GGSIPU chemistry 2012

1.	Which of the following	z compound	is found mo	st abundantly	in nature?

- a Fructose b Glucose
- c Starch d Cellulose

2. Gabriel synthesis is used for synthesis of

- a primary amines b secondary amines
- c aldehydes d acids

3. Glycerol is

- a 1,3 -dihydroxy propane
- b 2,3 -digydroxy propanone
- c 2,3 -dihydroxy propane
- d 1,2,3 -propane triol

4. Propanal on reaction with dilute sodium hydroxide forms

- a CH ₃CH₂CH₂CH₂CH₂CHO
- b CH ₃CH₂CHOH) CH₂CH₂CHO
- c CH 3CH2CH2CH(OH)CH2CHO
- d CH 3CH2CH(OH)CH(CH3CHO
- 5. Complete combustion of 0.858 g of compound X gives 2.63 g of CO₂ and 1.28 g of H₂O.The lowest molecular weight which X can have, is
 - a 43 g b 86 g
 - c 129 g d 172 g

6. What structural feature distinguishes glycine form other natural α -aminoacids?

- a It is optically inactive
- b it contains aromatic group
- c It is a dicarboxylic acid

			d	It has	a se	ecoi	nda	ary amine
7. 9	7. Soft drink and baby feeding bottles are generally made up of							
			а	polye	ster		b	polyurethane
			С	poly	urea		d	polystyrene
8.	The produ	uct f	orm	ed in t	he fo	ollo	wir	ng reaction is CH ₃ CH(CH ₃ CH = CH ₂ +HBr
								→ product
		а	CH	3 2CH	CH(E	BrCH	1 3	
		b	CH	3 2CHC	H₂C	H₂B	r	
		C	CH	3 2CBr	СН	₂CH	3	
		d	CH	сн(сн	l₃CH	BrC	Н	₂ CH ₃
9.	How man	y iso	mer	rs can (C ₅ H ₁	₂ ha	ve	?
			а	3	b	2		
			C	4	d	5		
10.	Which a	mino	o aci	d is ac	hiral	!?		
			а	Alani	ne		b	valine
			С	Proli	ne		d	Glycine
11. When propyne is treated with dilute sulphuric acid in presence of mercury II sulphate, the major product is								
			а	aceto	ne		ŀ	propene
			c	propa	nol		d	propanal
12.	Reductio	n of	carb	onyl c	omp	ooui	nds	with hydrazine in presence of strong base is called
			a (Canniz	aro's	s rea	act	ion
			b (Clemm	ens	en's	re	duction
			c١	Nolf f	-Kisl	hne	r re	eduction
			d I	Meerw	ein/	-Po	onc	dorf reduction
13.	Which of	the	follo	owing	is th	e m	ost	t stable form of cyclohexane?

b Planar

a Boat

- c twist boat d Chair
- 14. What kind of bonding is responsible for the secondary structure of proteins
 - a Covalent bonding
 - b Hydrogen bonding
 - c Ionic bonding
 - d van der Waal's forces
- 15. The beta and alpha glucose have different specific rotations. When either is dissolved in water, their rotation changes until the same fixed value results. This is called
 - a epimerization b racemization
 - c anomerization d mutarotation
- 16. The product of following reaction is

 2. H₂O₂/OH
 - a pentanol b 2 -pentanol
 - c pentane d 1,2 -pentan-di-ol
- 17. Streptomycin is used as:
 - a antipyretic b mordant
 - c antibiotic d a ntihistamine
- 18. Which one of the following will be most basic?
 - a Aniline b p -methoxyaniline
 - c p -nitroaniline d Benzylamine
- 19. Which of the following will exhibit highest boiling point?
 - a CH ₃CH₂OCH₂CH₃
 - b CH ₃CH₂CH₂CH₂CH₂OH
 - c CH ₃CH₂CH₂CH(CH₃OH
 - d CH ₃CH₂CCH _{3 2}OH
- 20. Geomatrical isomerism is possible in case of

a 2 -butyne b 1 -butene
c propene d 2 -butene
21. n-butyl benzene on oxidation will give
a benzoic acid b butanoic acid
c benzyl alcohol d benzaldehyde
22. The element with electronic configuration of its atom 1s ² ,2s ² ,2p ⁶ ,3s ² ,3p ⁶ ,3d ¹⁰ ,4s ¹ is
a fe b Co c Ni d Cu
23. According to Bohr's theory the energy required for the transition of H atom from n = 6 to n=8 state is
a equal to the energy required for the transition from n=5 to n=7 state
b larger than in A
c less than in A
d equal to the energy required for the transition from n=7 to n=9 state
24. The dimensions of viscosity coefficient are
a ML ⁻¹ T ⁻¹ b MLT ⁻¹
c ML ⁻¹ T d MLT
25. In the chemical reaction 250₂ +O₂ 2SO₃ increasing the total pressure leads to
a increase in amount of SO ₃
b increase in partial pressure of O 2
c increase in the partial pressure of SO 2
d change in equilibrium constent
26. A 4p-orbital has
a one node b two nodes
c three nodes d four nodes
27. At the triple point of water the number of phases in equilibrium are
a zero b one

