question cannot be answered by using statement A because we do not know the number of byes got by the champion. The question cannot be answered by using statement B because we do not know the exact number of players in the tournament. Combining both the statements together: If there are 83 players, then there will be 7 rounds in the tournament and we know that the champion received only one bye, therefore the total number of matches played by the tournament will be $7 - 1 = 6$. Using statement A: When n = 127, exactly one bye is given in round 1. When = 96, exactly one bye is given in round 6. As no unique value of n can be determined hence, statement A alone is not sufficient. Using statement B:	30. 31. 32. 33.	Actual subscription in Europe = 600, Subscription based on given assumption = $500 + \frac{500 \times 120}{380} = 657 \approx 50$ No. of men = 60 No. of women = 40 As per given condition No. of men in 2010 = $60 \times (1.05)^7 = 84$ No. of women in 2010 = $40 \times (1.1)^7 = 78$. Hence total new population = $84+78 = 162$ Therefore net percentage growth of subscriber is 62% Maximum absolute value of the change is in year $08 - 09$ which is 45% To increase the average of Finance by one we need to transfer a man from marketing to finance of a age of 50 years. To cover this gap, the man who is being transferred to marketing from finance has to be 30 only. Final effect goes to HR department where person who is being transferred to HR has to be age of age 35 - 20 = 15. So final average age of HR department = $[(5\times45)+(1\times15)]/(5+1) = 40$ years. Total way of Marketing man having age 40 wasrs
23. 24. 25.	<u>W</u> <u>G</u> <u></u> If we assume that white came in second, then in no way Raju ends up at no profit and no loss because white at second place gives Rs. 6000 to Raju. But out of the Red and Black horses one has to come at 3^{rd} place, so Raju would be getting higher amount than what he has spent. So white can never come in second. The question cannot be answered by using statement A because we do not know the number of byes got by the champion. The question cannot be answered by using statement B because we do not know the exact number of players in the tournament. Combining both the statements together: If there are 83 players, then there will be 7 rounds in the tournament and we know that the champion received only one bye, therefore the total number of matches played by the tournament will be $7 - 1 = 6$. Using statement A: When n = 127, exactly one bye is given in round 1. When = 96, exactly one bye is given in round 6. As no unique value of n can be determined hence, statement A: Using statement B: As we do not know exactly how many byes are given.	30. 31. 32. 33.	Actual subscription in Europe = 600, Subscription based on given assumption = $500 + \frac{500 \times 120}{380} = 657 \approx 50$ No. of men = 60 No. of women = 40 As per given condition No. of men in 2010 = $60 \times (1.05)^7 = 84$ No. of men in 2010 = $40 \times (1.1)^7 = 78$. Hence total new population = $84+78 = 162$ Therefore net percentage growth of subscriber is 62% Maximum absolute value of the change is in year $08 - 09$ which is 45% To increase the average of Finance by one we need to transfer a man from marketing to finance of a age of 50 years. To cover this gap, the man who is being transferred to marketing from finance has to be 30 only. Final effect goes to HR department where person who is being transferred to HR has to be age of age 35 - 20 = 15. So final average age of HR department = [(5x45)+(1x15)]/(5+1) = 40 years. Total pay of Marketing man having age 40 years when he is transferred to HR department will be
23. 24. 25.	<u>w</u> <u>G</u> <u></u> If we assume that white came in second, then in no way Raju ends up at no profit and no loss because white at second place gives Rs. 6000 to Raju. But out of the Red and Black horses one has to come at 3^{rd} place, so Raju would be getting higher amount than what he has spent. So white can never come in second. The question cannot be answered by using statement A because we do not know the number of byes got by the champion. The question cannot be answered by using statement B because we do not know the exact number of players in the tournament. Combining both the statements together: If there are 83 players, then there will be 7 rounds in the tournament and we know that the champion received only one bye, therefore the total number of matches played by the tournament will be $7 - 1 = 6$. Using statement A: When n = 127, exactly one bye is given in round 1. When = 96, exactly one bye is given in round 6. As no unique value of n can be determined hence, statement A alone is not sufficient. Using statement B: As we do not know exactly how many byes are given, in total, we cannot determine the value of n, uniquely.	 30. 31. 32. 33. 34. 	Actual subscription in Europe = 600, Subscription based on given assumption = $500 + \frac{500 \times 120}{380} = 657 \approx 50$ No. of men = 60 No. of men = 60 No. of women = 40 As per given condition No. of men in 2010 = 60 × (1.05) ⁷ = 84 No. of women in 2010 = 40 × (1.1) ⁷ = 78. Hence total new population = 84+78 = 162 Therefore net percentage growth of subscriber is 62% Maximum absolute value of the change is in year 08 – 09 which is 45% To increase the average of Finance by one we need to transfer a man from marketing to finance of a age of 50 years. To cover this gap, the man who is being transferred to marketing from finance has to be 30 only. Final effect goes to HR department where person who is being transferred to HR has to be age of age 35 - 20 = 15. So final average age of HR department = $[(5\times45)+(1\times15)]/(5+1) = 40$ years. Total pay of Marketing man having age 40 years when he is transferred to HR department will be = 8000 + 90% of 8000 = 15200.
