Sample Paper

Time : 90 Minutes

General Instructions

- 1. The question paper contains three parts A, B and C.
- 2. Section A consists of 20 quesions of 1 mark each. Any 16 quesitons are to be attempted.
- 3. Section B consists of 20 quersions of 1 mark each. Any 16 quesions are to be attempted.
- 4. Section C consists of 10 quesions based two Case Studies. Attempt any 8 questions.
- 5. *There is no negative marking.*

SECTION-A

Section A consists of 20 questions of	f I mark each. Any 16 quesions are to be attempted.

- 1. If three points $(0, 0) (3, \sqrt{3})$ and $(3, \lambda)$ form an equilateral triangle, then λ is equal to (a) 2 (b) -3 (c) $-\sqrt{3}$ (d) $\sqrt{3}$
- 2. If the sum of the zeros of the polynomial $f(x) = (k^2 14) x^2 2x 12$ is 1, which is one of the possible values of 'k'?

(a) $\sqrt{14}$ (b) -14 (c) 2 (d) ± 4

3. ABCD is a square. F is the mid-point of AB, BE is one-third of BC. If the area of the Δ FBE is 108 sq. cm find the length AC.

(a)
$$(\sqrt{36\sqrt{2}})$$
 cm (b) $37\sqrt{2}$ cm (c) $(36\sqrt{2})$ cm (d) $(36)^2$ cm

4. Express the number $0.\overline{3178}$ in the form of rational number.

3178	(b) 3178	3178	(1)	999
(a) <u>99</u>	(b) <u>999</u>	(c) $\frac{1000}{1000}$	(d)	3178

5. The product of two irrationals is

(a) a rational number	(b)	an irrational number
(c) either A or B	(d)	neither A nor B

6. In $\triangle ABC$, AB = AC, P and Q are points on AC and AB respectively such that BC = BP = PQ = AQ. Then, $\angle AQP$ is equal to (use $\pi = 180^{\circ}$)

(a)
$$\frac{2\pi}{7}$$
 (b) $\frac{3\pi}{7}$ (c) $\frac{4\pi}{7}$ (d) $\frac{5\pi}{7}$

7. If the circumference of a circle increases from 4π to 8π , then its area is

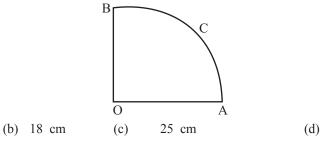
(a) halved (b) doubled (c) tripled (d) quadrupled

8. $(1 + \tan \theta + \sec \theta) (1 + \cot \theta - \csc \theta) =$

(a) 0 (b) 1 (c) 2 (d) -1

Max Marks: 40

Mathematics


36 cm

9. If the point P(p, q) is equidistant from the points A(a + b, b - a) and B(a - b, a + b), then

(a)
$$ap = by$$
 (b) $bp = ay$ (c) $ap + bq = 0$ (d) $bp + aq = 0$

10. In a classroom, one-fifth of the boys leave the class and the ratio of the remaining boys to girls is 2 : 3. If further 44 girls leave the class, then the ratio of boys to girls is 5: 2. How many more boys should leave the class so that the number of boys equals that of girls?

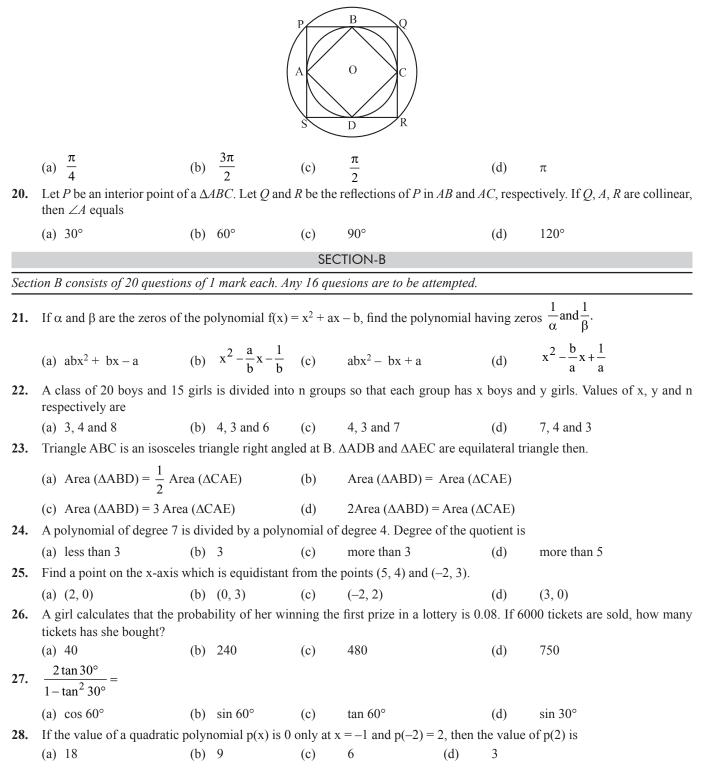
11. In the adjoining figure, OACB is a quadrant of a circle of radius 7 cm. The perimeter of the quadrant is

