MARKING SCHEME SET 55/1/1 (Compartment)

Q. No.	Expected Answer / Value Points	Marks	Total Marks
	Section A		
Set1,Q1 Set2,Q4	Kinetic energy will not be affected.	1	1
Set3,Q3 Set1,Q2 Set2,Q5	Clockwise on the side of the observer.	1	
Set2,Q3 Set3,Q4 Set1,Q3	[Alternatively: The candidate who draws diagram with arrow indicating the direction correctly, may also be given full credit.] (i) Real (ii) magnified	$\frac{1}{2} + \frac{1}{2}$	1
Set1,Q5 Set2,Q1 Set3,Q5	(i) Real (ii) magnified		1
Set1,Q4 Set2,Q2 Set3,Q1	λ	1	1
	↑	aso.	
Set1,Q5	To avoid overlapping of the two signals	1	
Set2,Q3 Set3,Q2	CONTROL Student Review		1
Set1,Q6	Section B		
Set1,Q0 Set2,Q10 Set3,Q8	Derivation of Relationship between current density and resistivity 2		
	Drift velocity $v_d = \frac{eE}{m}\tau$ ($\tau = \text{relaxation time}$)	1/2	
	The current $I = neA v_d$ ($n = number of charge carriers per unit volume.) = j A$	1/2	
	$j = \frac{ne^2}{m} \tau E$	1/2	
	$j = \frac{1}{\rho}E$	1/2	2
Set1,Q7 Set2,Q6 Set3,Q9	Unpolarised light and linearly polarized light Diagram & description 1/2 + 1/2 1/2 + 1/2		
	For unpolarised light electric vector associated with light, is oscillating randomly in all directions in a plane perpendicular to the direction of propagation of light.	1	
	In linearly polarised light oscillating electric vector gets aligned along one direction perpendicular to the direction of propagation of light.	1/2	

Page 1 of 15 final draft 19/07/15 03:00 p.m.

	[Under the influence of the electric field of the incident wave, the electrons (of the scattering molecules), accelerated parallel to the double arrows, do not radiate energy towards the observer. Hence, the scattered light gets polarized.] Incident Sunlight (Unpolarised) Scattered Light (Polarised) To Observer	1/2 + 1/2	2
Set1,Q8 Set2,Q7 Set3,Q10	Reason for dispersion Dependence of focal length of the lens on colour 1		
	The refractive index of the glass of the prism is different for different wavelengths(colours). Hence, different colours get bent along different directions. Using lens maker's formula	1	
	$\frac{1}{f} = (n_{21} - 1) \left(\frac{1}{R_1} - \frac{1}{R_2}\right), n_{21} = \frac{n_2}{n_1}$ As the refractive index of the medium with respect to air (medium 1) depends on the wavelength or colour of light, focal length of the lens would change with colour.	1 8.5.	2
Set1,Q9 Set2,Q8 Set3,Q6	Calculation of the value of Plank's constant 2 According to Einstein's photoelectric equation	atform	
	$V_o = \frac{h}{e}v - \frac{\phi_o}{e}$ In the given graph:	1/2	
	Stopping potential $V_o = 1.23 \text{ V}$ Change in frequency $\Delta \nu = 3 \times 10^{14} \text{Hz}$ (Alternatively: slope of the line $=\frac{h}{a}$)	1/2	
	$\frac{h}{e} = \frac{V_o}{\Delta v} = \frac{1.23}{3 \times 10^{14}}$ $\frac{h}{e} = \frac{1.23 \times 1.6 \times 10^{-19}}{3 \times 10^{-19}}$	1/2	
		1/2	2
Set1,Q10 Set2,Q9 Set3,Q7	Completion of nuclear reaction (a) 1 Completion of nuclear reaction (b) 1		
	(a) ${}^{10}_{5}B + {}^{1}_{o}n \rightarrow {}^{4}_{2}He + {}^{7}_{3}Li$ (b) ${}^{94}_{42}MO + {}^{2}_{1}H \rightarrow {}^{95}_{43}Te + {}^{1}_{0}n$	1	
	[Note: For reaction (a) even if the candidate writes ⁷ ₃ X, award 1 mark] OR		
	0 0 1 1 0 0 1 1 0		

Page 2 of 15 final draft 19/07/15 03:00 p.m.