23. 24. 25.	<u>W</u> <u>G</u> <u></u> If we assume that white came in second, then in no way Raju ends up at no profit and no loss because white at second place gives Rs. 6000 to Raju. But out of the Red and Black horses one has to come at 3^{rd} place, so Raju would be getting higher amount than what he has spent. So white can never come in second. The question cannot be answered by using statement A because we do not know the number of byes got by the champion. The question cannot be answered by using statement B because we do not know the exact number of players in the tournament. Combining both the statements together: If there are 83 players, then there will be 7 rounds in the tournament and we know that the champion received only one bye, therefore the total number of matches played by the tournament will be $7 - 1 = 6$. Using statement A: When n = 127, exactly one bye is given in round 1. When = 96, exactly one bye is given in round 6. As no unique value of n can be determined hence, statement A alone is not sufficient. Using statement B: As we do not know exactly how many byes are given, in total, we cannot determine the value of n, uniquely.	30. 31. 32. 33. 34.	Actual subscription in Europe = 600, Subscription based on given assumption = $500 + \frac{500 \times 120}{380} = 657 \approx 50$ No. of men = 60 No. of women = 40 As per given condition No. of men in 2010 = 60 × (1.05) ⁷ = 84 No. of women in 2010 = 40 × (1.1) ⁷ = 78. Hence total new population = 84+78 = 162 Therefore net percentage growth of subscriber is 62% Maximum absolute value of the change is in year 08 – 09 which is 45% To increase the average of Finance by one we need to transfer a man from marketing to finance of a age of 50 years. To cover this gap, the man who is being transferred to marketing from finance has to be 30 only. Final effect goes to HR department where person who is being transferred to HR has to be age of age 35 - 20 = 15. So final average age of HR department = $[(5\times45)+(1\times15)]/(5+1) = 40$ years. Total pay of Marketing man having age 40 years when he is transferred to HR department will be = 8000 + 90% of 8000 = 15200. Total pay of HR Department will be
23. 24. 25.	<u>w _ G</u> If we assume that white came in second, then in no way Raju ends up at no profit and no loss because white at second place gives Rs. 6000 to Raju. But out of the Red and Black horses one has to come at 3^{rd} place, so Raju would be getting higher amount than what he has spent. So white can never come in second. The question cannot be answered by using statement A because we do not know the number of byes got by the champion. The question cannot be answered by using statement B because we do not know the exact number of players in the tournament. Combining both the statements together: If there are 83 players, then there will be 7 rounds in the tournament and we know that the champion received only one bye, therefore the total number of matches played by the tournament will be $7 - 1 = 6$. Using statement A: When $n = 127$, exactly one bye is given in round 1. When $= 96$, exactly one bye is given in round 6. As no unique value of n can be determined hence, statement A alone is not sufficient. Using statement B: As we do not know exactly how many byes are given, in total, we cannot determine the value of n, uniquely. Combining statement A and B:	30. 31. 32. 33. 34.	Actual subscription in Europe = 600, Subscription based on given assumption = $500 + \frac{500 \times 120}{380} = 657 \approx 50$ No. of men = 60 No. of women = 40 As per given condition No. of men in 2010 = 60 × (1.05) ⁷ = 84 No. of women in 2010 = 40 × (1.1) ⁷ = 78. Hence total new population = 84+78 = 162 Therefore net percentage growth of subscriber is 62% Maximum absolute value of the change is in year 08 – 09 which is 45% To increase the average of Finance by one we need to transfer a man from marketing to finance of a age of 50 years. To cover this gap, the man who is being transferred to marketing from finance has to be 30 only. Final effect goes to HR department where person who is being transferred to HR has to be age of age 35 - 20 = 15. So final average age of HR department = $[(5\times45)+(1\times15)]/(5+1) = 40$ years. Total pay of Marketing man having age 40 years when he is transferred to HR department will be = 8000 + 90% of $8000 = 15200$. Total pay of HR Department will be $(5000 + 70\%$ of $5000) \times 5 = 42500$.
