TEST CODE: PMB

SYLLABUS

Countable and uncountable sets; equivalence relations and partitions;
convergence and divergence of sequence and series;
Cauchy sequence and completeness;
Bolzano-Weierstrass theorem;
continuity, uniform continuity, differentiability, Taylor Expansion; partial and directional derivatives, Jacobians;
integral calculus of one variable - existence of Riemann integral, fundamental theorem of calculus, change of variable, improper integrals; elementary topological notions for metric spaces - open, closed and compact sets, connectedness, continuity of functions; sequence and series of functions; elements of ordinary differential equations.

Vector spaces, subspaces, basis, dimension, direct sum; matrices, systems of linear equations, determinants; diagonalization, triangular forms;
linear transformations and their representation as matrices;
groups, subgroups, quotient groups, homomorphisms, products,
Lagrange's theorem, Sylow's theorems;
rings, ideals, maximal ideals, prime ideals, quotient rings,
integral domains, Chinese remainder theorem, polynomial rings, fields.

SAMPLE QUESTIONS

$\mathbb{R}, \mathbb{C}, \mathbb{Z}$ and \mathbb{N} denote respectively the set of all real numbers, set of all complex numbers, set of all integers and set of all positive integers.

1. Let k be a field and $k[x, y]$ denote the polynomial ring in the two variables x and y with coefficients from k. Prove that for any $a, b \in k$ the ideal generated by the linear polynomials $x-a$ and $y-b$ is a maximal ideal of $k[x, y]$.
2. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a linear transformation. Show that there is a line L such that $T(L)=L$.
3. Let $A \subseteq \mathbb{R}^{n}$ and $f: A \rightarrow \mathbb{R}^{m}$ be a uniformly continuous function. If $\left\{x_{n}\right\}_{n \geq 1} \subseteq A$ is a Cauchy sequence then show that $\lim _{n \rightarrow \infty} f\left(x_{n}\right)$ exists.
4. Let $N>0$ and let $f:[0,1] \rightarrow[0,1]$ be denoted by $f(x)=1$ if $x=1 / i$ for some integer $i \leq N$ and $f(x)=0$ for all other values of x. Show that f is Riemann integrable.
5. Let $F: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be defined by

$$
F\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\max \left\{\left|x_{1}\right|,\left|x_{2}\right|, \ldots,\left|x_{n}\right|\right\}
$$

Show that F is a uniformly continuous function.
6. Show that every isometry of a compact metric space into itself is onto.
7. Let $\mathbb{T}=\{z \in \mathbb{C}:|z|=1\}$ and $f:[0,1] \rightarrow \mathbb{C}$ be continuous with $f(0)=$ $0, f(1)=2$. Show that there exists at least one t_{0} in $[0,1]$ such that $f\left(t_{0}\right)$ is in \mathbb{T}.
8. Let f be a continuous function on $[0,1]$. Evaluate

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} x^{n} f(x) d x
$$

9. Find the most general curve whose normal at each point passes though $(0,0)$. Find the particular curve through $(2,3)$.
10. Suppose f is a continuous function on \mathbb{R} which is periodic with period 1 , that is, $f(x+1)=f(x)$ for all x. Show that
(i) the function f is bounded above and below,
(ii) it achieves both its maximum and minimum and
(iii) it is uniformly continuous.
11. Let $A=\left(a_{i j}\right)$ be an $n \times n$ matrix such that $a_{i j}=0$ whenever $i \geq j$. Prove that A^{n} is the zero matrix.
12. Determine the integers n for which \mathbb{Z}_{n}, the set of integers modulo n, contains elements x, y so that $x+y=2,2 x-3 y=3$.
13. Let a_{1}, b_{1} be arbitrary positive real numbers. Define

$$
a_{n+1}=\frac{a_{n}+b_{n}}{2}, b_{n+1}=\sqrt{a_{n} b_{n}}
$$

for all $n \geq 1$. Show that a_{n} and b_{n} converge to a common limit.
14. Show that the only field automorphism of \mathbb{Q} is the identity. Using this prove that the only field automorphism of \mathbb{R} is the identity.
15. Consider a circle which is tangent to the y-axis at 0 . Show that the slope at any point (x, y) satisfies $\frac{d y}{d x}=\frac{y^{2}-x^{2}}{2 x y}$.
16. Consider an $n \times n$ matrix $A=\left(a_{i j}\right)$ with $a_{12}=1, a_{i j}=0 \forall(i, j) \neq(1,2)$. Prove that there is no invertible matrix P such that $P A P^{-1}$ is a diagonal matrix.
17. Let G be a nonabelian group of order 39 . How many subgroups of order 3 does it have?
18. Let $n \in \mathbb{N}$, let p be a prime number and let $\mathbb{Z}_{p^{n}}$ denote the ring of integers modulo p^{n} under addition and multiplication modulo p^{n}. Let $f(x)$ and $g(x)$ be polynomials with coefficients from the ring $\mathbb{Z}_{p^{n}}$ such that $f(x) \cdot g(x)=0$. Prove that $a_{i} b_{j}=0 \forall i, j$ where a_{i} and b_{j} are the coefficients of f and g respectively.
19. For any irrational number α such that $\alpha^{2} \in \mathbb{N}$, we define $\mathbb{Q}(\alpha):=\{a+b \alpha$: $a, b \in \mathbb{Q}\}$. Show that $\mathbb{Q}(\alpha)$ is a field.
20. Show that the fields $\mathbb{Q}(\sqrt{2})$ and $\mathbb{Q}(\sqrt{3})$ are isomorphic as \mathbb{Q}-vector spaces but not as fields.
21. Suppose $a_{n} \geq 0$ and $\sum a_{n}$ is convergent. Show that $\sum 1 /\left(n^{2} a_{n}\right)$ is divergent.
22. Show that $\int_{0}^{\infty}\left|\frac{\sin x}{x}\right| d x=\infty$.
23. Suppose we have a sequence of continuous functions $f_{n}:[0,1] \rightarrow \mathbb{R}, n \geq 1$ and another continuous function $f:[0,1] \rightarrow \mathbb{R}$. Show that $\left\{f_{n}\right\}$ converges uniformly to f if and only if $f_{n}\left(x_{n}\right) \rightarrow f(x)$ whenever $x_{n} \rightarrow x$.
24. Let G be a group which has only finitely many subgroups. Prove that G must be a finite group.
25. If $\left(a_{n}\right)$ is a sequence in (0,1), then show that $\frac{1}{n} \sum_{k=1}^{n} a_{k} \rightarrow 0$ if and only if $\frac{1}{n} \sum_{k=1}^{n} a_{k}^{2} \rightarrow 0$.
26. Prove that the largest possible number of 1's in an $n \times n$ invertible matrix with all entries 0 or 1 is $n^{2}-n+1$.
27. Let A be a commutative ring with unity. Prove that the set