			1
	Explanation of conversion of mass into energy (vice versa) 1 Example 1		
	Since proton number and neutron number are conserved, the total rest mass of neutron and protons is the same on either side of the nuclear reaction. But total binding energy of nuclei on the left side need not be the same as that on the right hand side. The difference in binding energy causes a release of energy in the reaction. Example:	1	
	Or $\binom{235}{92}\text{U} + \frac{1}{0}n \rightarrow \frac{144}{56}\text{Ba} + \frac{89}{36}\text{Kr} + 3\frac{1}{0}n + \text{energy}$	1	
	(Give full credit for any other one correct example.)		2
	Section C		
Set1,Q11 Set2,Q20 Set3,Q17	(i) Figure (ii) Derivation of torque (iii) Identification of two pairs 1½ 1½ 1½ 1½+½	aso.	
	E a P C - Q Review Plant Review	1/2	
	The force on charge $+q$ is $+q\vec{E}$ and on charge $-q$ is $-q\vec{E}$. These, two parallel forces, acting in the opposite direction, constitute a couple resulting in the torque τ . Magnitude of torque= $qE \times 2a \sin \theta$	1/2	
	$= 2qa E \sin \theta$ Therefore, $\vec{\tau} = \vec{p} \times \vec{E}$ where $\vec{p} = 2q\vec{a}$ (ii) Two points of perpendicular vectors:	1/2	
	(ii) Two pairs of perpendicular vectors: (i) $\vec{\tau}$ is perpendicular to \vec{p} (ii) $\vec{\tau}$ is perpendicular to \vec{E}	1/2 1/2	3
Set1,Q12 Set2,Q21 Set3,Q18	(a) Ratio of surface charge densities (b) Identifying the constant quantity 1		
	We have, $V = \frac{q_1}{c_1} = \frac{q_2}{c_2}$	1/2	

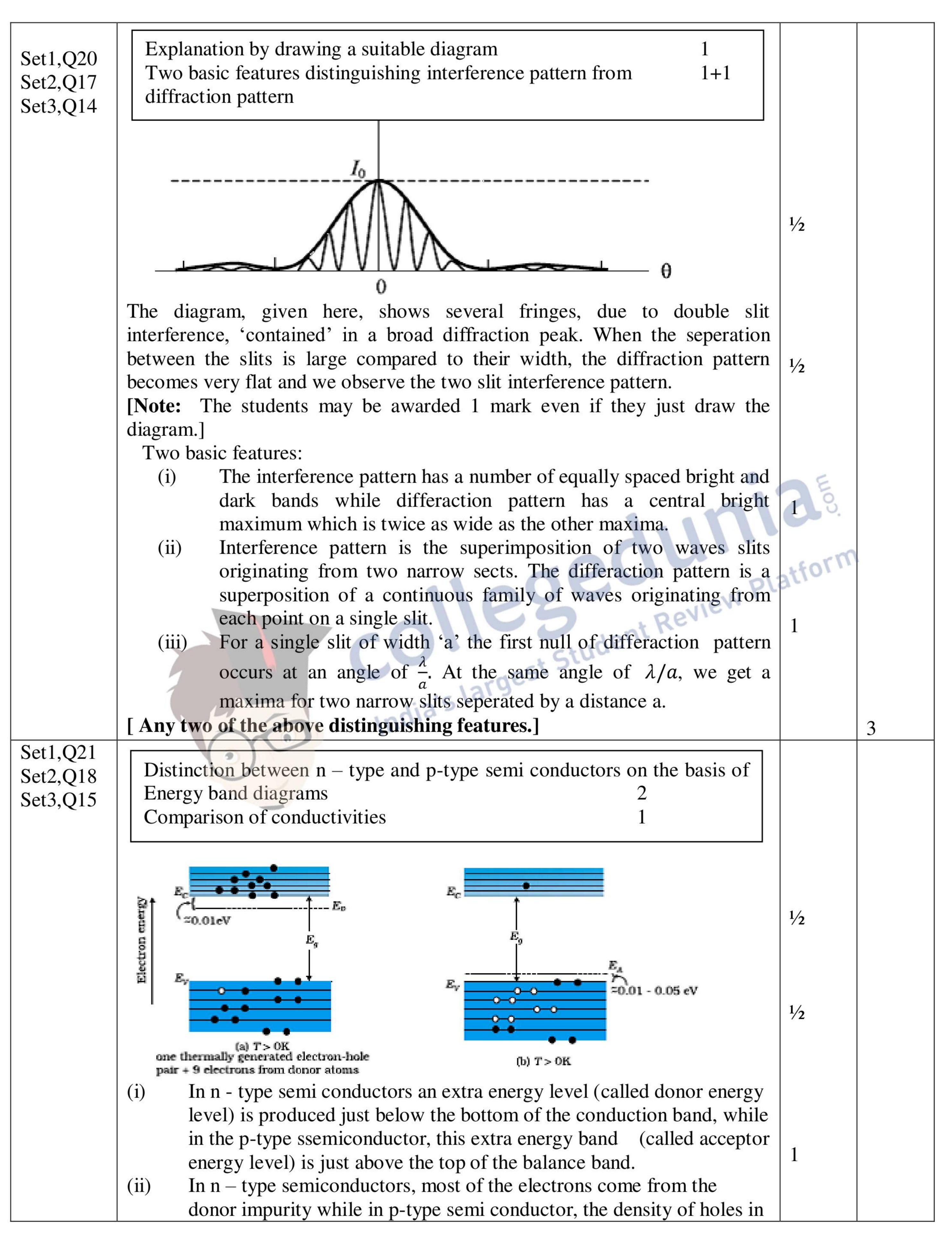
Page 3 of 15 final draft 19/07/15 03:00 p.m.