23. 24. 25.	<u>w</u> <u>G</u> <u></u> If we assume that white came in second, then in no way Raju ends up at no profit and no loss because white at second place gives Rs. 6000 to Raju. But out of the Red and Black horses one has to come at 3^{rd} place, so Raju would be getting higher amount than what he has spent. So white can never come in second. The question cannot be answered by using statement A because we do not know the number of byes got by the champion. The question cannot be answered by using statement B because we do not know the exact number of players in the tournament. Combining both the statements together: If there are 83 players, then there will be 7 rounds in the tournament and we know that the champion received only one bye, therefore the total number of matches played by the tournament will be $7 - 1 = 6$. Using statement A: When n = 127, exactly one bye is given in round 1. When = 96, exactly one bye is given in round 6. As no unique value of n can be determined hence, statement A alone is not sufficient. Using statement B: As we do not know exactly how many byes are given, in total, we cannot determine the value of n, uniquely. Combining statement A and B: There is a unique value of n = 120, for which exactly	30. 31. 32. 33.	Actual subscription in Europe = 600, Subscription based on given assumption = $500 + \frac{500 \times 120}{380} = 657 \cong 50$ No. of men = 60 No. of women = 40 As per given condition No. of women in 2010 = 60 × (1.05) ⁷ = 84 No. of women in 2010 = 40 × (1.1) ⁷ = 78. Hence total new population = 84+78 = 162 Therefore net percentage growth of subscriber is 62% Maximum absolute value of the change is in year 08 – 09 which is 45% To increase the average of Finance by one we need to transfer a man from marketing to finance of a age of 50 years. To cover this gap, the man who is being transferred to marketing from finance has to be 30 only. Final effect goes to HR department where person who is being transferred to HR has to be age of age 35 - 20 = 15. So final average age of HR department = [(5x45)+(1x15)]/(5+1) = 40 years. Total pay of Marketing man having age 40 years when he is transferred to HR department will be = 8000 + 90% of $8000 = 15200$. Total pay of HR Department will be $(5000 + 70\%$ of $5000) \times 5 = 42500$. Total pay of HR Department after inclusion of
23. 24. 25.	<u>w</u> <u>G</u> <u></u> If we assume that white came in second, then in no way Raju ends up at no profit and no loss because white at second place gives Rs. 6000 to Raju. But out of the Red and Black horses one has to come at 3^{rd} place, so Raju would be getting higher amount than what he has spent. So white can never come in second. The question cannot be answered by using statement A because we do not know the number of byes got by the champion. The question cannot be answered by using statement B because we do not know the exact number of players in the tournament. Combining both the statements together: If there are 83 players, then there will be 7 rounds in the tournament and we know that the champion received only one bye, therefore the total number of matches played by the tournament will be $7 - 1 = 6$. Using statement A: When n = 127, exactly one bye is given in round 1. When = 96, exactly one bye is given in round 6. As no unique value of n can be determined hence, statement A alone is not sufficient. Using statement B: As we do not know exactly how many byes are given, in total, we cannot determine the value of n, uniquely. Combining statement A and B: There is a unique value of n = 120, for which exactly 1 by is given from the third round to the fourth	30. 