$$
\{a \in A: a b=0 \text { for some nonzero } b \in A\}
$$

contains a prime ideal of A.

MODEL QUESTION PAPER

- Please answer FOUR questions from EACH group.
- Each question carries 10 marks. Total marks : 80.
- $\mathbb{R}, \mathbb{C}, \mathbb{Z}$ and \mathbb{N} denote respectively the set of all real numbers, set of all complex numbers, set of all integers and set of all positive integers.

Group A

1. Let f be a twice differentiable function on $(0,1)$. It is given that for all $x \in$ $(0,1),\left|f^{\prime \prime}(x)\right| \leq M$ where M is a non-negative real number. Prove that f is uniformly continuous on $(0,1)$.
2. Let f be a real-valued continuous function on $[0,1]$ which is twice continuously differentiable on $(0,1)$. Suppose that $f(0)=f(1)=0$ and f satisfies the following equation:

$$
x^{2} f^{\prime \prime}(x)+x^{4} f^{\prime}(x)-f(x)=0
$$

(a) If f attains its maximum M at some point x_{0} in the open interval $(0,1)$, then prove that $M=0$.
(b) Prove that f is identically zero on $[0,1]$.
3. Consider the set S consisting of all Cauchy sequences $\left(a_{n}\right)_{n \in \mathbb{N}}$ with $a_{n} \in \mathbb{N}$ for all n. Is the set S countable? Justify your answer.
4. Let A be a compact subset of $\mathbb{R} \backslash\{0\}$ and B be a closed subset of \mathbb{R}^{n}. Prove that the set $\{a \cdot b \mid a \in A, b \in B\}$ is closed in \mathbb{R}^{n}.
5. Does there exist a continuous function $f:[0,1] \rightarrow[0, \infty)$ such that $\int_{0}^{1} x^{n} f(x) d x=1$ for all $n \geq 1$? Justify your answer.
6. Prove that there exists a constant $c>0$ such that for all $x \in[1, \infty)$,

$$
\sum_{n \geq x} \frac{1}{n^{2}} \leq \frac{c}{x}
$$

Group B

1. Let $(\mathbb{Q},+)$ be the group of rational numbers under addition. If G_{1}, G_{2} are nonzero subgroups of $(\mathbb{Q},+)$, then prove that $G_{1} \cap G_{2} \neq\{0\}$.
2. With proper justifications, examine whether there exists any surjective group homomorphism
(a) from the $\operatorname{group}(\mathbb{Q}(\sqrt{2}),+)$ to the group $(\mathbb{Q},+)$,
(b) from the group $(\mathbb{R},+)$ to the group $(\mathbb{Z},+)$.
3. Consider the ring

$$
R=\left\{\left.\frac{2^{k} m}{n} \right\rvert\, m, n \text { odd integers; } k \text { is a non-negative integer }\right\} .
$$

(a) Describe all the units (invertible elements) of R.
(b) Demonstrate one nonzero proper ideal I of R.
(c) Examine whether the ideal I that you have chosen, is a prime ideal of R (that is, whether $a \cdot b \in I$ implies $a \in I$ or $b \in I$).
4. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a linear transformation such that $T^{2}=0$. If r denotes the rank of T (that is, $r=\operatorname{dim}(\operatorname{Image}(T))$), then show that $r \leq \frac{n}{2}$.
5. Let A be a 2×2 matrix with real entries such that $\operatorname{Tr}(A)=0$ and $\operatorname{det}(A)=-1$.
(a) Prove that there is a basis of \mathbb{R}^{2} consisting of eigenvectors of A.
(b) Suppose that T is a 2×2 real matrix with respect to the above basis such that $T A=A T$. Prove that T is a diagonal matrix with respect to that basis.
6. Let $i=\sqrt{-1}$ and $\alpha=i+\sqrt{2}$. Construct a polynomial $f(x)$ with integer coefficients such that $f(\alpha)=0$.

