Ms Health stats

15P/211/30

338

	Question Booklet No.
(To be fil	led up by the candidate by blue/black ball-point pen)
Roll No.	
Roll No.	
(Write the digits in words)	
	r Sheet
Day and Date	(Signature of Invigilator)

INSTRUCTIONS TO CANDIDATES

(Use only blue/black ball-point pen in the space above and on both sides of the Answer Sheet)

- Within 10 minutes of the issue of the Question Booklet, check the Question Booklet to
 ensure that it contains all the pages in correct sequence and that no page/question is
 missing. In case of faulty Question Booklet bring it to the notice of the
 Supermtendent/Invigilators immediately to obtain a fresh Question Booklet.
- 2. Do not bring any loose paper, written or blank, inside the Examination Hall except the Admit Card without its envelope.
- 3. A separate Answer Sheet is given. It should not be folded or mutilated. A second Answer Sheet shall not be provided. Only the Answer Sheet will be evaluated.
- 4. Write your Roll Number and Serial Number of the Answer Sheet by pen in the space provided above.
- 5. On the front page of the Answer Sheet, write by pen your Roll Number in the space provided at the top, and by darkening the circles at the bottom. Also, wherever applicable, write the Question Booklet Number and the Set Number in appropriate places.
- No overwriting is allowed in the entries of Roll No., Question Booklet No. and Set No. (if any) on OMR sheet and also Roll No. and OMR sheet No. on the Question Booklet.
- Any changes in the aforesaid entries is to be verified by the invigilator, otherwise it will be taken as unfairmeans.
- 8. Each question in this Booklet is followed by four alternative answers. For each question, you are to record the correct option on the Answer Sheet by darkening the appropriate circle in the corresponding row of the Answer Sheet, by ball-point pen as mentioned in the guidelines given on the first page of the Answer Sheet.
- For each question, darken only one circle on the Answer Sheet. If you darken more than one circle or darken a circle partially, the answer will be treated as incorrect.
- 10. Note that the answer once filled in ink cannot be changed. If you do not wish to attempt a question, leave all the circles in the corresponding row blank (such question will be awarded zero marks).
- For rough work, use the inner back page of the title cover and the blank page at the end of this Booklet.
- 12. Deposit only the OMR Answer Sheet at the end of the Test.
- 13. You are not permitted to leave the Examination Hall until the end of the Test.
- 14. If a candidate attempts to use any form of unfair means, he/she shall be liable to such punishment as the University may determine and impose on him/her.

[उपर्युक्त निर्देश हिन्दी में अन्तिम आवरण-पृष्ठ पर दिये गये हैं।]

Total No. of Printed Pages: 22

No. of Questions: 150

प्रश्नों की संख्या : 150

Time: 21/2 Hours]

समय : २½ घण्टे]

[Full Marks: 450

[पूर्णाङ्क : 450

Note: (1) Attempt as many questions as you can. Each question carries 3 marks. One mark will be deducted for each incorrect answer. Zero mark will be awarded for each unattempted question.
अधिकाधिक प्रश्नों को इल करने का प्रयत्न करें। प्रत्येक प्रश्न 3 अंक का है। प्रत्येक गलत

उत्तर के लिए एक अंक काटा जाएगा। प्रत्येक अनुत्तरित प्रश्न का प्राप्तांक शून्य होगा।

(2) If more than one alternative answers seem to be approximate to the correct answer, choose the closest one.

यदि एकाधिक वैकल्पिक उत्तर सही उत्तर के निकट प्रतीत हों, तो निकटतम सही उत्तर दें।

1. The data given as 5, 8, 10, 11, 13, 15 will be called as:

(1) time series

(2) an individual series

(3) a continuous series

(4) a discrete series

- 2. Which of the following variables which are measured on a nominal scale.
 - (1) Age categorized as young, middle-aged or old
 - (2) Ethnic group
 - (3) Social class (I/II/III N/III M/IV/V)
 - (4) Height in cm
- 3. If standard deviation of Hb levels of two groups of children are equal, then the mean of both the groups:

(1)

(1) will not be equal

(2) will also be necessarily equal

(3) may not be necessarily equal

(4) will be equal to zero

P. T. O.

				•			
4.	In a	a set of 6 observa	itions 8, 12, 40, 15, 35	5, 25	the value of med	lian	is:
	(1)	20	(2) 15	(3)	40	(4)	25
5.	Da	ta can be well dis	splayed or represent	ed b	y way of:		
7	(1)	cross classificat	ion .	(2)	two or more di	men	sional table
	(3)	stem and leaf d	isplay	(4)	all the above		
6.	A f	requency distrib	ution can be :				
	(1)	discrete		(2)	continuous		
	(3)	both (1) and (2)		(4)	none of (1) and	(2)	
7.	In a	an ordered series	, the data are :		•		
	(1)	in descending o	order	(2)	in ascending or	der	
	(3)	either (1) or (2)		(4)	neither (1) or (2)	
8.	Ch	oice of a particul	ar chart depends on	:			
	(1)	the purpose of t	the study	(2)	the nature of da	ita	
	(3)	the type of audi	ience	(4)	all the above		
9.	If the 2.8	he birth weight o	of each 10 babies bo d deviation of this sa	rn i mpl	n a hospital in a e will be :	day	is found to be
	(1)		(2) 2.8	(3)		(4)	0
0.	In a	bar diagram, th	e base line is :				
	(1)	horizontal		(2)	vertical		
	(3)	false base line		(4)	any of the abov	e	
1.	Pio	abort roprocess	. th				*
••			the components of a				
	(1)	percentages	(2) angles	(3)	sectors	(4)	circles
2.	The exp	e most, approprie enditure on diffe	tate diagram to repa	reser ily is	nt the data relat	ing	to the monthly
	(1)	histogram		(2)	pie-diagram		
	(3)	frequency polys	gon	(4)	line graph		