28. The emf of a daniell cell at 298 K is E₁ Zn/ZnSO₄ 0.01 | CuSO₄ 1.0 M | Cu When the concentration of ZnSO₄ is 1.0 M and that of CuSO₄ is 0.01 M.The emf changed to E₂. Whatv is the relation between E₁ and E₂?

a E $_1$ =E $_2$ b E $_2$ =0 \neq E $_1$

c $E_1 > E_2$ d $E_1 < E_2$

29. The correct order of ionization is

a Zn<Cd< Hg

b Na<Rb<Cs

c Rb<Cs<Na

d Cs<Rb<Na

30. The structure of $CH_2 = CH_2$ is

a linear

b planar

c non -planar

d has resonance structure

31. The hybridization of xenon in XeF₂ is

a sp ³ b sp ²

c sp ³d d sp²d

32. The reagent commonly used to determine hardness of water titrimetrically is

a oxalic acid

b sodium citrate

disodium salt of EDTA

d sodium carbonate

33. 0.01 N solution of KCL and BaCL2 are prepared in water. The freezing points of KCL is found to be -2 °C. What is the freezing point of BaCL₂ solution assuming both KCL and BaCL₂ to be completely ionized?

- a -3 °C b +3 °C
- c -2 °C d -4 °C
- 34. 45 g of ethylene glycol is mixed with 600 g of water. What is the freezing point of the solution? $k_f = 1.86 \text{ K kg mol}^{-1}$
 - a 270.90 K
 - b 270.90 K
 - c 273 K
 - d 274.15 K
- 35. Which of the following used as a preservative for biological specimens
 - a Acetic acid
 - b Chloroform
 - c Formalin
 - d Formic acid
- 36. The charge required to deposit 9 g of AL from an AL3+ solution is
 - a 32166.3 C b 96500 C
 - c 3216.33 C d 9650 C
- 37. A compound formed by elements A and B crystallizes in the cubic arrangement in which A atoms are at the corners of a cube and B atoms are at the face centers. What is the formula of compound?
 - a AB₃ b B₃A
 - c A ₂B₂ d AB ₂
- 38. What is the pH value of M H₂SO₄?
 - a zero b One
 - c 2 d -0.3010
- 39. $F_2C = CF_2$ is a monomer of
 - a glyptal b Teflon
 - c orlon d buna -S

- 40. To an Ag₂CrO₄ solution over its own precipitate, CrO₄²⁻ ions are added. This results in
 - a increase in Ag ⁺concentration
 - b decrease in concentration
 - c increase in the solubility product
 - decrease in the solubility product
- 41. For a first order reaction, to obtain a positive slope, we need to plot {[A] is the concentration of reactant A}
 - a log 10[A] vs t
 - b -log_e[A] vs t
 - c log 10 [A] vs log t
 - d [A] vs t
- 42. The species A in the reaction is

$$_{92}\text{U}^{236} \rightarrow {}_{54}\text{Xe}^{144} + {}_{38}\text{Sr}^{90} + \text{A}$$

- $a _1H^1 b _0n^1$
- c $_0$ n^1 d 2 $_0$ n^1
- 43. In Brownian movement or motion, the paths of the particle are
 - a linear
- b zig -zag
- c uncertain d curved
- 44. The heats of adsorption in physisorption or physical adsorption lie in the range of in kj/mol
 - a 40 -400
- b 40 -100
- c 10 -40
- d 200 -400
- 45. The reaction $2H_2O_2 \rightarrow 2H_2O+O_2$ is
 - a a redox reaction
 - b a hydrolysis reaction
 - c a solvolysis reaction
 - d disproportionation

46.	The most abundant element in the earth's crust by weight is
	a Si b AL c O d Fe
47.	The most electropositive metals are isolated from their ores by
	a high temperature reduction with carbon
	b self -reduction
	c thermal decomposition
	d electrolysis of fused ionicsalts
48.	The reaction of slaked lime with CL ₂ gas gives
	a only CaOCL ₂
	b only CaCL ₂
	c a mixture of CaOCL 2,CaOH 2,CaCL2 and H2O
	d quick lime
49.	The nitride saltr of Ca when treated with H₂O gives
	a N ₂ b CaO
	c CaH ₂ d NH ₃
50.	Correct formula of the comp[lex formed in the brown ring test for nitrates is
	a FeSO ₄ NO
	b [FeH 2O 5NO] ²⁺
	c [FeH ₂O ₅NO] ⁺

d $[FeH _2O_5NO]^3$