	$\frac{q_1}{4\pi\varepsilon_o R_1} = \frac{q_2}{4\pi\varepsilon_o R_1} \Longrightarrow \frac{q_1}{R_1} = \frac{q_2}{R_2}$ $\frac{\sigma_1}{\sigma_2} = \frac{q_1}{4\pi\varepsilon_o R_1^2} \times \frac{4\pi\varepsilon_o R_2^2}{q_2}$ $= \frac{q_1}{q_2} \times \frac{R_2^2}{R_1^2}$ $= \frac{R_1}{R_2} \times \frac{R_2^2}{R_1^2} = \frac{R_2}{R_1}$	1/2	
	(b) Current	1	3
Set1,Q13 Set2,Q22 Set3,Q19	Readings of ideal ammeter and ideal voltmeter in fig (a) and (b) $1\frac{1}{2} + 1\frac{1}{2}$ In circuit (a) Total emf=15 V Total Resistance = 2Ω Current $i=(15/2)A=7.5$ A Potential Difference between the terminals of 6 V battery $V=E-iR$ =[6-(7.5×1)]V =-1.5 V In circuit (b) Effective emf=(9-6) V =3V Current $i=(3/2)A=1.5$ A Potential Difference across 6V cell $V=E+iR$ =6+1.5×1 =7.5 V	1/2 1/2 1/2	
	OR	1	
	Finding current through each resistor 3		
	Total emf in the circuit = $8V - 4V = 4V$ Total resistance of the circuit = 8Ω Hence current flowing in the circuit $i = \frac{V}{R} = \frac{4}{8} A = 0.5 A$	1/2 1/2 1/2	
	$R = \frac{1}{R} = \frac{1}{8} = 0.5 \text{ A}$ Current flowing through the resistors: Current through 0.5Ω , 1.0Ω and 4.5Ω is 0.5 A	1/2	
	Current through 3.0Ω is $\frac{1}{3}$ A	1/2	
	Current through 6.0Ω is $\frac{1}{6}$ A	1/2	3
	re 4 of 15 final_draft 10/07/1	5 03:00 r	

Page 4 of 15 final draft 19/07/15 03:00 p.m.

		1	
Set1,Q14	Definition of (i) Magnetic declination and diagram $\frac{1}{2} + \frac{1}{2}$		
Set2,Q11	(ii) Angle of dip and diagram 72 1 72 1/2 + 1/2		
Set3,Q20	Direction of compass needle at the		
	(i) Poles (ii) Founter		
	(ii) Equator		
	Magnetic declination: Angle between the magnetic axis and geographical	1/2	
	axis.	/ -	
	Alternatively: Angle between magnetic meridian and geographical meridian.		
	Inde North		
	$N \setminus D$	1/2	
	\text{\gamma}{\gamma} s		
	Angle of dip: It is the angle which the magnetic needle makes with the	E	
	horizontal in the magnetic meridian.	1/2	
	Alternatively: The angle which the total magnetic field of the earth makes		
	with the surface of the earth. N_m	atform	
	PovieW		
	Z _E B _E India's largest Student Review Planting India's largest Student Review Plant		
	Z _E B _E	1/2	
	dia's larg		
	Direction of compass needle is vertical to the earth's surface at poles and is	1/2 + 1/2	
0.1015	parallel to the earth's surface at equator.		3
Set1,Q15 Set2,Q12	Derivation of magnetic energy 2		
Set3,Q21	Comparison of magnetic energy per unit volume with		
	Electrostatic energy density		
	Rate of work done		
	$\frac{dW}{dt} = \frac{1}{2} \frac{dt}{dt}$		
	$dt = \frac{ c I}{(dI)}$		
	$= \left(LI\frac{at}{dt}\right)$	1/2	
	dW = LIdI Total amount of work done		
	$\int dW = \int LIdI$		
	$W = \frac{1}{2}LI^2$	1/2	

