Mrs Computer Science (486)

15P/208/2

Question	Booklet.	No
Sucnerate.	DOUGHUL.	140

						2573		
		(To	be filled	up by t	he cano	lidate	by blue/i	black ball-point pen)
Roll No.								
Roll No. (Write the	digits ii	t words	s)		**********			
Serial No.		•						
Day and	Date			•••••	•••			(Signature of Invigilator)

INSTRUCTIONS TO CANDIDATES

(Use only blue/black ball-point pen in the space above and on both sides of the Answer Sheet)

- Within 10 minutes of the issue of the Question Booklet, check the Question Booklet to ensure that
 it contains all the pages in correct sequence and that no page/question is missing. In case of faulty
 Question Booklet bring it to the notice of the Superintendent/Invigilators immediately to obtain a
 fresh Question Booklet.
- 2. Do not bring any loose paper, written or blank, inside the Examination Hall except the Admit Card without its envelope.
- A separate Answer Sheet is given. It should not be folded or mutilated. A second Answer Sheet shall
 not be provided. Only the Answer Sheet will be evaluated.
- 4. Write your Roll Number and Serial Number of the Answer Sheet by pen in the space provided above.
- 5. On the front page of the Answer Sheet, write by pen your Roll Number in the space provided at the top, and by darkening the circles at the bottom. Also, wherever applicable, write the Question Booklet Number and the Set Number in appropriate places.
- No overwriting is allowed in the entries of Roll No., Question Booklet No. and Set No. (if any) on OMR sheet and also Roll No. and OMR Sheet No. on the Question Booklet.
- Any change in the aforesaid entries is to be verified by the invigilator, otherwise it will be taken as unfair means.
- 8. Each question in this Booklet is followed by four alternative answers. For each question, you are to record the correct option on the Answer Sheet by darkening the appropriate circle in the corresponding row of the Answer Sheet, by ball-point pen as mentioned in the guidelines given on the first page of the Answer Sheet.
- 9. For each question, darken only one circle on the Answer Sheet. If you darken more than one circle or darken a circle partially, the answer will be treated as incorrect.
- 10. Note that the answer once filled in ink cannot be changed. If you do not wish to attempt a question, leave all the circles in the corresponding row blank (such question will be awarded zero mark).
- 11. For rough work, use the inner back page of the title cover and the blank page at the end of this Booklet.
- Deposit only the OMR Answer Sheet at the end of the Test.
- 13. You are not permitted to leave the Examination Hall until the end of the Test.
- 14. If a candidate attempts to use any form of unfair means, he/she shall be liable to such punishment as the University may determine and impose on him/her.

| उपर्युक्त निर्देश हिन्दी में अन्तिम आवरण-पृष्ठ पर दिये गए हैं|

[No. of Printed Pages: 32+2

No. of Questions/प्रश्नों की संख्या : 150

Time/समय : 2 Hours/घण्टे

Full Marks/पूर्णांक : 450

Note:

- (1) Attempt as many questions as you can. Each question carries 3 marks.
 One mark will be deducted for each incorrect answer. Zero mark will be awarded for each unattempted question.
 - अधिकाधिक प्रश्नों को हल करने का प्रयत्न करें। प्रत्येक प्रश्न 3 अंक का है। प्रत्येक गलत उत्तर के लिए एक अंक काटा जाएगा। प्रत्येक अनुत्तरित प्रश्न का प्राप्तांक शून्य होगा।
- (2) If more than one alternative answers seem to be approximate to the correct answer, choose the closest one.
 - बदि एकाधिक वैकल्पिक उत्तर सही उत्तर के निकट प्रतीत हों, तो निकटतम सही उत्तर दें।
- 1. In a vectored interrupt
 - (1) the branch address is assigned to a fixed location in memory
 - (2) the interrupting source supplies the branch information to the processor through an interrupt vector
 - (3) the branch address is obtained from a register in the processor
 - (4) branch address is assigned to variable location in memory

(330) (P.T.O.)

2.	If memory access to (cache uses a 10		cache and 11	0 ns without it, then	the ratio
	(1) 93%	(2) 90%	(3) 88%	(4) 87%	
3.	The addressing m	ode used in an	instruction of	the form ADD XY ,	is
	(1) absolute	(2) indirect	(3) index	(4) relative	
4.	memory.	eeps track of th	e instruction	s stored in program	stored in
	(1) AR (Address R	tegister)	(2) XR (In	dex Register)	
	(3) PC (Program C	Counter)	(4) AC (A	ecumulator)	
5.	Data hazards occi	ur when			
	(1) greater perform	nance loss	.*		
	(2) pipeline chang	ges the order of	read/write ac	ceas to operands	
	(3) some function	al unit is not fu	lly pipelined		
	(4) machine size	is limited		* *	
6.	transfer data. The time of the bus wa	bandwidth of this reduced to 125	s bus would b	es 4 cycles of 250 nse e 2 megabytes/sec. If number of cycles red width of the bus?	the cycle
	(1) 1 megabyte/se	ec .	(2) 4 meg	abytes/sec	
	(3) 8 megabytes/	sec	(4) 2 meg	abytes/sec	
30)			2 .	- :	