31. 32. 33.	Actual subscription in Europe = 600, Subscription based on given assumption = $500 + \frac{500 \times 120}{380} = 657 \approx 50$ No. of men = 60 No. of women = 40 As per given condition No. of men in 2010 = 60 × (1.05) ⁷ = 84 No. of women in 2010 = 40 × (1.1) ⁷ = 78. Hence total new population = 84+78 = 162 Therefore net percentage growth of subscriber is 62% Maximum absolute value of the change is in year 08 – 09 which is 45% To increase the average of Finance by one we need to transfer a man from marketing to finance of a age of 50 years. To cover this gap, the man who is being transferred to marketing from finance has to be 30 only. Final effect goes to HR department where person who is being transferred to HR has to be age of age 35 - 20 = 15. So final average age of HR department = [(5x45)+(1x15)]/(5+1) = 40 years. Total pay of Marketing man having age 40 years when he is transferred to HR department will be = 8000 + 90% of $8000 = 15200$. Total pay of HR Department will be $(5000 + 70\%$ of $5000) \times 5 = 42500$. Total pay of HR Department after inclusion of marketing man = 42,500 + 15,200 = 57,700.

	= 57700/6 = 9616.6.		other tim	ne.				
	Change in average salary = $9616.6 - 8500 = 1116.6$.	41-	[Vellow	Green	Blue]
	1116 6	43.		R	0	T		-
	$\frac{11100}{8500} \times 100 = 13.1 \approx 13\%$							1
35.	2 Person transferred from maintenance department to			Р	U	S		
	HR department will contribute = $2 \times 6000 = 12000$			White	Orange	Red]
	One person transferred from Marketing Department	4.4	T > S, Q	> P > R >	U		C - 11	
	will contribute = 8000. Total basic salary of HR Department	44.	A: Defe	ated B. C. I	D the I stag	ge is as i	lonow	
	$= 5000 \times 5 + 12000 + 8000 = 45,000.$		B: Defe	ated E & F	and lost to A	A		
	Average basic salary of HR Department		C: Lost	to A, D and	ΙE			
	= 45000/8 = Rs.5625		D: Defe	ated C and	F & lost to A	4		
	Change in Average salary is = Rs. 625		F: Lost	to B. D and	E.			
	Percentage change = $\frac{025}{5000} \times 100 = 12.5\%$		The total	l out come	of the 2^{nd} st	age is as	follo	W
36.	As the question defines that it was a boom day, as per			No of mot	ahaa mlawad		-	lost
	that and information given Abdul buys at 10 am, the		A	2	ches played	0	11	2
	lowest price and sells at 3 pm, the highest price.		B	2		2		0
	He will make the maximum profit. The two other persons Bikram and Chetan, are		С	2		0		2
	investing with different strategies, one with equal		D	2		0		2
	units and other will equal investment.		E	$\frac{2}{2}$		2		0
	In that approach the person with equal investment at		[[[2		2		0
	price.	48.	Volume	of data tran	sfer for Spa	in is 30/	13 ≅	2 and
	Thus Chetan will have higher profits and returns.		Value of	data transf	er for UK is	$\frac{15}{2} \approx 2$		
27	Thus lowest return will be of that of Bikram.		v alue of	uata transi		7 - 2	,	
57.	nothing is given about the direction of the prices.		Hence ar	re same.	os it is quita	differen	.+	
	Secondly it is not known that when Bikram and	49.	FOLIESU		es it is quite		π.	