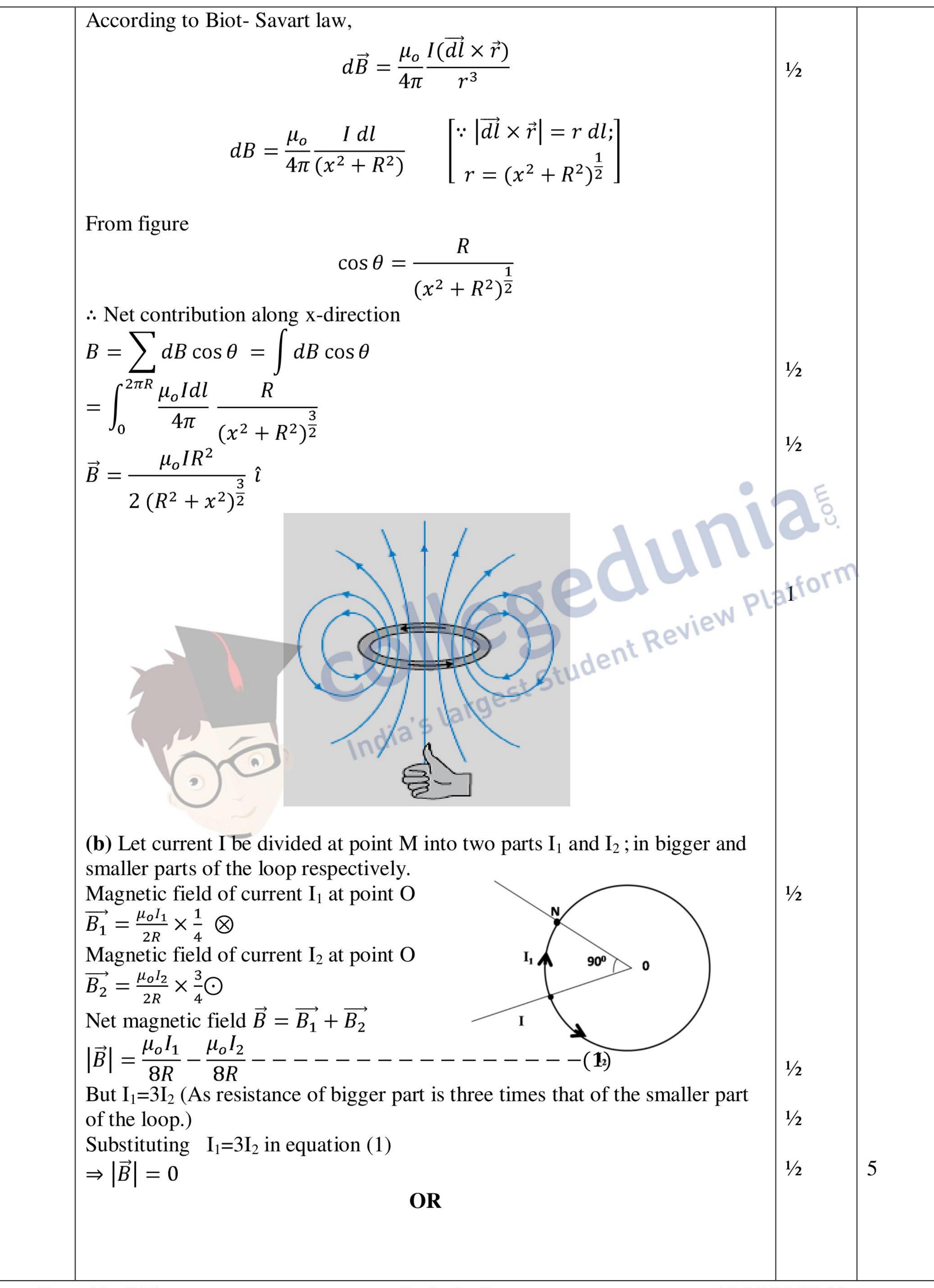
Page 5 of 15 final draft 19/07/15 03:00 p.m.


		1	
	For the solenoid: Industrance $L = u \cdot m^2 A L$, also $D = u \cdot m L$		
	Inductance, $L = \mu_0 n^2 A l$; also $B = \mu_0 n I$	1/2	
	$:W = U_B = \frac{1}{2}LI^2$	/ 2	
	$\frac{2}{1}$		
	$\left(\frac{1}{2}(\mu_o n^2 A \ell) \left(\frac{D}{\mu_o n}\right)\right)$		
	$2^{(\mu_0 n^2 + 110)} \langle \mu_0 n \rangle$ $B^2 A \ell$		
	$=\frac{2\pi i \kappa}{2\mu_o}$	1/2	
	$\Rightarrow \text{ Magnetic energy per unt volume} = \frac{B^2}{2\mu_o}$	200 204	
		1/2	
	Also, Electrostatic energy stored per unit volume = $\frac{1}{2} \varepsilon_o E^2$	1/	
		1/2	3
Set1,Q16			
Set1,Q10 Set2,Q13	(i) Calculation of rms value of current 2		
Set3,Q22	(ii) Calculation of total average power consumed.		
	(i) $X_L = \omega L = 100 \times 80 \times 10^{-3} = 8 \Omega$	1/2	
	$X_C = \frac{1}{} = \frac{1}{}$		
	$\frac{\Lambda C}{\omega} = \omega C = 100 \times 250 \times 10^{-6}$	5	
	$=40 \Omega$	C.	
	— TO 32	1/2	
	Total Impedence $(Z) = X_C - X_L$	atforn	
	$I_{rms} = \frac{240}{32} A = 7.5A$ $= 32 \Omega$ $= 32 \Omega$ $= 32 \Omega$	1/2	
	This 32		
	(ii) Average power consumed $= 0$	1/2	
	(As there is no ohmic resistance in the current.)	1	3
Cat 1 O 1 7		3	
Set1,Q17 Set2,Q14	Answers of part (i) and (ii) $1 \frac{1}{2} + 1\frac{1}{2}$		
Set2,Q14 Set3,Q11			
5505, 211	(i) It absorbs ultraviolet radiations from sun and prevents them from	1/2	
	reaching on the earth's surface causing damage to life.		
	Identification: ultraviolet radiations	1/2	
	one correct application (=sanitization, forensics)	1/2	
	(ii) Water malagulas prosent in most meterials readily absorbs	1/2	
	(ii) Water molecules present in most materials readily absorbs infra red waves. Hence, their thermal motion increases. Therefore,	1/2	
	they heat their surroundings.		
	They are produced by hot bodies and molecules.	1/2	
	Incoming visible light is absorbed by earth's surface and radiated as	.ed 55505	
	infra red radiations. These radiation are trapped by green house gases.	1/2	3