7.	If n has the value 3, then the statement $a[++n]=n++$			
	(1) assigns 4 to a[5]	(2) assigns 4 to a[3]		
	(3) assigns 4 to a[4]	(4) produces unpredictable results		
8.	In signed-magnitude binary division (10011)2, then the result is	if the dividend is (11100)2 and divisor is		
	(1) (00100)2 (2) (10100)2	(3) (11001)2 (4) (01100)2		
9.	If the main memory is of 8 K bytes uses associative mapping. Then each	and the cache memory is of 2 K words. It h word of cache memory shall be		
	(1) 11 bits (2) 21 bits	(3) 16 bits (4) 20 bits		
10.	PSW is saved in stack when there i	8 a		
	(1) interrupt recognized	(2) execution of RST instruction		
	(3) execution of CALL instruction	(4) All of these		
11.		ultiplier register of a hardware circuit (11101) and (1100). The result shall be		
	(1) (812)10 (2) (-12)10	(3) (12)10 (4) (-812)10		
12.	'Aging registers' are			
	(1) counters which indicate how los referenced	ng ago their associated pages have been		
	(2) registers which keep track of wh	en the program was last accessed		
	(3) counters to keep track of last ac	ecessed instruction		
22	(4) counters to keep track of the lat	test data structures referred		
(330)	3	(P.T.O.)		
857				

13.	An interface that p	rovides a method fo nd external devices	r tre	naferring binar	y ini	formation between
	(1) I/O interface	in the same and same		input interface		
				I/O bus		
	(3) output interfac	-C	(*)	,, 0 545		
14.	Status bit is also	called			•	60
	(1) binary bit		(2)	flag bit		
	(3) signed bit		(4)	unsigned bit		
15.		hat goes through a ut pulses is called		defined sequen	ice (of states upon the
	(1) register	(2) flip-flop	(3)	transistor	(4)	counter
16.	contains the num	r contains a number ber 24. The effecti ion is read from th	ve ø	ddress in the	77.	
	(1) 849	(2) 850	(3)	801	(4)	802
17.	Which of the follo	wing is a database	e ad	ministrator's fu	ncti	on?
	(1) Database desi	gn	(2)	Backing up th	e de	atabase
	(3) Performance r	nonitoring	(4)	All of the above	Vė	
18.	Which of the follo	wing is not a logic	cal d	latabase structi	ıre?	
	(1) Tree	(2) Relational	(3)	Network	(4)	Chain
19.	Primitive operatio	ns common to all	reco	rd managemen	t sv	stems include
				look-up	<i>18</i> ≤	All of the above
330	(1) print	(2) sort		wor-up	(4)	VII OF THE WOOLE
(330)		4				

20.	What is the language used by most access data?	of the DBMSs for helping their users to			
	(1) High-level language	(2) Query language			
	(3) SQL	(4) 4GL			
21.	A locked file can be				
	(1) accessed by only one user				
	(2) modified by users with the corre	ect password			
	(3) is used to hide sensitive information	ation			
	(4) Both (2) and (3)				
22.	In SQL, which command is used to make permanent changes made by statements issue since the beginning of a transaction?				
	(1) ZIP (2) PACK	(3) COMMIT (4) SAVE			
23.	Which two files are used during ope	ration of the DBMS?			
	(1) Query language and utilities				
	(2) Data manipulation language and	query language			
	(3) Data dictionary and transaction	log			
	(4) Data dictionary and query langu	age			
24.	Which one of the following statemen	ts about normal forms is FALSE?			
	(1) BCNF is stricter than 3 NF				
	(2) Lossless, dependency-preserving of	lecomposition into 3 NF is always possible			
	(3) Lossless, dependency—preservin possible	g decomposition into BCNF is always			
	(4) Any relation with two attributes	is BCNF .			
(330)	5	(P.T.O.)			

25.	Which is a bottom-up approach to d the relationship between attributes?	atabase design that design by examining
	(1) Functional dependency	(2) Database modelling
	(3) Normalization	(4) Decomposition
26.	Which forms are based on the conc	ept of functional dependency?
	(1) 1NF (2) 2NF	(3) 3NF (4) 4NF
27.	Empdt (empcode, name, street, city,	state, pincode)
	For any pincode, there is only one cit State, there is just one pincode. In no	y and State. Also, for given street, city and rmalization terms, empdt 1 is a relation in
	(1) 1 NF only	
	(2) 2 NF and hence also in 1 NF	
	(3) 3 NF and hence also in 2 NF at	nd 1 NF -
	(4) BCNF and hence also in 3 NF,	2 NF and 1 NF
28.	Which of the following indicates the involved in a relationship?	maximum number of entities that can be
	(1) Minimum cardinality	(2) Maximum cardinality
	(3) ERD	(4) Greater Entity Count (GEC)
29.		the database unless another type of entity not require that the identifier of that other n identifier?
	(1) Weak entity	(2) Strong entity
	(3) ID-dependent entity	(4) ID-independent entity
(330)	6	
		•

- 30. Which type of entity represents an actual occurrence of an associated generalized entity?
 - (1) Supertype entity

(2) Subtype entity

(3) Archetype entity

- (4) Instance entity
- 31. Which of the following is object-oriented development life cycle?
 - (1) Analysis, design and implementation steps in the given order and using multiple iterations
 - (2) Analysis, design and implementation steps in the given order and going through the steps no more than one time
 - (3) Analysis, design and implementation steps in any order and using multiple iterations
 - (4) Analysis, design and implementation steps in any order and going through the steps no more than one time
- 32. Which of the following is Aggregation?
 - (1) Expresses a part-of relationship and is a stronger form of an association relationship
 - (2) Expresses a part-of relationship and is a weaker form of an association relationship
 - (3) Expresses an is-a relationship and is a stronger form of an association relationship
 - (4) Expresses an is-a relationship and is a weaker form of an association relationship

(330)