	Chetan bought whether the prices were more than the		Total rev	enue of Sir	ngapore is -	$\frac{1}{100} \cong 4$	42	
	Thus cannot be determined.				2)	
38.	Suppose the price of shares remains same throughout		which is	about 4 tin	nes that of In	idia $\left(\frac{1}{89}\right)$	$\frac{1}{6} \cong 1$	1)
	the day then all the four given statements would not	50.				07	0	
39-	Let the share price at 10 am, 11 am, 12 noon, 1 pm, 2				India	5	Swede	n
40.	pm and 3 pm be a, b, c, d, e & f rupees respectively.		Percent	tage share	27%	3	86%	
	From information (i) we get, $a > 1$ (I) From information (ii) we get		I otal R	evenue	200 Same	I	lome	
	a) Dane made profit i.e. $(a + b + c) < (d + e + f)$ (II)		Transfe	er	Same		banne	
	And, (b) Emily made profit continued from original		Revenu	ue from	27% of	200 3	6	
	1.e. $C/a \times 1/d > 1$ (III) or $c \times f > a \times d$ (IV)		Data Ti	ransfer as a	= 54			
	From information in sentence (III) we get, $e > f$ (V)		Revent	age of total				
	From information in sentence (IV) we get, $a > c$ (VI)		Itevent					
	(VII) On combining in equations (1) & (1v) we get $c > d$		Hence vo	olume of D	ata transfer f	for Swee	len is	
	On combining in-equations (I) and (VII) we get, $(VIII)$		$\frac{36}{65} = 5.8$	8, which is	the same for	r India.		
	On combining in-equations (II) and (VIII) we get,		0.5		NT CT 1	54	0.2	
	e > b(IX)		Inerefor	e new ARL	OI OI India i	$\frac{1}{5.8}$ =	9.3 WI	nich is
	Hence, we get the sequence as $(a > 1 > e > b)$ and $(c > d)$. And also we know that 'a' is greater than both 'c'		approx. 9	9 times the	previous val	ue. Hen	ce per	centage
	and 'd', therefore 'a' is the highest among the six	51	Increase	of ARDT i	n India is ap	prox. 80	0%	
39	Since the price at 11 am i.e. 'b' is less than the price at	51.	Broach -	to think.	and menn for	jewener	у,	
	2 pm (i.e. 'c'), hence statement (1) is necessarily false.		Councill	or – represe	entative of lo	ocal auth	ority,	
	From (VII) we know that $c > d$.		Counsell	lor – Adviso	or.			
	Hence statement (4) is also necessarily false. In the answer key given by IIMs this question is		Climacti	c – constitu	ting a clima	х,		
	disqualified on the ground of inconsistency of data,		Flair – 21	– relating to ntitude	o ciimate.			
	but the explanations, which were made by our team		flare – ex	xpanding or	utward.			
	are given here for your clarity about the approach to	52.	Currants	– fruits.				
40	<i>unswer this question.</i> The price at 10 am i.e. 'a' is greater than prices at any		Exceptio	onal – uncoi	nmon/extra	ordinary	ν,	
TU.	The price at 10 and i.e. a 15 greater than prices at any		Exceptio	madie – obj	ectionable.			

	Consent – to accept/give acceptance,		tolerance.
	Assent – agreement.		Hence 1, which reinforces the picture of tolerance.
	Obliged – legal obligations,		2 is a bit tangential, since it moves the context from
	Compel – to force.		tolerance to absence of discrimination.
	Sanguine – optimistic,		4 goes against the grain of the passage.
	Genuine – real.		5 does not fit in with the theme.
53.	Caustic – bitter.	70.	As per the source – Article by Amartya Sen.
	Cogent plea (idiomatic usage)	71.	Refer to the line in para, "for these
	Adverse – unfavorable,		reasonsmodule."
	Averse – opposed.		Which tells that it is an opinion of chosen few the
	Coup – a small compartment,	70	scientists and not a popular opinion.
	Coup – a struggle. Peeling – to scrap off	72.	Damagnet 2 last line, "In nature's talent "
	Pealing – a set of bells tuned to each other	73.	Paragraph 2, last line, III nature's talent
54.	Defused – reduce severity of.	/	spontaneously without conscious effort or formal
	Diffuse – spread.		instruction"
	Bated – to lessen,	75.	The last line of Paragraph 3, reinforces what has been
	Bait – to harass.		said in 1^{st} line of 2^{nd} para.
	Hoard – to accumulate,	76.	It is one of the facts given in the passage.
	Horde – a large group.		Hence cannot be inferred since it is a fact.