12. Let ABC be a triangle and M be a point on side AC closer to vertex C than A. Let N be a point on side AB such that MN is to $\frac{5}{18}$ of the area of $\triangle ABC$, then the ratio AM/MC equals (a) $\frac{5}{5}$ (b) 4parallel to BC and let P be a point on side BC such that MP is parallel to AB. If the area of the quadrilateral BNMP is equal $\frac{18}{5}$ $\frac{15}{2}$ (d) **13.** The points A(-4, -1), B(-2, -4), C(4, 0) and D(2, 3) are the vertices of a (a) Parallelogram (b) Rectangle (c) Rhombus (d) Square 14. For what value of p, the following pair of linear equations in two variables will have infinitely many solutions ? px + 3y - (p - 3) = 0, 12x + py - p = 02 (a) 6 (b) - 6 0 (d) (c) 15. If a circular grass lawn of 35m in radius has a path 7m wide running around it on the outside, then the area of the path is (a) 1450 m^2 (b) 1576 m^2 (c) 1694 m² 3368 m² (d)

- **16.** $9 \sec^2 A 9 \tan^2 A =$ (a) 1 (b) 9 (c) 8 (d) 0
- 17. Three digit numbers formed by using digits 0, 1, 2 and 5 (without repetition) are written on different slips with distinct number on each slip, and put in a bowl. One slip is drawn at random from the bowl. The probability that the slip bears a number divisible by 5 is

(a)
$$\frac{5}{9}$$
 (b) $\frac{4}{9}$ (c) $\frac{2}{3}$ (d) $\frac{1}{3}$

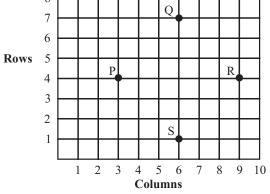
18. The value of $0.\overline{235}$ is :


SP-34

(a) 11 cm

(a)
$$\frac{233}{900}$$
 (b) $\frac{233}{990}$ (c) $\frac{235}{999}$ (d) $\frac{235}{990}$

Sample Paper-5


19. The figure below shows two concentric circles with centre *O*. *PQRS* is a square inscribed in the outer circle. It also circumscribes the inner circle, touching it at point *B*, *C*, *D* and *A*. The ratio of the perimeter of the outer circle to that of polygon *ABCD* is

SP-35

SP-	36							Mathematics
29.	If the sector of a circle of	diame	eter 10 cm subte	ends an a	ngle of 144° at the centre, t	hen the le	ength of the	arc of the sector is
	(a) 2π cm	(b)	4π cm	(c)	5π cm	(d)	6π cm	
30.				-	0. The sum of the maximum			es of $(x + y)$ is
21	(a) 6 $\sin 2A = 2 \sin A$ is true with	(b)		(c)	10	(d)	15	
31.	$\sin 2A = 2 \sin A$ is true wh (a) 0°			(c)	45°	(d)	60°	
32.	1				having six different digits. I	~ /		first three positive
	integers <i>n</i> such that $\frac{1}{n} = 0$.abca	\overline{lef} , where a, b,	c, d, e ar	nd f are different digits, ther	n the valu	e of x is	
	(a) 20	(b)	21	(c)	41	(d)	42	
33.	For an event E, $P(E) + P$	$(\overline{E}) =$	q, then					
	(a) $0 \le q < 1$	(b)	$0 < q \le 1$	(c)	0 < q < 1	(d)	None of th	nese
34.	A boat travels with a speed and then returns. The ratio				river flowing at 5 km/hr, the l in still water is	e boat trav	vels some dis	stance downstream
	(a) 8:3	(b)	3:8	(c)	8:9	(d)	9:8	
35.	Which of the following re	latior	ship is the corre	ect?				
	(a) $P(E) + P(\overline{E}) = 1$			(b)	$P(\overline{E}) - P(E) = 1$			
	(c) $P(E) = 1 + P(\overline{E})$			(d)	None of these			
36.	$\frac{1 - \tan^2 45^{\circ}}{1 + \tan^2 45^{\circ}} =$							
	(a) tan 90°	(b)	1	(c)	sin 45°	(d)	0	
37.	The sum of two numbers conditions.	is 52	28 and their H.	C.F. is 3.	3, then find the number of	pairs of	numbers sa	tisfying the above
	(a) 4	(b)	5	(c)	6	(d)	2	
38.					er hour. If the stream flows istance. His average speed			
	(a) 6 km/hr			(b)	16/3 km/hr			
39.	(c) Insufficient data to an $\frac{2 \tan 30^{\circ}}{1 + \tan^2 30^{\circ}} =$	rive a	t the answer	(d)	none of the above			
	(a) sin 60°	(b)	cos 60°	(c)	tan 60°	(d)	sin 30°	