7

15P/208/2

	information?	*		
	(1) Antivirus software	(2)	Firewall	
	(3) Phishing	(4)	Disk Encryption	•
34.	Which of the following	addresses is mo	st commonly used	loopback address?
	(1) 0.0.0.1	(2)	127.1.1.1	
	(3) 127.0.0.1	(4)	255.255.255.255	
35.	What is Extranet?			
	(1) An extra fast com			10
	(2) The intranet of tw leased line	o cooperating orga	anisations intercons	nected via a secure
	(3) An extra network	used by an organ	ization for higher 1	reliability
	(4) An extra connecti	on provided to co	operating organizat	ion
36.	Debug is a term dend	oting	¥I	
	(1) error correction p	TOCESSES		
	(2) writing of instruct	tions in developin	g a new program	
	(3) fault detection in	equipment		
	(4) determining usefu	971 173 31 100 100 100 100 100 100 100 100 100 1		*
	•			
37.	One megabyte equals	approximately		
	(1) 1000 bits	. (2	1000 bytes	. *
	(3) 1 million bytes	(4) 1 million bits	
(330)		8		
			Ξ.	•

33. Which of the following is not a method to preserve the security and integrity of

38.	on opening of a Website.	eb pages and ——— is the very first page that we see
	(1) Home-page, web-page	(2) Website, home-page
	(3) Web-page, home-page	(4) Web-page, website
39.	A honey pot is an examp	e of what type of software?
	(1) Encryption	(2) Security-auditing
	(3) Virus	(4) Intrusion-detection
40.	The basic concepts of eth	ics in information society is/are
	(1) responsibility	(2) accountability
	(3) liability	(4) All of the above
41,	. Mechanism to protect pri	ate networks from outside attack is
	(1) firewall	(2) antivirus
2	(3) digital signature	(4) formating
42.	Which infrastructure inch	des application servers, data servers, and clients?
	(1) Client/server	(2) Thin client
	(3) 2-tier infrastructure	(4) 3-tier infrastructure
43.	All of the following are ex	imples of real security and privacy risks, except
	(1) hackers (2) spa	n (3) viruses (4) identity theft
(330)		9 · (P.T.O.)

44.	What is a person called when they try computer?	to hurt a group of people with the use of a
	(1) White hat intruder	(2) Cracker
	(3) Social engineer	(4) Cyber terrorist
45.	In the decimal numbering system, v	what is the MSD?
	(1) The middle digit of a stream of	numbers
	(2) The digit to the right of the dec	imal point
	(3) The last digit on the right	
	(4) The digit with the most weight	
		_
46.	What is a digital-to-analog converte	± 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1
	form	om an audio CD and converts it to a usable
	(2) It allows the use of cheaper analogous	g techniques, which are always simpler
6	(3) It stores digital data on a hard	drive
	(4) It converts direct current to alt	ernating current
47.	A full subtracter circuit requires	
	(1) two inputs and two outputs	(2) two inputs and three outputs
	(3) three inputs and one output	(4) three inputs and two outputs
48.	How many address bits are need 2118 16 K × 1 RAM?	ed to select all memory locations in the
	(1) 8 (2) 10	(3) 14 (4) 16
(330)		0

49. A flip-flop has

(1) one stable state

(2) no stable state

(3) two stable states

(4) four stable states

50. Determine the values of A, B, C and D that make the sum term $\overline{A} + B + \overline{C} + D$ equal to zero

- (1) A = 1, B = 0, C = 0, D = 0
- (2) A=1, B=0, C=1, D=0
- (3) A = 0, B = 1, C = 0, D = 0
- (4) A=1, B=0, C-1, D=1

51. One of De Morgan's theorems states that $\overline{X + Y} = \overline{XY}$, Simply stated, this means that logically there is no difference between

- (1) a NOR and an AND gate with inverted inputs
- (2) a NAND and an OR gate with inverted inputs
- (3) an AND and a NOR gate with inverted inputs
- (4) a NOR and a NAND gate with inverted inputs

52. One positive pulse with $t_w = 75 \,\mu s$ is applied to one of the inputs of an exclusive-OR circuit. A second positive pulse with $t_w = 15 \,\mu s$ is applied to the other input beginning 20 μs after the leading edge of the first pulse. Which statement describes the output in relation to the inputs?

- (1) The exclusive-OR output is a 20 μs pulse followed by a 40 μs pulse, with a separation of 15 μs between the pulses
- (2) The exclusive-OR output is a 20 µs pulse followed by a 15 µs pulse, with a separation of 40 µs between the pulses
- (3) The exclusive-OR output is a 15 μs pulse followed by a 40 μs pulse
- (4) The exclusive-OR output is a 20 μs pulse followed by a 15 μs pulse, followed by a 40 μs pulse

(330)

11

(3) 1110-11

(330)