13.	Histogram can be used only when:					
	(1) class intervals	are equal or un	equal			
	(2) class intervals	are all equal				
	(3) class intervals	are unequal				
	(4) frequencies in	class intervals	are equal			
14.	For a positively sk	ewed data:				
	(1) mean < media	ın	(2)	mean = m	edian	
	(3) mean > media	ın	(4)	median =	2 mean	
15.	For a certain moderately skewed distrib			on mean =	24.5 and median =	26.3.
	(1) 1.8	(2) 25.4	(3)	50.8	(4) 29.9	
16.	In a distribution, the coefficient of s		node = 1.2	and stand	ard deviation = 2.0,	then
	(1) 0.6	(2) 1.3	(3)	1.9	(4) 2.6	
17.	If the first and thi dispersion will be		e 30 and 70	respective	ely then the coefficie	nt of
	(1) 0.4	(2) 7/3	(3)	3/7	(4) 50	
18.	The positional me	asure of central	tendency i	is:		
	(1) Median			Arithmeti	c mean	
	(3) Harmonic me	an	(4)	Geometric	e mean	
A STEAM				*		
19.		thon will necess		: two mode	ve	
	(1) one mode			four mode		
14	(3) three modes		(4)	lout mou		
20.	If the coefficient o	of kurtosis r ₂ of	a distributi	on is zero,	the frequency curve	is:
	(1) leptokurtic		(2)	platykurt	ic	
	(3) mesokurtic		(4)	none of th	nese	
			(3)		1	P.T.O.

(1) 12.5

22.	(1) The correlation	f the regression coef a coefficient correlation coefficien		in: .t
23.	If regression lines a coefficient between	are 8x - 10y + 66 = 0 1 x and y is :	and $40x - 18y = 198$, then the correlation
	(1) 0.5	(2) 0.6	(3) - 0.6	(4) 0.8
24.	The coefficient of c variance of x is 9. T	orrelation between a he standard deviation	and y is 0.6. Their on of y is :	ovariance is 4.8. The
	(1) $\frac{4.8}{3 \times 0.6}$	(2) $\frac{0.6}{4.8 \times 3}$	(3) $\frac{3}{4.8 \times 0.6}$	(4) $\frac{4.8}{9 \times 0.6}$
25.	Variance of two coefficient between	independent variate x and $(x - y)$ is:	es x and y are sar	me. The correlation
	(1) 0	(2) $\frac{1}{\sqrt{2}}$	(3) $\frac{1}{2}$	(4) 1
26.	Given $r_{12} = 0.6$, $r_{13} = 0.6$	= 0.5 and r ₂₃ = 0.8, the	e value of $r_{12.3}$ is :	
	(1) 0.4	(2) 0.72	(3) 0.38	(4) 0.47
27.	There will be only (1) $r = +1$ only (3) r is either $+1$ or	one regression line in r – 1	n case of two variable (2) $r = -1$ only (4) $r = 0$ only	es if :
28.	When one regression	on coefficient is nega	tive the other would	l be :
	(1) negative	(2) positive	(3) zero	(4) none of these
29.	In a trivariate populis:	ulation $r_{12} = 0.7$, $r_{13} =$	= 0.6 and r_{23} = 0.5, th	nen the value of R _{1,23}
	(1) 0.57	(2) 0.84	(3) 0.74	(4) 0.50
		(4)		
			*	

21. A person goes to office at the speed of 10 km/hour and returns home at the speed of 15 km/hour. His average speed is:

(3) 13

(4) 14

(2) 12

-	16x = -2y + 6 res	pectively, then th	e correlation coeffici	ent between x and y is	:
	(1) -0.9	(2) $\frac{1}{\sqrt{2}}$	(3) 0.25	(4) -0.5	
31.	The standard err	or is:	,	*	
	(1) error in meas	surement		4	
	(2) observer erro	or			
	(3) measure of v	ariation in sampl	ing means		
	• •	8	itative observations		
32.	distribution with	mean 2800 gm.	elected 100 newborn and standard devia ave weight more than	tion 300 gm. How man 2500 gm.	mal any
	(1) 95	(2) 84	(3) 68	(4) 32	
33.	The differences i		born babies are to be	tested in three groups	s of
	(1) Z-test		(2) t-test		
	(3) paired t-test		(4) analysis o	f variance	
34.	After the study 9 that 36% were as	00 randomly sele	ected Indian pregnan standard error of the	t women it was estima estimate is :	ted
	(1) 4.8%	(2) 3.2%	(3) 2.6%	(4) 1.6%	
35.	What is the va	lue of 'n' for I	Bionomial distribution	on with mean = 3 a	and.
	(1) 12	(2) 6	(3) 3	(4) 4	
36.	Which distributi	on does not poss (2) Normal	ess the additive prop (3) Gamma	erty in general ? (4) Binomial	
37.	Which of these limiting case of 1 (1) $n \to \infty$, $p \to \infty$ (2) $n \to \infty$, $p \to \infty$ (3) $n \to \infty$, $p \to \infty$	Bionomial distrib 1, $np \rightarrow \lambda$ is finite 1, $np \rightarrow \lambda$ is finite	ution: +ive real number +ive real number	isson distribution to b	e a
	$(4) n\to\infty,p\to1$	$0, np \rightarrow \lambda$ is an in	finite +ive real numb	ег	
			(5)	Ρ.	T.O
				4	