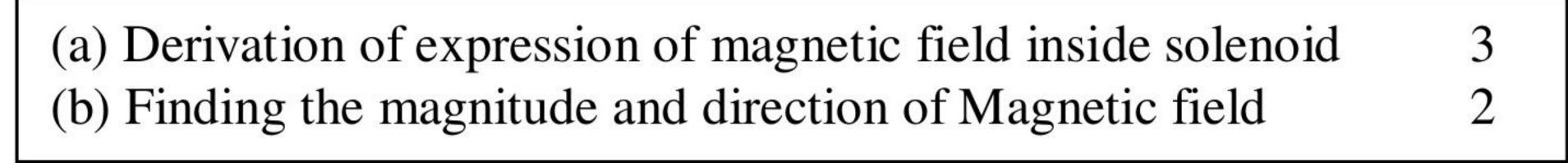
Page 6 of 15 final draft 19/07/15 03:00 p.m.

ו			
Set1,Q18	Definition of critical angle		
Set2,Q15	Definition of critical angle Drawing of Ray diagram 1		
Set3,Q12	Calculation of area of water surface.		
	Calculation of area of water surface.		
	For an incident ray, travelling from an optically denser medium to optically rarer medium, the angle of incidence, for which the angle of refraction is 90°, is called the critical angle. Alternatively: $\mu = \frac{1}{\sin i_c}$		
	$i_c = \sin^{-1}\left(\frac{1}{a}\right)$	1/2	
	(μ)	1/2	
	7 cm	A.S.	
	$\mu = \frac{1}{\sin i_c}$ $\sin i_c = \frac{3}{4}$ Review Pl	atform	
	$\cos i_c = \frac{\sqrt{7}}{\frac{4}{3}}$ $\tan i_c = \frac{3}{\sqrt{7}}$ From figure,	1/2	
	$\tan i_c = \frac{x}{7} \implies \frac{3}{7} \implies x = 3\sqrt{7} \text{cm}$	1/2	
	$Area = \pi x^2 = 63\pi \text{ cm}^2$	1/2	3
Catl O10			
Set1,Q19 Set2,Q16	Selection of lens for objective and eyepiece of		
Set2,Q10 Set3,Q13	(i) Telescope		
	(ii) Microscope 1½		
	(i) Telescope	22 82	
	L_2 : objective	1/2	
	L_3 : eyepiece	1/2	
	Reason : Light gathering power and magnifying power will be larger.	1/2	
	(ii) Microscope	1/2	
	L_3 : objective	1/2	
	L_1 : eyepiece	1/2	
	Reason: Angular magnification is more for short focal		
	length of objective and eyepiece. 19/07/1	5 03:00 r	3

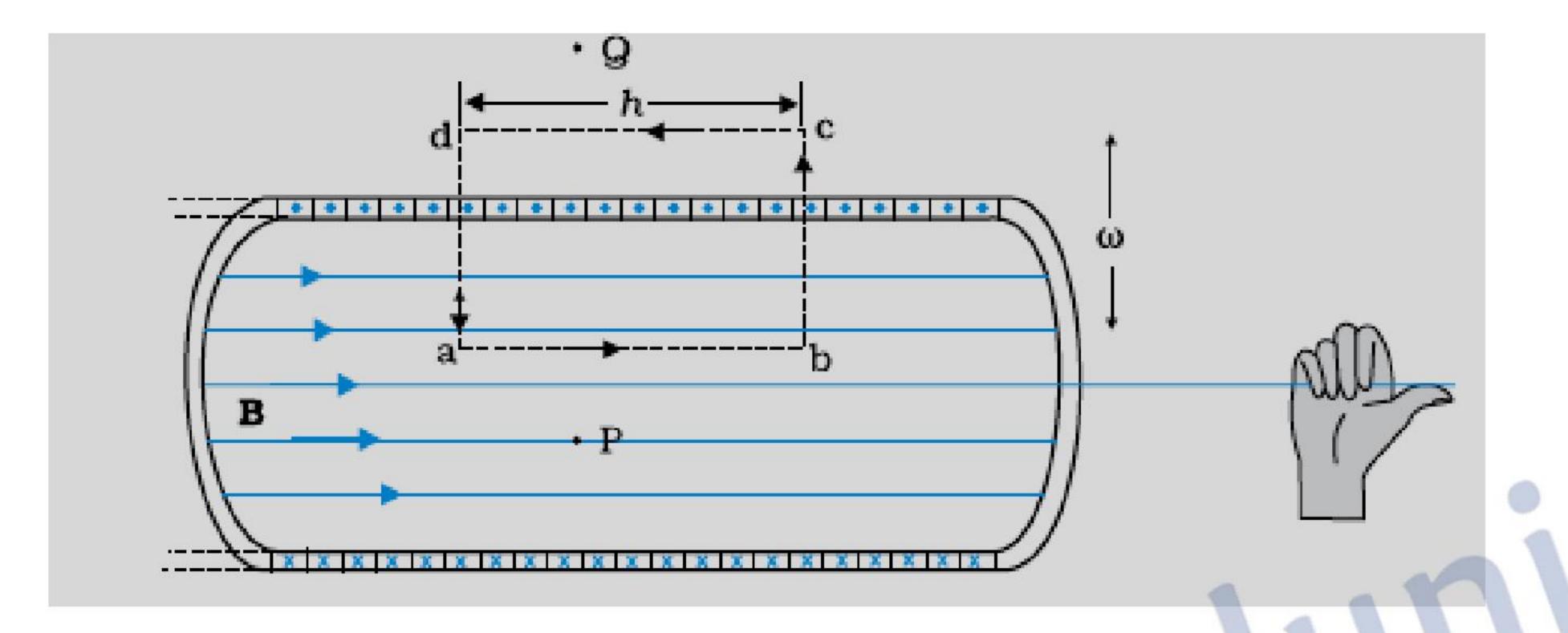
Page 7 of 15 final draft 19/07/15 03:00 p.m.