Sa	mple Paper-5)										SP- 37
40.	The unit digit in	the expr	ession $55^{725} + 7$	$3^{5810} + 22^{853}$	is							
	(a) 0		(b) 4	(c)	5					(d)	6	
				SE	ECTION-	С						
				Case Stud	•							
	tion C consists of	-		ch. Any 8 qu	esions are	e to	be atte	mpte	ed.			
Q 4	1 Q 45 are base	ed on cas	e study-I	c								
Son	iya and Anuj are s	students o	f class X and th		ase Study		ch that	"If c	ne 70	ero of th	e polynomial	
	-8x + 2k + 5 is for				-	ı su		11 (210 01 11	e porynonnar	
	n, answer the folle											
41.	Find the sum of	zeroes.										
	(a) 3		4	(c)	12					(d)	$\frac{12}{5}$	
					5						5	
42.	For quadratic po	olynomial	$ax^2 + bx + c$, a	\neq 0, write the	e formula	to	find pro	duc	t of z	eroes.		
	(a) $\frac{b}{a}$	(b)	\underline{b}	(c)						(d)	$\frac{c}{a}$	
	a		а		а					(-)	а	
43.	If α and β be the	e zeroes o	of given polynoi	nial. Then, w	hat is the	rel	ation be	etwe	en α	and β?		
	(a) $\alpha + \beta = 4$	(b)	$\alpha\beta = 4$	(c)	$\beta = 4$	α				(d)	$\alpha^2 = 16\beta$	
44.	If α and β be the	e zeroes o	of the given poly	ynomial, then	find valu	ie o	fα.					
	(a) 1	(1-)	7		2						3	
	(a) $\frac{1}{5}$		+		5					(d)	$\frac{3}{5}$	
45.	Find the value o	of <i>k</i> . If α a	and β be the zero	oes of given j	polynomi	als.						
	(a) $\frac{56}{75}$	(b)	$-\frac{56}{75}$	(c)	$\frac{75}{56}$					(d)	$\frac{65}{75}$	
04	75 6 - Q 50 are base				30						13	
× '	~ ~ ~ ~ are base	on east	uy 11	Ca	ise Study	-II						
	classroom, 4 frier			ts P, Q, R an	d S as sh	owi	n in figu	ire.				
The	n answer the follo	owing que	estions.	10								
				9	+ $+$ $+$		$\left \right $	-				
				8		Q		-	\vdash			
				7	+++							

46.	The coordinate of P is :						
	(a) (4, 3)	(b)	(3, 4)	(c)	(6, 1)	(d)	(6, 7)
47.	The distance of PQ is :						
	(a) $3\sqrt{2}$ unit	(b)	4 unit	(c)	$2\sqrt{3}$ unit	(d)	6 unit
48.	The distance of PR is :						
	(a) 7 unit	(b)	$6\sqrt{2}$ unit	(c)	6 unit	(d)	5 unit
49.	The name of quadrilateral	is :					
	(a) Square	(b)	Rectangle	(c)	Rhombus	(d)	Parallelogram
50.	The mid point of QS is :						
	(a) (5, 4)	(b)	(7, 4)	(c)	(6, 2)	(d)	(6, 4)

SP-38