30. If the regression of y on x and that of x on y are given by 2y = -4x + 6 and

٠	(1) me	ean > varianc	е	(2)	mean = varian	ce
	(3) me	ean < variano	2	(4)	mean is always	s zero
39.	The m	ean and varia	nce of a distril	bution is e	ame, then the d	ichihartian ia r
	(1) No		(2) Poisson			- Control of the Cont
	(1) 140	Jiliai	(2) Poisson	(3)	Uniform	(4) Binomial
40.	Given	that $P(A) = \frac{1}{3}$	$P(B)=\frac{1}{4}P(B)$	$A\mid B)=\frac{1}{6}$, the probability	P(B A) is equal to:
	(1) $\frac{1}{8}$		(2) $\frac{1}{6}$	(3)	$\frac{2}{3}$	(4) $\frac{1}{12}$
41.	A prol distrib	bability curve ution is:	y = f(x) rang	ge from 0	to ∞ . If $f(x) = 0$	e^{-1} , the mean of the
	(1) 2		(2) 1	(3)	$\frac{1}{2}$	$(4) \frac{1}{4}$
42.	For the	following pr	obability dens	sity functio	on :	
		01		$x^2(1-x)$,		
	The va	lue of constar	(5 to 2)	x (1-x),	0 < 2 < 1	
				(0)		777 333
	(1) 13	•	(2) 11	(3)	12	(4) 14
43.	A cont	inuous rando		as the pro $A + Bx$, 0	bability density $0 \le x \le 1$	function:
	If the n	nean of the di	stribution is $\frac{1}{9}$, then the	values of (A, B)	is:
	(1) (1,	0)	$(2) \left(\frac{1}{2}, 0\right)$	(3)	(0, 1)	$(4) \left(0,\frac{1}{2}\right)$
44.	Two d	ice are tossed than 8, is :	l. The probabi	lity that t	he sum of the p	ooints on the dice is
	(1) $\frac{5}{36}$		(2) $\frac{11}{36}$	(3)	7 36	(4) $\frac{5}{18}$
45.	The pridaught	robability of ters in three d	getting a sor eliveries is :	ı is 0.5, t	hen the probal	oility of getting all
	(1) 0.5	0	(2) 0.125	(3)	0.250	(4) 0.80
	ā.			(6)		
				(-)		
				*		

38. For negative Binomial distribution, which of these is a correct statement.

46. Joint probability distribution function F(x, y) lies within the limits:

(i)
$$-1 \le i(x, y) \le 1$$

(2) -
$$1 \le F(x, y) \le 0$$

$$(3) -\infty \le F(x, y) \le 0$$

(4)
$$0 \le F(x, y) \le 1$$

47. If the joint probability density function of X and Y is:

$$f(x, y) = \frac{1}{2}(3 - x - y), 0 \le x \le 1, 0 \le y \le 1$$

then the marginal probability density function of Y is:

(1)
$$f_{\gamma}(y) = 3$$

(2)
$$f_Y(y) = \frac{1}{2} \left(\frac{5}{2} - y \right)$$

(3)
$$f_{y}(y) = 3 - y$$

(4)
$$f_Y(y) = y - \frac{5}{2}$$

A random variable X has uniform distribution over the interval [- 1, 3]. The variance of X is:

(1)
$$\frac{8}{5}$$

(1)
$$\frac{8}{5}$$
 (2) $\frac{13}{4}$ (3) $\frac{4}{3}$

(3)
$$\frac{4}{3}$$

(4)
$$\frac{7}{2}$$

49. Given that if $P(A) = \frac{1}{3}$, $P(B) = \frac{3}{4}$ and $P(A \cup B) = \frac{11}{12}$, then $P(B \mid A)$ is:

(1)
$$\frac{1}{5}$$
 (2) $\frac{4}{9}$ (3) $\frac{1}{2}$

(2)
$$\frac{4}{9}$$

(3)
$$\frac{1}{2}$$

(4)
$$\frac{1}{3}$$

Let the joint probability mass function of (X, Y) be: 50.

$$f(x, y) = \frac{x + y}{21}, x = 1, 2, 3; y = 1, 2$$

then P(X = 3) is:

(1)
$$\frac{3}{7}$$

(2)
$$\frac{4}{9}$$
 (3) $\frac{1}{3}$

(3)
$$\frac{1}{3}$$

(4)
$$\frac{4}{7}$$

The Bionomial distribution:

- (1) is the distribution of a continuous random variable
- (2) is always symmetrical
- (3) is used for making inferences about proportions
- (4) can be used to approximate the Normal distribution in certain circumstances

(7)

P.T.O.

52.	Which distribution is the proportion of individuals with a disease who are successfully treated with a new drug likely to follow?				
	(1) F-distribution	(2)	Normal distribution		
	(3) Poisson distribution	(4)	Bionomial distribution		
53.	The value of $P(X > 1)$ for the following	func	ction is :		
	x:0123		28		
	P(x) : 0.4 0.3 0.5 0.1				
	(1) 0.6 (2) 0.9	(3)	1 (4) 0.4		
54.	Given the joint probability density fund	ction	of x and y as:		
	f(x,y)=4xy,0	≤ <i>x</i> <	<1,0≤y<1		
	= 0,	othe	erwise		
	the $P(0 < x < \frac{1}{2}, \frac{1}{2} \le y < 1)$ is equal to:				
	(1) $\frac{3}{8}$ (2) $\frac{3}{16}$	(3)	$\frac{5}{16}$ (4) $\frac{1}{4}$		
55.	A random variable X has the following	prob	bability mass function :		
	x : -2 -1 0 1 2				
	P(x) : 0.1 k 0.2 $2k$ 0.3	k			
	the mean of X is:				
	(1) 0.6 (2) 0.5	(3)	0.8 (4) 0.25		
56.	If E(statistic) = Parameter, then statistic	is sa	aid to be:		
	(1) negatively biased estimate		positively biased estimate		
	(3) an unbiased estimate		none of these		
			•		
57.	Let $F_{(n_1, n_2)}$ represent an F-variate with the median of F-distribution is at:	n ₁ ar	nd n_2 degrees of freedom. If $n_1 = n_2$,		
	(1) $F = \frac{1}{2}$ (2) $F = 2$	(3)	F = 1 (4) F = 1.5		
	2	(0)	(*) 1 – 1.5		
	(8)				
			•		