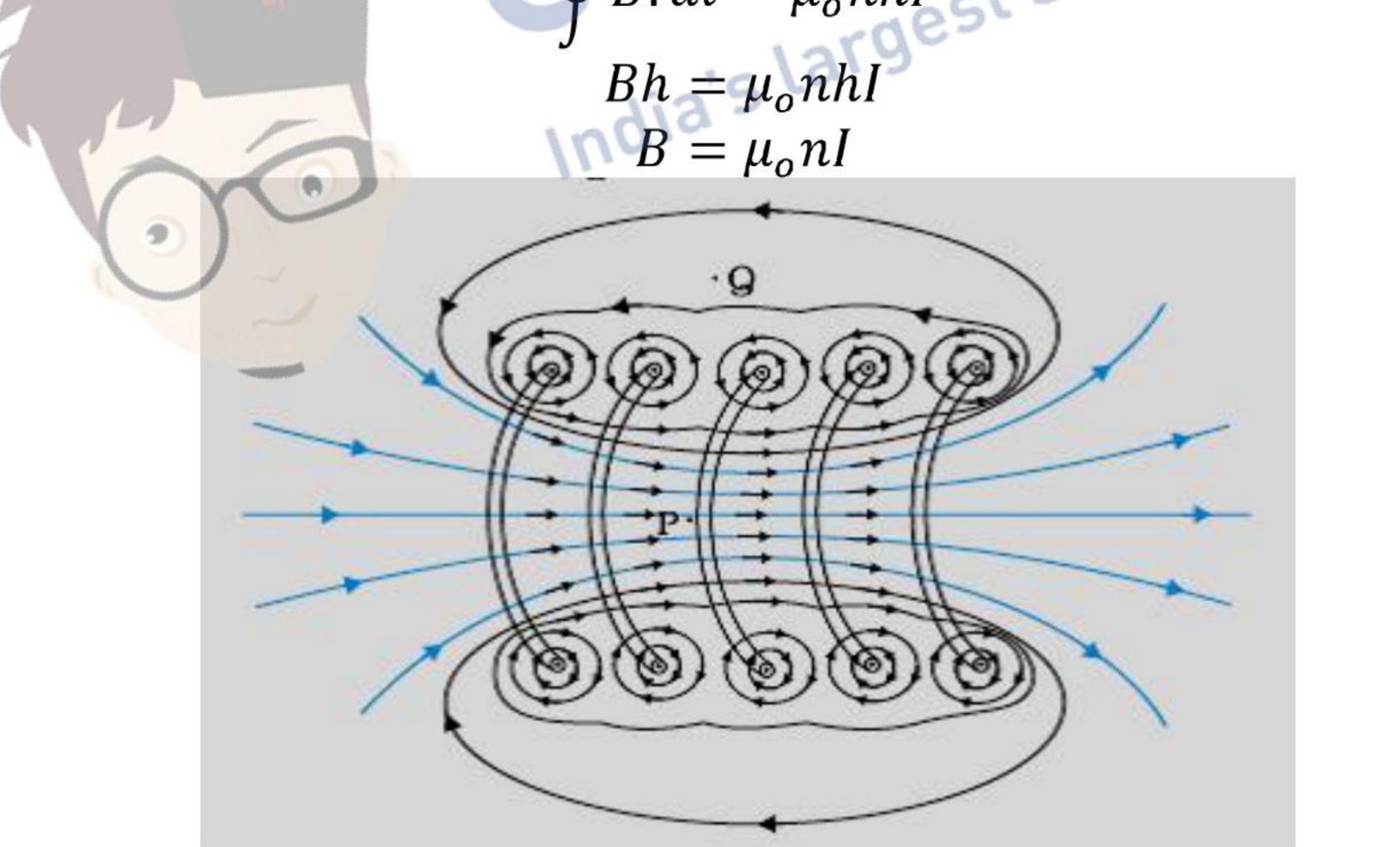
Page 8 of 15 final draft 19/07/15 03:00 p.m.