	Internment – to confine.	77.	Young upstarts- "Seeks attention thinking that he is
	Unsociable – unfriendly.		important but he is not as important".
55.	Error in A- spelling of imigrant is immigrant		This is confirmed by the passage.
	Error in C - , (comma) required after in-law & David	78.	Intemperance means not in moderation – hence it is
-	Stern		because of his desire to be seen as a person with
56.	Error in B changes in "its" labour policy		excess
	Error in C – sensing that	79.	As per the author we have changed the definition of
	Error in E – an industry leader		morality so as to accommodate our excessive
57.	Error in D_{-1} it should be 'the hundreds'		consumerist tendency.
	Error in E- the death count "has" just begun		So it has changed and evolved over the years. (5)
58	Error in B & C ₋ of tenses	00	(5) & (3) choices are irrelevant.
50.	Error in E "make an effort"	80.	Para (4), last line words like 'pedagogical' gives the
59.	Disingenuous means insincere. Victims is the exact	Q1	Dara (1) line 7 "Many of the concents of modern art
	opposite of perpetrators	81.	Para (1), fine / Many of the concepts of modern and,
60.	Concede means "to accept/acknowledge reluctantly"		meeting of groups of talented individual at certain
	hence choice 4		times and certain places.
61.	Anticipate the blanks. This is a sentence which talks	82.	Para (3), line 5 " The Time factor is important here.
	of the usual Nature Vs Nurture theory of		As an art movement slips into temporal perspective, it
	development. So the first blank should be something		ceases to be a living organism – becoming, rather, a
	related to genes or nature.		fossil.
	Clue for this is that the environment part, read		This is not to say that it becomes useless or
	nurture, is already mentioned.		uninteresting.
	So we narrow down the choices to 2 & 5.		Just as a scientist can reconstruct the life of a
	Option 2 fits the second blank better, because		prehistoric environment from the messages codified
67	Tanata maana any opinion principle doctrino		into the structure of a fossil, so can an artist
02.	Principles to the extent of being dogmatic Fixation-		possibility from the recorded structure of a 'dead' art
	the act of fixing or the state of being fixed related to	82	Dara (1) line 2 " It is almost tempting to soo a nottorn
	rigid individual perception.	03.	emerging within the art field or alternatively imposed
63.	People can't run over rather they run after.		upon it a <i>posteriori</i> – similar to that which exists
64.	Correct usage is "come around"		under the umbrella of science where the general term
65.	Unidiomatic use.		covers a whole range of separate, though
66.	A file refers to a single line/row." Broke the file " is		interconnecting, activities. Any parallelism is
	unidiomatic		however – in this instance at least – misleading."
67.	Read the line "it's about to happen before the patient	84.	Para (1), line 20 " Different groups of artists would
	does"which shows Perowneis in the know of the		collaborate in trying to make sense of a rapidly
	patient's reacton and also knows that the patient is not		changing world of visual and spiritual experience".
	going to come back. Therefore the unconcern.	85.	Last Para, last line.
68.	Sums up the paragraph logically, option 2& 3 look	86.	Para 2, "compounding that mismatch between land
	inviting but the author gives eg's of these two		and resources."
	countries only to reinforce the main idea which we	87.	'anthro' stands for 'mankind'.
60	Here the persona is a normation shout the surbiance f	88.	Para (3), line 9 "However by the time of the classic
09.	an old synagogue. In the last sentence we also have a		collapse the landscape was full, there was no useful
	statement about it being an example of religious		unoccupied land in the vicinity on which to begin a
	statement about it being an example of religious		new, and the whole population could not be

	accommodated in the few areas that continued to have
	reliable water supplies.
89.	4. Refer the first paragraph.
	I acknowledge, however, that Maya archaeologists
	still disagree vigourously among different parts of the
	Maya realm; because detailed archaeological studies
	are available for only some Maya sites
90.	Given below are references for all of the options,
	except 5.
	1 – second paragraph
	2 – second paragraph
	3 – third paragraph

4 – third paragraph
5 – here the obsession is that of the rulers and the kings, not the population.