58.	In case of 4 × 3 cont	inge	ncy table, the de	gree	of freedom for	χ²-st	atistic is:
	(1) 7	(2)	3	(3)	4	(4)	6
59.	Which of the follow	ring l	hypothesis testin	ıgs i	s based on F-stat	istic	?
	(1) $\sigma_1^2 = \sigma_2^2$	(2)	$\rho_1 = \rho_2$	(3)	$\mu = \mu_0$	(4)	$\sigma^2 = {\sigma_0}^2$
60.	The mode of the F-o	distri	bution is always	; ;			
	(1) greater unity			(2)	less than unity		
	(3) zero			(4)	-1		
61.	The standard error	of ob	served sample p	эгор	ortion 'p' is:		i.
	(1) $\frac{PQ}{n}$	(2)	$\frac{\sqrt{PQ}}{n}$	(3)	$\sqrt{\frac{PQ}{n}}$	(4)	$\frac{PQ}{\sqrt{n}}$
62.	The test associated	with	the comparison	of n	nore than two m	eans	s is :
	(1) t-test	(2)	Z-test	(3)	χ^2 -test	(4)	F-test
63.	To test the goodnes	s of I	it the following	test	may be used :		12
	(1) Chi-square test	(2)	F-test	(3)	t-test	(4)	Z-test
64.	The probability of t	ype-	II error is :		•		•
	(1) β	(2)	α	(3)	$1-\beta$	(4)	$1 - \alpha$
65.	The probable limits	for j	population prop	ortic	on 'P' are given b	y:	
	(1) p ± q	(2)	$p \pm 2\sqrt{\frac{pq}{n}}$	(3)	$p \pm 3\sqrt{\frac{pq}{n}}$	(4)	$q \pm 3 \sqrt{\frac{pq}{n}}$
66.	For a two-tailed tes	st if	$Z \mid > 1.96, H_0 : \mu$	= μ ₀	is:		
	(1) accepted at 5%	leve	of significance				
	(2) rejected at 5% l	evel	of significance				
	(3) accepted at 1%						
	(4) rejected at 1% l	level	of significance				
67.	For practical purpo						
9	(1) $n < 30$	(2)	5 < n < 30	(3)	n > 30	(4)	none of these
			(9)				P.T.O.
	90						

15P/292/23

47.	 In plants that fix nitrogen symbiotically, reduced nitrogen fixation 	deficiency of this element leads to
	(1) Mo (2) Mn (3) C	u (4) Zn
48.	48. A facultative parasite	
	(1) is essentially a saprophyte but can als	o live as a parasite
	(2) always lives as a parasite	
	(3) never causes disease in a host	SEC.
	(4) can only live as a saprophyte	•
49.	49. A clear area in the lawn of growing bacteria infection is called	l cells initiated upon bacteriophage
	(1) inhibition zone (2) pl	aque
	(2) hala	lony forming unit
50.	50. Water	
	(1) can give up an H+, becoming OH-	•
	(2) can accept an H+, becoming H3O+	
	(3) can form hydrogen bonds	
	(4) All of the above	
51.	1. SARS involves infection of the	
	(1) gastrointestinal tract (2) uri	nary tract
	(3) respiratory tract (4) ger	nitourinary tract
32)	10	

	(1) discarded	(2)	treated half of the	hem as positive
	(3) treated half of them as negative	(4)	all the above	•
78.	If n_1 and n_2 in Mann-Whitney test are lemean:	large	e, the variable U	is distributed with
	(1) $n_1 n_2$ (2) $\frac{n_1 n_2}{2}$	(3)	$(n_1-n_2)/2$	(4) $(n_1 + n_2)/2$
79.	A test which maximizes the power of th	ne te	st for fixed level	α is known as :
	(1) Optimum test		Randomized te	
	(3) Bayes test	(4)	Likelihood ratio	o test
80.	Range of statistic-t is:			
•••	(1) -1 to 1 . (2) $-\infty$ to ∞	(3)	0 to ∞	(4) 0 to 1
81.	Stratified sampling comes under the cat	tego	ry of :	
	(1) Unrestricted sampling	(2)	Subjective sam	pling
	(3) Purposive sampling	(4)	Restricted samp	pling
82.	If we have a sample of size n from a po- correction is:	pula	tion of N units, (the finite population
	(1) $\frac{(N-1)}{N}$ (2) $\frac{(N-n)}{N}$	(3)	$\frac{(N-n)}{n}$	$(4) \frac{(n-1)}{N}$
83.	In which of the following situation(s) cl	luste	r sampling is ap	propriate ?
	(1) When the units are situated far apa		et.	
	(2) When sampling frame is not availa-			_
	(3) When all the elementary units are r	not e	asily identifiable	•
	(4) All of the above			Calla
84.	If a random sample of size n is drapopulation of size n with mean μ and two members of the sample is:	awn vari	without replace ance σ^2 , the cov	ariance between any
	(1) $-\frac{\sigma^2}{(N-1)}$ (2) $\frac{\sigma^2}{(N-1)}$	(3)	$\frac{\sigma^2}{N}$	$(4) \frac{(N-1)}{N}\sigma^2$
	(11	}		P.T.O
	1			

77. If there are zero differences in sign test, they may be:

85.	If n units are selected in a sample from N population units, the sampling fraction is:
	(1) $\left(\frac{N-1}{N}\right)$ (2) $\frac{n}{N}$ (3) $\frac{N}{n}$ (4) $\frac{1}{N}$
86.	Under proportional allocation one gets :
	(1) an optimum sample (2) a self-weighting sample
	(3) both (1) and (2) (4) neither (1) nor (2)
87.	If the number of population units N is an integral multiple of sampling size n , the systematic sampling is called:
	(1) cluster sampling
	(2) stratified sampling
	(3) linear systematic sampling
	(4) circular systematic sampling
88.	Systematic sampling means selection of n:
	(1) contiguous units (2) situated at equal distances
	(3) largest units (4) middle units in a sequence
00	· · · · · · · · · · · · · · · · · · ·
89.	Regarding the number of strata, which statement is true?
	 not more than ten items should be there in a stratum lesser the number of strata, better it is
	(3) more the number of strata, poor it is
	(4) more the number of strata, better it is
90.	
•••	If the observations recorded on five sampled items are 3, 4, 5, 6, 7 the sample mean square is:
	(1) 2.5 (2) 3 (3) 1 (4) 0
91.	Which of the following advantage of systematic sampling you approve?
	(1) easy selection of sample
	(2) economical
	(3) spread of sample over the whole population
	(4) all the above
	(12)
	and the second of the second o