	the valence band is predominantly due to the impurity in the extrinsic semiconductors. [Any one of the above, or any one, other, correct distinguishing feature.] At absolute zero temperature conductivities of both type of semi-conductors will be zero. For equal doping, an n-type semi conductor will have more conductivity than a p-type semiconductor, at room temperature.	1/2	3
Set1,Q22 Set2,Q19 Set3,Q16	(a) Identification of X and Y Their functions 1/2 + 1/2 (b) Distinction between point to point and broadcast mode. 1 (a) X: Transmitter Y: Channel Their functions: Transmitter: To convert the message signal into suitables form for transmission through channel. Channel: It sends the signal to the reciever. (b) In point to point mode, communication takes place between a single transmitter and receiver. In broadcast mode, large number of receivers are connected to a single transmitter.	1/2	3
	Section D		
Set1,Q23 Set2,Q23 Set3,Q23	(i) Qualities / values of Rohit. 1 (ii) Advantage of CFLs/ LEDs over traditional incandescent lamps. 1 (iii) Role of earthing in reduction of electricity bills 1 (i) Co-operative attitude and scientific temperament. (or any other two correct values.) (ii) a) Low operational voltage and less power. (b) fast action and no warm up time required. (Any one) (iii) In the absence of proper earthing, the consumer can get (extra) charges for the electrical energy NOT consumed by the devices in her/his premises.	1+1 1	4
0.41.004	Section E		
Set1,Q24 Set2,Q26 Set3,Q26	(a) Derivation of the expression (b) Magnetic field lines due to the coil (c) Magnetic field at the center of the loop (a)		
	$\frac{\mathrm{d}\mathbf{B}_{1}}{R}$ $\frac{\mathrm{d}\mathbf{B}_{2}}{R}$ $\frac{\mathrm{d}\mathbf{B}_{3}}{R}$ $\frac{\mathrm{d}\mathbf{B}_{4}}{R}$ $\frac{\mathrm{d}\mathbf{B}_{5}}{R}$ $\frac{\mathrm{d}\mathbf{B}_{5}}{R}$	1/2	

Page 9 of 15 final draft 19/07/15 03:00 p.m.



Page 10 of 15 final draft 19/07/15 03:00 p.m.



Any surface carrying current can be divided into small line elements, each of length 'dl'. Considering the tangential components of the magnetic field and finding $\vec{B} \cdot \vec{dl}$, sum of all elements tends to the integral, which can be expressed in the following form. : $\oint \vec{B} \cdot \vec{dl} = \mu_o i$, This form is known as Ampers's circuital law.

Let 'n' be the number of turns per unit length. Then total number of turns in the length 'h' is nh.

Hence, total enclosed current = nhIUsing Ampere's circuital law

(b)