	· [1] - [1]	A Company of the Comp	$Q_0 = 0, Q_1 = 1, Q_2 = 1$ and
(1) $Q_0 = 1$, $Q_1 = 0$,	$Q_2 = 0, Q_3 = 0$	(2) $Q_0 = 1, Q_1 = 1,$	$Q_2 = 1, Q_3 = 0$
(3) $Q_0 = 0$, $Q_1 = 0$,	$Q_2 = 1, Q_3 = 1$	$(4) Q_0 = 0, Q_1 = 0,$	$Q_2 = 0, Q_3 = 1$
input is HIGH. Th	e nibble 1011 is wa	iting to be entered	on the serial data-inpu
(1) 1101	(2) 0111	(3) 0001	(4) 1110
The check sum n	nethod of testing a	ROM	E
(1) indicates if th	e data in more th	an one memory lo	cation is incorrect
(2) provides a me locations	ans for locating and	d correcting data er	rors in specific memor
(3) allows data es	rrors to be pinpoin	ited to a specific n	nemory location
(4) simply indica	tes that the conter	nts of the ROM are	incorrect
Convert the binar	ry number 1001-00	10 ₂ to decimal	
(1) 90.125	(2) 9.125	(3) 125	(4) 12.5
A typical PC use address?	s a 20-bit address	code, how much	memory can the CPU
(1) 20 MB	(2) 10 MB	(3) 1 MB	(4) 580 MB
Convert 59.7210	to BCD	·	
(1) 111011	₩	(2) 01011001-01	110010
	Q ₃ = 1. On the six (1) Q ₀ = 1, Q ₁ = 0, (3) Q ₀ = 0, Q ₁ = 0, (4) A bidirectional 4-input is HIGH. The line. After three of (1) 1101 The check sum in (1) indicates if the (2) provides a mealocations (3) allows data extensions (4) simply indicate Convert the binary (1) 90·125 A typical PC use address? (1) 20 MB Convert 59·72 ₁₀	Q ₃ = 1. On the sixth clock pulse, the (1) Q ₀ = 1, Q ₁ = 0, Q ₂ = 0, Q ₃ = 0 (3) Q ₀ = 0, Q ₁ = 0, Q ₂ = 1, Q ₃ = 1 A bidirectional 4-bit shift register is input is HIGH. The nibble 1011 is waline. After three clock pulses, the sine. A	Q ₃ = 1. On the sixth clock pulse, the sequence is (1) Q ₀ = 1, Q ₁ = 0, Q ₂ = 0, Q ₃ = 0 (2) Q ₀ = 1, Q ₁ = 1, Q (3) Q ₀ = 0, Q ₁ = 0, Q ₂ = 1, Q ₃ = 1 (4) Q ₀ = 0, Q ₁ = 0, Q A bidirectional 4-bit shift register is storing the nibble input is HIGH. The nibble 1011 is waiting to be entered line. After three clock pulses, the shift register is stor (1) 1101 (2) 0111 (3) 0001 The check sum method of testing a ROM (1) indicates if the data in more than one memory locations (3) allows data errors to be pinpointed to a specific m (4) simply indicates that the contents of the ROM are Convert the binary number 1001-0010 ₂ to decimal (1) 90·125 (2) 9·125 (3) 125 A typical PC uses a 20-bit address code, how much address? (1) 20 MB (2) 10 MB (3) 1 MB Convert 59·72 ₁₀ to BCD

12

(4) 0101100101110010

	(1) 1110 1101 (2) 1111 1001	(3) 1111 0011 (4) 1110 1001
60.	Which of the following combination	as cannot be combined into K-map groups?
	(1) Corners in the same row	(2) Corners in the same column
	(3) Diagonal corners	(4) Overlapping combinations
61.	Which statement BEST describes flip-flop?	the operation of a negative-edge-triggered D
	(1) The logic level at the D input	is transferred to Q on NGT of CLK
	(2) The Q output is ALWAYS identi	cal to the CLK input if the D input is HIGH
	(3) The Q output is ALWAYS ider	tical to the D input when $CLK = PGT$
	(4) The Q output is ALWAYS iden	tical to the D input
62.	How is a J-K flip-flop made to to	ggle?
	(1) $J = 0, K = 0$	(2) $J = 1, K = 0$
	(3) $J = 0, K = 1$	(4) $J = 1, K = 1$
63.	Using four cascaded counters with deleted to achieve a modulus of 5	a total of 16 bits, how many States must be 0000?
2	(1) 50000 (2) 65536	(3) 25536 (4) 15536
64.	A basic multiplexer principle can	be demonstrated through the use of a
	(1) single-pole relay	(2) DPDT switch
	(3) rotary switch	(4) linear stepper
330)	_	13 (P.T.O.)
		·

59. Solving -11+(-2) will yield which two's-complement answer?

65.	What control signals may be necessary to operate a 1-line-to-16 line decoder?
	(1) Flasher circuit control signal
	(2) A LOW on all gate enable inputs
	(3) Input from a hexadecimal counter
	(4) A HIGH on all gate enable circuits
66.	Which one of the following is not True?
	(1) Kernel is the program that constitutes the central core of the operating system
	(2) Kernel is the first part of operating system to load into memory during booting
	(3) Kernel is made of various modules which cannot be loaded in running operating system
	(4) Kernel remains in the memory during the entire computer session
67.	Which facility dynamically adds probes to a running system, both in user processes and in the kernel?
	(1) DTrace (2) DLocate (3) DMap (4) DAdd
68.	A process can be terminated due to
	(1) normal exit (2) fatal error
	(3) killed by another process (4) all of the mentioned
60	A process stack does not contain

collegedunia

(2) local variables

(4) PID of child process

(1) function parameters

(3) return addresses

	(2) a device to support the computer							
	(3) a small initialisation program to start up a computer							
	(4) an error correction technique							
71.	Time quantum is defined in							
•	(1) shortest job scheduling algorithm							
	(2) round-robin scheduling algorithm							
	(3) priority scheduling algorithm	•:						
	(4) multilevel queue scheduling alg	orithm						
72.	A situation where several processes access and manipulate the same data concurrently and the outcome of the execution depends on the particular order in which access takes place is called							
	(1) data consistency	(2) race condition						
3	(3) aging	(4) starvation						
73.	The segment of code in which the update tables, write into files is kn	process may change common variables						
	(1) program	(2) critical section						
	(3) non-critical section	(4) synchronizing						
330)	15	(P.T.O.)						
,								