- 92.	of a random sample	taken without repla	cement if:	ecise than the mean
	(1) $S_{wsy}^2 > S^2$	$(2) S_{usy}^2 < S^2$	(3) $S_{wsy}^2 = S^2$	$(4) S_{tosy} = S^2$
93.	linear trend, then the	ne variance of mean	of a systematic samp	
	$(1) \frac{(k^2-1)}{12n}$	$(2) \frac{(k^2-1)}{12}$	$(3) \frac{1}{n} \left(1 - \frac{1}{k} \right)$	$(4) \frac{1}{k} \left(1 - \frac{1}{n} \right)$
94.	Completely randon		zed using:	***
	(1) one-way ANO	VΑ	(2) two-way ANO	VA
	(3) chi-square test		(4) all the above	
95.	The technique of ar	alysis of variance w	as developed by :	
	(1) C. R. Rao		(2) R. A. Fisher	
	(3) J. Neyman		(4) G. W. Snedecor	re
96.	In the layout of replicated three time	a randomized block es, the needed 21 pl	ots will be grouped i	
	(1) 7 blocks of 3 pl	ots each		-
	(3) 3 blocks of 7 pl	ots each	(4) 7 blocks of 7 pl	ots each
97.	In a completely radegrees of freedom	ndomized design, the associated with erro	here are 15 plots an or sum of squares is	d 3 treatments. The
	(1) 10	(2) 12	(3) 14	(4) 16
98.	In a two-way classi coloumns. The deg means are :	fication with one ob rees of freedom for	servation per cell, th the F-test for testing	ere are 4 rows and 3 g equality of all row
	(1) (3, 6)	(2) (4, 6)	(3) (6, 3)	(4) (6, 4)
99.	In the degrees of fr is 6, the number of		uares due to error in	Latin square design
	(1) 8	(2) 6	(3) 4	(4) 10
100.	The number of deg	grees of freedom in a	a 3 × 3 Latin square	design for treatment
	(1) 9	(2) 6	(3) 4	(4) 2
		(13))	P.T.O.
		, - ,		

101.	The interaction action effect cannot be studied if the number of observations per cell in two-way classification is:					
	(1) one	(2) two	(3) four	(4) six		
102.	In a Latin square replications of trea		number of treatn	nents, $k = \text{number of}$		
	(1) $m \neq k$	(2) m = k	(3) $m > k$	(4) m < k		
103.	The experimental principles are used	design in which or l, is :	dy both replication	on and randomization		
	(1) Completely rai	ndomized design	(2) Randomized	block design		
	(3) Latin square de	esign	(4) None of thes	se		
104.	If the number of sepopulation size is:	ample of size 4 in ca	ase of systematic s	sampling is 8, then the		
4	(1) 8	(2) 10	(3) 16	(4) 32		
105.		5 in standard notat		trata such that $N_1 = 15$, allocation gives $n_2 = 4$, (4) 6		
106.				7		
100.	(1) Randomization	ollowing is <i>not</i> a bas	(2) Confounding			
	(3) Local control		(4) Replication	Б		
107.		ign, the main effect A	•	las.		
		– (ab) – (ac) + (b) + (c		1 a 5 .		
	(2) $\frac{1}{4}$ [(abc) + (bc)	+ (ab) + (ac) - (a) - (b	o) - (c) - (1)]			
	(3) $\frac{1}{4}$ [(abc) – (bc)	+ (ab) + (ac) - (b) - (c	e) + (a) - (1)]			
	(4) $\frac{1}{4}$ [(abc) + (bc)	- (ab) + (ac) + (b) + (c) – (a) – (1)]			
		(14)				

109.					(2)	(2) $T_1 + 3T_2 - 3T_3 + T_4$ (4) $-3T_1 - T_2 + T_3 + 3T_4$				
110.	then the order of the design is:				of squares in a Latin square design is 30,					
111.	(1) 7×7 The relati		(2) 6> en the o			5×5 s:	, c	4) 4×4		
	(1) E = 1	+ Δ	(2) E =	= 1 – Δ	(3)	$\Delta E = 1$	(-	4) $\frac{\Delta}{E} = 1$	38	
112.		rd differe ial of degr	ee:						ction is a	
	(1) five		(2) for	ur	(3)	three	(-	4) two		
113.	Let $f(0) = 1$, $f(1) = 2.72$, then the trapezoidal rule gives approximate value $\int_{0}^{1} f(x)dx$:							value of		
	(1) 0.86		(2) 1.5	50	(3)	1.72	(4) 1.86		
114.	If $y_1 = 4$, y	$y_3 = 12, y_4$	= 19 and	$dy_x = 7 \text{ th}$	en x wil	l be :				
	(1) 1.42		(2) 1.6	68	(3)	1.86	(4) 1.98		
115.	Find the following		of stud	ents who	obtair	ned less	than 45	marks,	from the	
		Marks		30-40	40-50	50-60	60-70	70-80		
		No. of st	udents	31	42	51	35	31		
	(1) 45		(2) 75		(3)	105	(4) 52		
116.	Divided difference method can be used when the given independent variate values are:								nt variate	
	(1) at equ	ual interva	als		(2)	at unequ	al interv	als		
2	(3) not w	ell define	d		(4)	all the al	oove			
				(1	15)				P.T.O.	
		r.	•							