T

IIB

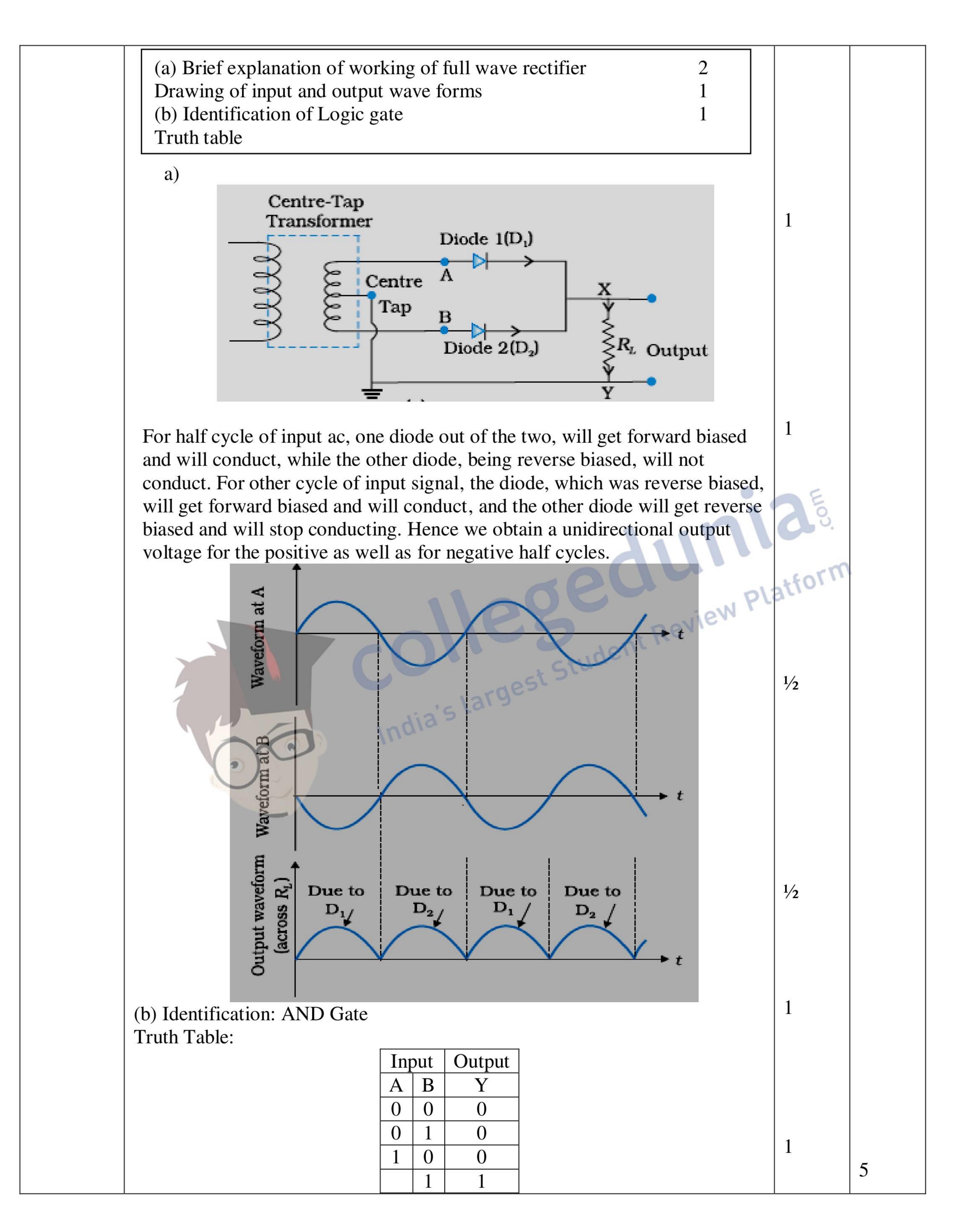
T

mg

Page 11 of 15 final draft 19/07/15 03:00 p.m.

 $\frac{1}{2}$

	As per the given figure, magnetic field must be vertically inwards, to make tension zero, (If a student shows current in opposite direction the magnetic field should be set up vertically upwards. $IlB = mg$ For tension to be zero $B = \frac{mg}{ll} = \frac{60 \times 10^{-3} \times 9.8}{5.0 \times 0.45} \text{ T}$ $= 0.26 \text{ T}$	1/2 1/2	5
Set1,Q25 Set2,Q24 Set3,Q25	(a) Schematic arrangement of Greiger-Marsden Experiment Reason Trajectory of α-particles and significance of Impact Parameter (b) Estimation of the distance of closest approach (a) Gold foil target		
	Vacuum Gold foil target about 10* m thick Most pass through α-particles Some are deviated through a large angle θ Detector (Microscope) For most of the α-particles, impact parameter is large, hence they suffer very small repulsion due to nucleus and go right through the foil.	atformation 1	
	Target nucleus	1/2	
	It gives an estimate of the size of nucleus.	1/2	
	(b) K.E of the α -particle = potential energy possesed by beam at distance of closest approach. $\frac{1}{2}mv^2 = \frac{1}{4\pi\epsilon_o} \cdot \frac{(2e)(Ze)}{r_0}$	1/2	


Page 12 of 15 final draft 19/07/15 03:00 p.m.

$7.7 \times 1.6 \times 10^{-13} = \frac{9 \times 10^9 \times 2 \times 2.56 \times 10^{-38} \times 80}{r}$	1/2	
'0		
$r_o = \frac{9 \times 10^9 \times 2 \times 2.56 \times 10^{-38} \times 80}{7.7 \times 1.6 \times 10^{-13}} \text{m}$		
$= 299 \times 10^{-16} \mathrm{m}$	1./	_
$= 29.9 \times 10^{-15} \text{m} \approx 30 \times 10^{-15} \text{m}$	1/2	3
OR		
(a) Two important limitations of Rutherford model $\frac{1}{2} + \frac{1}{2}$ Explanation of these limitations in Bohr's model $\frac{1}{2} + \frac{1}{2}$ Calculation of wavelength of the H _{\alpha} line 1 (b) Derivation of the expression for the radius of the n th orbit. 2		
(a) (i) Electron moving in a circular orbit around the nucleus would get accelerated, therefore it would spiral into the nucleus, as it looses its energy.	1/2	
(ii) It must emit a continuous spectrum.	1/2	
According to Bohr's model of hydrogen atom,	atform	
(i) Electron in an atom can revolve in certain stable orbits without the emission of radiant energy.	1/2	
(ii) Energy is released /absorbed only, when an electron jumps from one stable orbit to another stable orbit. This results in a discrete spectrum.	1/2	
$\frac{1}{\lambda} = R\left(\frac{1}{2^2} - \frac{1}{3^2}\right)$	1/2	
$\frac{1}{\lambda} = 1.1 \times 10^7 \left(\frac{1}{4} - \frac{1}{9}\right)$		
(b) We have $\frac{mv^2}{r_n} = \frac{1}{4\pi\varepsilon_o} \cdot \frac{e^2}{r_n^2}$	1/2	
$\Rightarrow r_n = \frac{e^2}{4\pi\varepsilon_0 v_n^2} (1)$	1/2	
From Bohr's Postulates:		
$m\nu_n r_n = \frac{nh}{2\pi}$		
$v_n = \frac{nh}{2\pi m r_n}$	1/2	
Substituting for v_n , in equation (1), we get $\varepsilon_0 n^2 h^2$		833
$r_n = \frac{1}{\pi me^2}$	1	5

Page 13 of 15 final draft 19/07/15 03:00 p.m.

Page 14 of 15 final draft 19/07/15 03:00 p.m.

Page 15 of 15 final draft 19/07/15 03:00 p.m.