70. A bootstrap is

(1) a memory device

	· ·	
74.	Which of the following conditions is	required for deadlock to be possible?
	(1) Mutual exclusion	
	(2) A process may hold allocated resources	urces while awaiting assignment of other
	(3) No resource can be forcibly remo	wed from a process holding it
	(4) All of the mentioned	•
75.	When a program tries to access a page loaded in physical memory, then	that is mapped in address space but not
	(1) segmentation fault occurs	(2) fatal error occurs
	(3) page fault occurs	(4) no error occurs
76.	A process is thrashing if	
	(1) it is spending more time paging	than executing
	(2) it is spending less time paging t	han executing
	(3) page fault occurs	
	(4) swapping cannot take place	
77.	The depth of a complete binary tree	is given by
	(1) $Dn = n \log 2n$	$(2) Dn = n \log 2n + 1$
	(3) $Dn = \log 2n$	$(4) Dn = \log 2n + 1$
78.	A binary tree whose every node has	either zero or two children is called
	(1) complete binary tree	(2) binary search tree

(3) extended binary tree

(330)

(4) data structure

16

- 79. When representing any algebraic expression E which uses only binary operations in a 2_tree, is
 - (1) the variable in E will appear as external nodes and operations in internal nodes
 - (2) the operations in E will appear as external nodes and variables in internal nodes
 - (3) the variables and operations in E will appear only in internal nodes
 - (4) the variables and operations in E will appear only in external nodes
- 80. A binary tree can easily be converted into q 2_tree is
 - (1) by replacing each empty subtree by a new internal node
 - (2) by inserting an internal nodes for non_empty node
 - (3) by inserting an external nodes for non_empty node
 - (4) by replacing each empty subtree by a new external node
- 81. When converting binary tree into extended binary tree, all the original nodes in binary tree are
 - (1) internal nodes on extended tree
 - (2) external nodes on extended tree
 - (3) vanished on extended tree
 - (4) live nodes
- 82. Which of the following sorting algorithms is of divide_ and _conquer type?
 - (i) Bubble sort

(2) Insertion sort

(3) Quick sort

(4) Radix sort

(330)

17

3.	In a graph if $e = (u, v)$ means		
	(1) u is adjacent to v but v is not ac	djac	ent to u
	(2) e begins at u and ends at v		
	(3) u is node and v is an edge		
	(4) both u and v are edges		
34.	If every node u in G is adjacent to every	oth	er node v in G, A graph is said to be
	(1) isolated	(2)	complete
	(3) finite	(4)	strongly connected
35 .	Two main measures for the efficience	y of	an algorithm are
	(1) processor and memory	(2)	complexity and capacity
	(3) time and space	(4)	data and space
B6.	Which of the following cases does no	ot e	xist in complexity theory?
	(1) Best case	(2)	Worst case
	(3) Average case	(4)	Null case
87.	The worst case occur in linear search	ch a	lgorithm when an
	(1) item is somewhere in the middle	of	the array
	(2) item is not in the array at all		
	(3) item is the last element in the a	urray	7
	(4) item is the last element in the a	ırray	or is not there at all
30)	. 18		

88.	The	complexity	of	merge	sort	algorithm	is
-----	-----	------------	----	-------	------	-----------	----

- (1) O(n)
- (2) $O(\log n)$
- (3) O(n2)
- (4) O(n log n)

89. Linked lists are best suited

- (1) for relatively permanent collections of data
- (2) for the size of the structure and the data in the structure are constantly changing
- (3) data structure
- (4) collections
- 90. The memory address of fifth element of an array can be calculated by the formula
 - (1) LOC (Array[5] = Base(Array) + w(5_lower boun4., where w is the number of words per memory cell for the array
 - (2) LOC(Array[5]) = Base(Array[4]) + (5_lower boun4., where w is the number of words per memory cell for the array
 - (3) LOC(Array[5]) = Base(Array[4]) + (5_Upper boun4., where w is the number of words per memory cell for the array
 - (4) Base(array[5]) + (5_lower boun4., where w is the number of words per memory cell for the array

91. A variable P is called pointer if

- (1) P contains the address of an element in DATA
- (2) P points to the address of first element in DATA
- (3) P can store only memory addresses
- (4) P contains the DATA and the address of DATA

92.	When in-order tra traversal would re	resul	ted	EACKFH	DE	3 Ģ; the pr	e-order	
	(1) FAEKCDBHG			(2)	FAEKCDHGB			
	(3) EAFKHDCBG			(4)	FEAKDCHBG			
93.	Exit loop is applic	cable to ——	– lev	el d	of loops.			
7.0	(1) 1	(2) 3		(3)	2	(4)	all nested	loops
94.	A doubly linked li	ist has p	ointe	ers	with each node	e.		e
	(1) 0	(2) 1		(3)	2	(4)	3	
95.	In a stack the com	mand to access	nth e	elen	nent from the to	p of	the stack S	will be
	(1) S [Top_n]	*		(2)	S [Top + n]		-	
	(3) S [top_n_1]			(4)	S [top_1]			٠
96.	The result of $a = 3$, $b = 6$, $c = 1$, d		, pre	fix	expression	•/	b+_dacd,	where
	(1) O	(2) 5	ļ	(3)	10	(4)	15	
97.	A ——— is table address is assigned			8 0 8	in which a ur	iqu	e external	storage
	(1) hash table			(2)	address table			
	(3) mapping table			(4)	cross reference	tal	ble	
330}			20					