(2) one-way layout

(4) None of these

108. Latin square design is:

(1) complete three-way layout

(3) incomplete three-way layout

117.	The value of $\frac{Ee^x}{\Delta^2 e^x}$	is equal to :						.\$.	
	(1) e^x	(2) e^2	(3) e/(e-	1) ²	(4) (e	-1)-2		
118.	The goemterical s replaced by the :	ignificance of t	rapezoid	al rule	is that t	he curv	y = f(x)	r) is	
	(1) straight line		(2) parab	ola				
	(3) polynomial of	degree n	(4)	None	of these				
119.	In order to apply number of ordinat	/ Weddle's ru es should be :	le for n	umerica	l integra	tion, th	e minin	num	
	(1) 14	(2) 12	{3}	7		(4) 6	*		
120.	If the observed val	ues of x and fun	ection u _x	are:					
		x 2	6	8	9	5			
		u _x 198	150	102	93				
	The interpolating	function u_x is:							
	(1) $x^3 - 4x^2 + 80x + 102$ (2) $x^3 - 18x^2 + 80x + 294$								
	$(3) x^3 - 18x^2 + 80x$	+ 102			$3x^2 + 80x$				
121.	Bessel's interpolati series which lies :	ion formula is n	nost app	ropriate	to estin	nate for	a value	in a	
	(1) at the end		(2)	in the	beginnin	g			
	(3) in the middle	of the central int	erval (4)	outsid	e the ser	ies			
122.	The first divided difference with two arguments x_0 , x_1 will be:								
	(1) $\frac{f(x_1) - f(x_0)}{x_0 - x_1}$	(2) $\frac{f(x_1) - f(x_1)}{x_1 - x_0}$	(3)	$\frac{f(x_0)}{x_1}$	$-\frac{f(x_1)}{x_0}$	(4) £	$\frac{(x_1) - f(x_0)}{x_1^2 - x_0^2}$	<u>)</u>	
123.	Bessel's and stirlin of u and v in gener	g's interpolatior al lie between :	n formula	ae yield	good es	timates	if the val	lues	
	(1) - 1 and $+ 1$	(2) - 0.5 and 1	(3)	- 0.5 a	nd 0.5	(4) O a	and 1		
	where u and v have	e their usual me	anings.		٠.		*		

(16)

124.	Let X_1 , X_2 and X_3 be a random sample of size 3 from a normal population with mean μ and variance σ^2 . Then the variance of the estimator $T_1 = (X_1 + X_2 - X_3)$ of μ is :							
Si (1	(1) σ ²	(2) $3\sigma^2$	(3) $2\sigma^2$	(4) $(2/3) \sigma^2$				
				mal population N(μ,				
	1). Then $T = \frac{1}{n} \sum_{i=1}^{n} X_i$	is an unbiased estin	mator of the following	ng:				
	(1).· μ	(2) μ^2	(3) $\mu(\mu + 1)$	(4) $\mu^2 + 1$				
126.	If T is an unbiased	estimator for θ , then	T^2 is:					
	(1) an unbiased es	stimator for θ	(2) a biased estima	(2) a biased estimator for θ				
	(3) an unbiased es	stimator for θ^2	(4) a biased estimate	ator for θ ²				
127.	An estimator is said to be sufficient for a parameter, if: (1) it contains all the information in the sample regarding the parameter (2) it contains the parameter (3) it is consistent with all other estimators related to that parameter (4) none of these							
128.	estimator with var	efficient estimator iance V_2 then the effi (2) V_1/V_2	ciency of T_2 is given					
120	The bias of an estin	mator can be :						
120.		(2) negative	(3) zero	(4) all of these				
130.	If T_1 is an MVUE of $\gamma(\theta)$ and T_2 is any other unbiased estimator of $\gamma(\theta)$ with efficiency $e < 1$, then MVUE of $\gamma(\theta)$ is :							
	(1) $T_1 + T_2$							
	(2) $T_1 - T_2$							
	(3) $T_1 \cdot T_2$							
	(4) no unbiased li	near combination of	T_1 and T_2 can be an !	MVUE of $\gamma(\theta)$				
		(17)		P.T.O.				

131.	If T_1 and T_2 are MV	'U es	stimators for γ(θ)	, the	en :		
	(1) $T_1 < T_2$			(2)	either $T_1 < T_2$ o	r T ₁ :	> T ₂
	(3) $T_1 = T_2$			(4)	none of the abo	ve	
132.	Which one of the festimation?	ollo	wing is only a la	rge	sample criterion	in r	elation to point
	(1) Sufficiency	(2)	Unbiasedness	(3)	Consistency	(4)	Efficiency
133.	The maximum like	lihoo	od estimators are	e nec	cessarily:		
	(1) unbiased				most efficient	(4)	unique
134.	If the variance of estimator is:	an	estimator attain	s th	e Crammer-Rac	lov	ver bound, the
	(1) most efficient	(2)	sufficient	(3)	consistent	(4)	admissible
135.	If T_i and T_2 are two correlation between	mo the	st efficient estim m is ρ, the varia	ato:	rs with the same of $(T_1 + T_2)/2$ is ϵ	vari equa	ance S^2 and the l to:
	(1) S^2	(2)	ρS^2	(3)	$(1+\rho)S^2/4$	(4)	$(1 + \rho)S^2/2$
136.	Let X_1 , X_2 ,, X_n A sufficient statistic	be a	random sample p is :	fro	m a Bernoulli poj	pulai	tion $p^x(1-p)^{n-x}$.
	$(1) \sum_{i=1}^n X_i$			(2)	$\prod_{i=1}^{n} X_{i}$		
	(3) $Max(X_1, X_2,$, X,)	(4)	$Min(X_1, X_2,$	(X_n)	ı
137.	Age specific fertility	cur/	ve is :				
	(1) highly negative			(2)	highly positivel	v sk	ewed .
	(3) negatively skew	red			positively skew	50	
38.	The extent to which them measured by :	h m	others produce	fem	ale infants who	sur	vive to replace
	(1) crude birth rate		4	(2)	total fertility rat	e	
	(3) net reproduction	n rai	e		gross reproduct		ate
	•		(18)				