	(1) finding the IP address f	from the DNS	
	(2) finding the IP address of	of the default gatewa	cy .
	(3) finding the IP address t		
	(4) finding the MAC addres		
		•	
99.	causes immediate, un	nconditional exit.	
	(1) Goto (2) Retur	n(x) (3) Write () (4) Exit loop
100.	Let G be a simple undirected connected graph, then the nuther the plane is equal to	planar graph on 10 v umber of bounded fa	ertices with 15 edges. If G is a ces in any embedding of G on
	(1), 3 (2) 4	(3) 5	(4) 6
101.	Let P be a quick sort program be the time taken by the p respectively. Which of the fo	program for the inp	ascending order. Let t_1 and t_2 uts $[12345]$ and $[54321]$
	$(1) t_1 = t_2$	(2) $t_1 > t_2$	
	(3) $t_1 < t_2$	(4) $t_1 = t_2 +$	5 log 5
102.	Sometimes the object module (from the symbol table) mapped the most likely purpose of the most likely	ing all source progra	ompiler includes information om names to their addresses.
	(1) for use as input to a det	ougging aid	
	(2) to increase the run-time	efficiency of the pro	gram
	(3) for the reduction of the s		
	(4) to tell the loader where e		
(330)		21	(P.T.O.)

98. The address resolution protocol (ARP) is used for

103. A critical region is

- (1) one which is enclosed by a pair of P and V operations an semaphores
- (2) a program segment that often causes unexpected system crashes
- (3) a program segment that has not been proved bug-free
- (4) a program segment where shared resources are accessed
- 104. Two computers communicate with each other by sending data packets across a local area network. The size of these packets is 1000 bytes. The network has the capacity to carry 1000 packets per second. The CPU time required to execute the network protocol to send one packet is 10 milliseconds. The maximum rate at which one computer can send data to another is approximately
 - (1) 10000 bytes/second
- (2) 25000 bytes/second
- (3) 100000 bytes/second
- (4) 10000000 bytes second
- 105. In a 16-bit computer, 10 digits are allotted for mantissa (including one sign digit) and 6 digits are allotted for exponent (including one sign digit) write the value of the function given below, in normalized form when n = 5

$$\frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \dots + \frac{1}{2^n}$$

(1) O·1111 E 11

- (2) 0-00001 E 10
- (3) + 0·111110000 E+00
- (4) + 0-111111 E+10

(330)

106.	Which	of th	e following	assertions	is	false	about	the	Internet	Protocol	CEDAT
				Adon: Cività	10	range	about	uic	miernet	PTOTOCOI	III M

- (1) It is possible for a computer to have multiple IP addresses
- (2) IP packets from the same source to the same destination can take different routes in the network
- (3) IP ensures that a packet is forwarded if it is unable to reach its destination within a given number of hopes
- (4) The packet source cannot set the route of an outgoing packets; the route is determined only by the routing tables in the routers on the way

107. A table for values of x and y is given below

x 93·0 96·2 100·0 104·2 108·7 y 11·38 12·80 14·70 17·07 19·91

Using Lagrange's formula the value of x when y = 13.5 will be

- (1) 98-14
- (2) 97.66
- (3) 96.99
- 4) 96.43

108. In the solution of ordinary differential equations in case $\frac{dy}{dx}$ is a function of alone, then which pair of methods becomes identical?

- (1) Simpson's rule and trapezoidal rule
- (2) Trapezoidal rule and Euler's method
- (3) Simpson's rule and Runge-Kutta method
- (4) Euler's method and Runge-Kutta method

(330)

23

109.	The results	obtained	by	using	Simpson's	rule	will	be	greater	than	those
	obtained by	using the	tra	pezoida	al rule						

- (1) in all cases
- (2) provided the intervals are small
- (3) provided the boundary is concave towards the base line
- (4) provided the boundary is convex towards the base line

110. If $f(x_i) f(x_{i+1}) < 0$, then

- (1) there must be a root of f(x) between x_i and x_{i+1}
- (2) there need not be a root if f(x) between x_i and x_{i+1}
- (3) the fourth derivative of f(x) with respect to x vanishes at x_i
- (4) the fourth derivative of f(x) with respect to x vanishes at x_{i+1}
- 111. The probability that a single bit will be in error on a typical public telephone line using 4800 bps modem is 10 to the power -3. If no error detection mechanism is used, the residual error rate for a communication line using 9-bit frames is approximately equal to
 - (1) 0.003
- (2) 0.009
- (3) 0.991
- (4) 0.999

112. Which of the following scheduling algorithms is non-preemptive?

- (1) Round robin
- (2) First-in first-out
- (3) Multilevel queue scheduling
- (4) Multilevel queue scheduling with feedback

(330)

113. The	'C' langu	age is
----------	-----------	--------

- (1) a context free language
- (2) a context sensitive language
- (3) a regular language
- (4) parable fully only by a Turing machine

114. In a J-K flip-flop, toggle means

- (1) set Q = 1 and Q = 0
- (2) set Q = 0 and Q = 1
- (3) change the output to the opposite state
- (4) no change in output

115. Which of the following is NOT true about thrashing?

- (1) Effects of thrashing can be limited by a local replacement algorithm
- (2) When thrashing occurs it implies that the degree of multiprogramming is high
- (3) Effective access time increases only for the thrashing processes
- (4) The processes will be in the queue for the paging device cost of the time
- 116. A pipeline processing with 4 segments and 100 sub-operations take 20 ns to process a sub-operation in each segment. The speed up ratio of pipeline processing to sequential processing is
 - (1) 3.80
- (2) 3.88
- (3) 3.90
- (4) 3.85

(330)

25

(330)