	$(1) L_x = l_x - d_x$	$(2) p_x = \frac{d_x}{l_x}$	(3) $d_x = l_{x+1} - l_x$	(4) $L_x = l_x - \frac{1}{2} dx$					
140.	The general fertility rate is determined by :								
	$(1) \frac{B^t}{f P_x}$	$(2) \frac{B^r}{f P_x} \times k$	$(3) \frac{B^{t}}{\sum_{\lambda_{1}}^{\lambda_{2}} f P_{\lambda}}$	$(4) \frac{B^{t}}{\sum_{\lambda_{1}}^{\lambda_{2}} f P_{\lambda}} \times k$					
	where notations ha	ive their usual mea	anings.						
141.	Crude Birth Rate (0	CBR) usually lies b	etween:						
	(1) 10 and 45 per t	housand	(2) 8 and 58 pe	r thousand					
	(3) 10 and 55 per t	housand	(4) 12 and 68 p	er thousand					
142.	Gross reproduction	n rate (GRR) range	es from :						
	(1) 0 to 5	(2) 0 to 1	(3) 0 to 4	(4) 1 to 6					
143.		count fertility rate life tables	than gross reprodu as well as mortality						
144.	A life table consists								
	(1) seven columns		(2) eight colum(4) eleven colu						
	(3) nine columns		254-50						
145.	The sum of annual in known as:	l age-specific ferti	lity rates over the v	whole reproductive ages					
	(1) general fertility	y rate	. (2) crude birth	rate					
	(3) total fertility ra	ate	(4) net reprodu	action rate					
146.	Complete count of	the heads of peop	ole of a country is kr	nown as :					
	(1) census		(2) vital statist	ics					
Ŧn	(3) demography		(4) none of the	above					
		! 1	9)	25.Q					

139. With reference to a life table, which one of the following is *true*?

147.	Standardised	death	rates	are	particu	larly	useful	for	
------	--------------	-------	-------	-----	---------	-------	--------	-----	--

- (1) comparing the death rates in males and females
- (2) comparing the death rates of two regions
- (3) both (1) and (2)
- (4) neither (1) nor (2)
- 148. In a 23-factorial experiment, the eight treatment combinations in a standard order are:
 - (1) 1, a, b, c, ab, ac, bc, abc
- (2) 1, a, c, b, ac, ab, bc, abc
- (3) 1, a, b, ab, c, ac, bc, abc
- (4) 1, b, c, a, ab, ac, bc, abc
- The death rate of babies under one month is known as:
 - (1) foetal death rate

- (2) maternal mortality rate
- (3) neonatal mortality rate
- (4) infant mortality rate
- 150. The child bearing age in India is:
 - (1) 13 48 years
- (2) 15 49 years
- (3) 20 29 years (4) 20 24 years

अभ्यर्थियों के लिए निर्देश

इस पुरितका के प्रथम आवरण-पृथ्व पर तथा उत्तर-पत्र के योगी पृथ्वी पर केवल *नीली। काली बाल-प्वाइंट पेन* से ही जिस्ते)

- 1. प्रश्न पुस्तिका मिलन क 10 मिन्ट के अन्दर ही देख लें कि प्रश्नपत्र में सभी पृष्ट मौजूद हैं और कोई प्रश्न छूटा नहीं है। पुस्तिका दोषयुक्त पाये जाने पर इसकी सूचना तत्काल कक्ष निरीक्षक का दकर सम्पूर्ण प्रश्नपत्र की दूसरी पुस्तिका प्राप्त कर लें।
- 2. परीक्षा भवन में *लिफाफा रहित प्रवेश-पत्र के अतिरिक्त*, लिखां या सादा कोई भी खुला कागज साथ में न लायें।
- 3. उत्तर-पत्र अलग से दिया गया है। इसे न तो मोड़ें और न ही विकृत करें। दूसरा उत्तर-पत्र नहीं दिया जायेगा। केवल अत्तर-पत्र का ही मूल्यांकन किया जायेगा।
- अपना अनुक्रमांक तथा उत्तर-पत्र का क्रमांक प्रथम आवरण-पृष्ठ पर पेन से निधारित स्थान पर लिखें।
- 5. उत्तर-पत्र के प्रथम पृष्ठ पर पेन से अपना अनुक्रमांक निर्धारित स्थान पर लिखें तथा नीचे दिये वृत्तों को गाढ़ा कर दें। जहाँ-जहाँ आवश्यक हो वहाँ प्रश्न-पुरितका का क्रमांक तथा सेट का नम्बर उचित स्थानों पर लिखें।
- 6. औ॰ एम॰ आर॰ पत्र पर अनुक्रमांक संख्या, पश्न-पुस्तिका संख्या व सेट संख्या (धिंद कोई हो) तथा प्रश्न-पुरितका पर अनुक्रमांक संख्या और ओ॰ एम॰ आर॰ पत्र संख्या की प्रविष्टियों में उपरितंखन की अनुमित नहीं है।
- 7. उपर्युक्त प्रविष्टियों में कोई भी परिवर्तन कक्ष निरीक्षक द्वारा प्रमाणित होना चाहिये अन्यथा यह एक अनुचित साधन का प्रयोग माना जायेगा।
- 8. प्रश्न-पुस्तिका में प्रत्येक प्रश्न के चार वैकल्पिक उत्तर दिये गये हैं। प्रत्येक प्रश्न के वैकल्पिक उत्तर के लिये आपको उत्तर-पत्र की सम्बन्धित पंक्ति के सामने दिये गये वृत्त को उत्तर-पत्र के प्रथम पृष्ठ पर दिये गये निर्देशों के अनुसार बाल-प्वाइंट पेन से गाढ़ा करना है।
- 9. प्रत्येक प्रश्न के उत्तर के लिये केवल एक ही वृत्त को गाढ़ा करें। एक से अधिक वृत्तों को गाढ़ा करने पर अथवा एक वृत्त को अपूर्ण भरने पर वह उत्तर गलत माना जायेगा।
- 10. ध्यान दें कि एक बार स्याही द्वारा अंकित उत्तर बदला नहीं जा सकता है। यदि आप किसी प्रश्न का उत्तर नहीं देना घाहते हैं, तो सम्बन्धित पंक्ति के सामने दिये गये सभी वृत्तों को खाली छोड़ दें। ऐसे प्रश्नों पर शून्य अंक दिये जायेंगे।
- 11. रफ कार्य के लिये इस पुरितका के मुखपृष्ट के अंदर वाला पृष्ट तथा अंतिम खाली पृष्ट का प्रयोग करें।
- 12. परीक्षा के उपरान्त केवल ओ० एम० आर० उत्तर-पत्र ही परीक्षा भवन में जमा करें।
- 13. परीक्षा समाप्त होने से पहले परीक्षा भवन से बाहर जाने की अनुमति नहीं होगी।
- 14. यदि कोई अभ्यर्थी परीक्षा में अनुचित साधनों का प्रयोग करता है, तो वह विश्वविद्यालय द्वारा निर्धारित देह का/की भागी होगा/होगी।