117.	What will be output of following	g program?	
	main() { int i = 5;		,
	printf("%d%d%d%d%d%d"	i++,i,++i,i,i);	
	}	· · · · · · · · · · · · · · · · · · ·	4544
	(1) 45545 (2) 54545	(3) 44555 (4) 5	40 117
118.	In 'C' programming, if an arra	y is used as a function argun	nent, the aray is
	(1) by value		
	(2) by reference	*	
	(3) none of these as array ca	nnot be used a function argur	nent
1	(4) call by name		
119.	The programming language fe- out differently depending on	ture that allows the same operathe object is	ation to be carried
	(1) polymorphism	(2) inheritance	
	(3) allocation	(4) mangling	
120	Reserving memory during pr	ogram execution is known as	reserving it
	(1) dynamically (2) statical	lly (3) functionally (4)	powerfully
121	. The trapezoidal rule for integration polynomial of degree	ration gives exact result when	the integrand is a
	(1) 0 but not 1	(2) 1 but not 0	
	(3) 0 or 1	(4) 2	*

122.	In 'C', masking	operation can	be performed through	1					
	(1) AND bitwise operator (2) XOR bitwise operator								
	(3) OR bitwise o	perator	(4) shift operat						
123.	In databases, loc	king level is	also called as						
	(1) gramulority	(2) S lock	(3) X lock	(4) dead lock					
124.	The in order and ; c f g, respectively	pre-order traver. The post-or	ersal of a binary tree ar der traversal of the bi	redbeafcgandabde nary tree is					
	(1) debfgca	(2) edbgfca		(4) defgbca					
125.	Which of the follo	wing is not a	in scripting language?						
	(1) HTML	(2) XML	(3) Postscript	(4) Javascript					
126.	An algorithm is m Then the complex	ade up of two	independent time com gorithm is in the orde	aplexities $f(n)$ and $g(n)$.					
	(1) $f(n) \times g(n)$		(2) $\max \{f(n), g(n)\}$	g(n)					
	(3) $\min(f(n), g(n))$	n))	(4) $f(n) + g(n)$						
127.	The Protocol Data	Unit (PDU) for	the application layer in	the Internet stack is					
	(1) segment	(2) datagram	(3) message	(4) frame					
28.	The hexadecimal r	epresentation	of 6578 is						
	(1) 1AF	(2) D78	(3) D71	(4) 32F					
330)	*		27	(D					
= 50			- .	(P.T.O.)					

129.	Where does the s	wap space reside	•		
	(1) RAM	(2) Disk	(3) ROM	(4) On-chip cache	
130.	Consider a machi space. If the page	ne with 64 MB ph size is 4 KB, what	ysical memory ar	e size of the page table?	
	(1) 16 MB	(2) 8 MB	(3) 2 MB	(4) 24 MB	
131.	An Abstract Date	Type (ADT) is			
	(1) same as an a	abstract class			
	(2) a data type that cannot be instantiated				
	(3) a data type f none else	or which only the	operations defin	ed on it can be used, but	
	(4) All of the ab	ove			
132.	A common proper	rty of logic progre	mming language	s and functional languages	
	(1) both are pro	cedural language	(2) both are	based on λ-calculus	
	(3) both are dec	larative	(4) All of the	above	
133.	Which one of the representing 2-a		a valid sequence	e of elements in an array	
	(1) 1, 3, 5, 6, 8	, 9	(2) 9, 6, 3, 1	, 8, 5	
	(3) 9, 3, 6, 8, 5	, 1	(4) 9, 5, 6, 8	3, 3, 1.	
(330)			28		

134	Which of the following would indicate that the motherboard battery has failed?		
	(1) Operating system passwords are lost		
	(2) Files on the hard disk are lost and corrupted		
*	(3) Hardware settings, including virtual memory reverts to default values		
	(4) Hardware settings, including the current date and time reverts to default values		
135.	Which American computer company is called Big Blue?		
	(1) IBM	(2) Compaq Corp	
-	(3) Microsoft	(4) Tandy Svenson	
136.	Which of the following is NOT a function of the control unit?		
	(1) Read instructions	(2) Interpret instruction	
*	(3) Direct operation	(4) Execute instructions	
137.	The technology used to read pencil or pen marks on a multiple choice answer sheet is		
	(1) OCR (2) OMR	(3) POS (4) MICR	
138.	An airline reservation system is an example of		
	(1) batch processing	(2) real time processing	
	(3) interactive processing	(4) distributed processing	
(330)		(P.T.O.)	

139.	Persons at a downtown café realized that they were able to access the Internet on their laptop computers. The café could be considered as a				
	(1) metropolitan area network	(2) hotspot			
	(3) local area network	(4) satellite			
140.	Which of the following pair of items				
	(1) Homepage and website	(2) HTML and authoring tool			
	(3) ISP and web browser	(4) Internet and URL			
141.	Software piracy involves				
я	(1) the authorized copying, use or selling of software that is copyrighted				
	(2) the authorized copying, use or selling of software that is not copyrighted				
	(3) the unauthorized copying, use or selling of software that is copyrighted				
	(4) the unauthorized copying, use or	selling of software that is not copyrighted			
142.	Which of the following is not the ci	naracteristic of software?			
	(1) Software does not wear out	(2) Software is flexible			
	(3) Software is not manufactured	(4) Software is always correct			
143.	In object-oriented design of softwar	e, objects have			
	(1) attributes and names only				
	(2) operations and names only	•			
	(3) attributes, name and operation	8			
	(4) attributes only				
(330	٠ 3	0			

144,	A script is a		
	 program or sequence of instructions that is interpreted or carried out by processor directly 		
	(2) program or sequence of instruction that is interpreted or carried out by another program		
	(3) program or sequence of instruction that is interpreted or carried out by web server only		
	(4) All of the above		
145.	PHP is a widely used —— scripting language that is especially suited for web development and can be embedded into HTML.		
	(1) open source general purpose (2) proprietary general purpose		
	(3) open source special purpose (4) proprietary special purpose		
146.	A web cookie is a small piece of data		
	(1) sent from a website and stored in user's web browser while a user is browsing a website		
	(2) sent from user and stored in the server while a user is browsing a website		
	(3) sent from root server to all servers		
	(4) sent from user to root servers		
47.	An alternative of Javascript on Windows platform is		
	(1) VB Script (2) ASP.NET (3) JSP (4) HTML		

. 31

148.	When Internet data leaves your campus, it normally goes to a(n) ——— before moving toward its destination.				
	(1) Internet backbone	(2) network access point			
	(3) base station	(4) communication system			
149.	Black box testing sometimes	called			
	(1) data flow testing	(2) loop testing			
	(3) behavioural testing	(4) graph based testing			
150.	The goal of structured programming is to				
	(1) have well indented programs				
	(2) be able to infer the flow of control from the compiled code				
	(3) be able to infer the flow of	of control from the program text			

(4) avoid the use of GOTO statements

अभ्यर्थियों के लिए निर्देश

(इस पुस्तिका के प्रथम आवरण-पृष्ठ पर तथा उत्तर-पत्र के दोनों पृष्ठों पर केवल नीली या काली बाल-प्वाइंट पेन से ही लिखें)

- प्रश्न पुस्तिका मिलने के 10 मिनट के अन्दर ही देखा लें कि प्रश्नपत्र में सभी पृष्ठ मौजूद हैं और कोई प्रश्न खूटा नहीं है। पुस्तिका दोषयुक्त पाये जाने पर इसकी सूचना तत्काल कक्ष-निरीक्षक को देकर सम्पूर्ण प्रश्नपत्र की दूसरी पुस्तिका प्राप्त कर लें।
- 2. परीक्षा भवन में *लिफाफा रहित प्रवेश-पत्र के अतिरिक्त*, लिखा या सादा कोई भी खुला कागज साथ में न लायें।
- उत्तर-पत्र अलग से दिया गया है। इसे न तो मोड़ें और न ही विकृत करें। दूसरा उत्तर-पत्र नहीं दिया जायेगा, केवल उत्तर-पत्र का ही मृल्यांकन किया जायेगा।
- 4. अपना *अनुक्रमांक तथा उत्तर-पत्र का क्रमांक प्रथम आवरण-पृष्ठ पर पेन* से निर्धारित स्थान पर लिखें।
- ठ. उत्तर-पत्र के प्रथम पृष्ठ पर पेन से अपना अनुक्रमांक निर्धारित स्थान पर लिखें तथा नीचे दिये वृत्तों को गाढ़ा कर दें। यहाँ-वहाँ आवश्यक हो वहाँ प्रश्न-पुस्तिका का क्रमांक तथा सेट का नम्बर उचित स्थानों पर लिखें।
- 6. ओ० एम० आर० पत्र पर अनुक्रमांक संख्या, प्रश्न-पुस्तिका संख्या व सेट संख्या (यदि कोई हो) तथा प्रश्न-पुस्तिका पर अनुक्रमांक सं० और ओ० एम० आर० पत्र सं० की प्रविष्टियों में उपरिलेखन की अनुमति नहीं है।
- 7. उपर्युक्त प्रविष्टियों में कोई भी परिवर्तन कक्ष निरोक्षक द्वारा प्रमाणित होना चाहिये अन्यथा यह एक अनुचित साधन का प्रयोग माना जायेगा।
- 8. प्रश्न-पुस्तिका में प्रत्येक प्रश्न के चार वैकल्पिक उत्तर दिये गये हैं। प्रत्येक प्रश्न के वैकल्पिक उत्तर के लिये आपको असर-पत्र की सम्बन्धित पंक्ति के सामने दिये गये वृत्त को उत्तर-पत्र के प्रथम पृष्ठ पर दिये गये निर्देशों के अनुसार पेन से गाड़ा करना है।
- प्रत्येक प्रश्न के उत्तर के लिये केवल एक ही वृत्त को गाढ़ा करें। एक से अधिक वृत्तों को गाढ़ा करने पर अधवा एक वृत्त को अपूर्ण भरने पर वह उत्तर गलत माना जायेगा।
- 10. ध्यान दें कि एक बार स्याही द्वारा अंकित उत्तर बदला नहीं जा सकता है। यदि आप किसी प्रश्न का उत्तर नहीं देना चाहते हैं तो सम्बन्धित पंक्ति के सामने दिये गये सभी वृत्तों को खाली छोड़ दें। ऐसे प्रश्नों पर शून्य अंक दिये जायेंगे।
- 11. रफ़ कार्य के लिये प्रश्न-पुस्तिका के मुखपृष्ठ के अन्दर वाले पृष्ट तथा अंतिम पृष्ठ का प्रयोग करें।
- 12. परीक्षा के उपरान्त केवल *ओ०एम०आर० उत्तर-पत्र* परीक्षा भवन में जमा कर दें।
- 13. परीक्षा समाप्त होने से पहले परीक्षा भवन से बाहर जाने की अनुमति नहीं होगी।
- 14. यदि कोई अभ्यर्थी परीक्षा में अनुचित साधनों का प्रयोग करता है, तो वह विश्वविद्यालय द्वारा निर्धारित दंह का/की, भागी होगा/होगी।