अभ्यर्थियों के लिए निर्देश

(इस पुस्तिका के प्रथम आवरण-पृष्ठ पर तथा उत्तर-पत्र के दोनों पृष्ठों पर केवल नीली या काली बाल-प्वाइंट पेन से ही लिखें)

- 1. प्रश्न पुस्तिका मिलने के 10 मिनट के अन्दर ही देख लें कि प्रश्नपत्र में सभी पृष्ठ मौजूद हैं और कोई प्रश्न छूटा नहीं है। पुस्तिका दोषयुक्त पाये जाने पर इसकी सूचना तत्काल कक्ष-निरीक्षक को देकर सम्पूर्ण प्रश्नपत्र की दूसरी पुस्तिका प्राप्त कर लें।
- 2. परीक्षा भवन में लिफाफा रहित प्रवेश-पत्र के अतिरिक्त, लिखा या सादा कोई भी खुला कागज साथ में न लायें।
- 3. उत्तर-पत्र अलग से दिया गया है। इसे न तो मोड़ें और न ही विकृत करें। दूसरा उत्तर-पत्र नहीं दिया जायेगा, केवल उत्तर-पत्र का ही मूल्यांकन किया जायेगा।
- 4. अपना अनुक्रमांक तथा उत्तर-पत्र का क्रमांक प्रथम आवरण-पृष्ठ पर पेन से निर्धारित स्थान पर लिखें।
- 5. उत्तर-पत्र के प्रथम पृष्ठ पर पेन से अपना अनुक्रमांक निर्धारित स्थान पर लिखें तथा नीचे दिये वृत्तों को गाढ़ा कर दें। जहाँ-जहाँ आवश्यक हो वहाँ प्रश्न-पुस्तिका का क्रमांक तथा सेट का नम्बर उचित स्थानों पर लिखें।
- 6. ओ॰ एम॰ आर॰ पत्र पर अनुक्रमांक संख्या, प्रश्न-पुस्तिका संख्या व सेट संख्या (यदि कोई हो) तथा प्रश्न-पुस्तिका पर अनुक्रमांक सं॰ और ओ॰ एम॰ आर॰ पत्र सं॰ की प्रविष्टियों में उपरिलेखन की अनुमित नहीं है।
- 7. उपर्युक्त प्रविष्टियों में कोई भी परिवर्तन कक्ष निरीक्षक द्वारा प्रमाणित होना चाहिये अन्यथा यह एक अनुचित साधन का प्रयोग माना जायेगा।
- 8. प्रश्न-पुस्तिका में प्रत्येक प्रश्न के चार वैकल्पिक उत्तर दिये गये हैं। प्रत्येक प्रश्न के वैकल्पिक उत्तर के लिये आपको उत्तर-पत्र की सम्बन्धित पंक्ति के सामने दिये गये वृत्त को उत्तर-पत्र के प्रथम पृष्ठ पर दिये गये निर्देशों के अनुसार पेन से गाढ़ा करना है।
- 9. प्रत्येक प्रश्न के उत्तर के लिये केवल एक ही वृत्त को गाढ़ा करें। एक से अधिक वृत्तों को गाढ़ा करने पर अथवा एक वृत्त को अपूर्ण भरने पर वह उत्तर गलत माना जायेगा।
- 10. ध्यान दें कि एक बार स्याही द्वारा अंकित उत्तर बदला नहीं जा सकता है। यदि आप किसी प्रश्न का उत्तर नहीं देना चाहते हैं, तो सम्बन्धित पंक्ति के सामने दिये गये सभी वृत्तों को खाली छोड़ दें। ऐसे प्रश्नों पर शून्य अंक दिये जायेंगे।
- 11. रफ़ कार्य के लिये प्रश्न-पुस्तिका के मुखपृष्ठ के अन्दर वाले पृष्ठ तथा अंतिम पृष्ठ का प्रयोग करें।
- 12. परीक्षा के उपरान्त केवल *ओ०एम०आर० उत्तर-पत्र* परीक्षा भवन में जमा कर दें।
- 13. परीक्षा समाप्त होने से पहले परीक्षा भवन से बाहर जाने की अनुमित नहीं होगी।
- 14. यदि कोई अभ्यर्थी परीक्षा में अनुचित साधनों का प्रयोग करता है, तो वह विश्वविद्यालय द्वारा निर्धारित दंड का/की, भागी होगा/होगी।

