

Booklet No.:

MT - 16

Metallurgy

Duration of Test : 2 Hours		Max. Marks : 120
	Hall Ticket No.	
Name of the Candidate :		
Date of Examination :	OMR Answer Sheet No.	,:
Signature of the Candidate	Signature	e of the Invigilator

INSTRUCTIONS

- This Question Booklet consists of 120 multiple choice objective type questions to be answered in 120 minutes
- 2. Every question in this booklet has 4 choices marked (A), (B), (C) and (D) for its answer.
- 3 Each question carries one mark. There are no negative marks for wrong answers.
- This Booklet consists of 16 pages. Any discrepancy or any defect is found, the same may be informed to the Invigilator for replacement of Booklet.
- Answer all the questions on the OMR Answer Sheet using Blue/Black ball point pen only.
- Before answering the questions on the OMR Answer Sheet, please read the instructions printed on the OMR sheet carefully.
- OMR Answer Sheet should be handed over to the Invigilator before leaving the Examination Hall
- 8 Calculators, Pagers, Mobile Phones, etc., are not allowed into the Examination Hall.
- 9. No part of the Booklet should be detached under any circumstances.
- 10 The seal of the Booklet should be opened only after signal/hell is given.

MT-16-A

METALLURGY (MT)

(A) 1/3,1/5,1/3 (B) 2,4,6 (C) 3,5,7 (D) 1,3,5

1.

If 1,2 and 3 are the eigen values of A, then the eigen values of transpose of 2A+I are

2.	A co (A) (B) (C) (D)	rank of A is a rank of A is a determinant of determinant of the determ	equal to less that of A is	o the numbe in the numb	er of unkn	owns	is unique	solution if	
3.	The	particular inte	gral of	the differen	tial equat	ion (<i>I</i>) = <i>I</i>) i s = (¹ -	Fe =, where D	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
		$\frac{1}{2}(e^{x} + e^{-x})$ $\frac{1}{2}x^{2}(e^{x} + e^{-x})$				$\frac{1}{2} \times (e^{-\frac{1}{2}} + e^{-\frac{1}{2}})$			24.7
	(C)	$\frac{1}{2}x^2(e^x + e^{-x})$)		11)	$\frac{1}{2}$	r")		
4.	The	Laplace transf	orm of	' t ' e ' is					
	(A)	$\frac{2}{s'}$	(B)	$\frac{2}{(s+1)^3}$	(C)	$\frac{1}{(x-1)^*}$	(D)	A C	
5.	The	differential eq	uation	of a two dir	nensional	heat equati	iOB 18		
	(A)	$\frac{\partial^2 u}{\partial t^2} = c^2 \left(\frac{\partial^2 u}{\partial x^2} \right)^2$	$\frac{a}{a} + \frac{\partial^2 u}{\partial y^2}$	-)	(B)	$\frac{\partial u}{\partial t} = e^2 \left(\frac{\partial}{\partial t} \right)^2$	$\frac{\mu}{x^2} \pm \frac{\partial}{\partial y^2}$		
	(C)	$\frac{\partial u}{\partial t} = e^{zt} \left(\frac{\partial^{z} u}{\partial x^{2}} \right)$	$-\frac{\partial^2 u}{\partial y^2}$			$\frac{\partial u}{\partial t} = c^{\frac{1}{2}} \left(\frac{\partial u}{\partial t} \right)^{\frac{1}{2}}$			
6.	If y	$= x + y^2$ and y	(0) = 1	then y(1.1)	by Euler	's method is	s		
		LI						1.011	
7.		coefficient of ((D)	(0,2)	
8.	The	iterative schen	Dr ^a a	= 0 % r Jenr	iveraes if				
80500		-1≤ φ(x) ≤			37	$ \phi(x) \le 0$			
		φ(x) ≤1				$ \varphi(x) \le 1 $			
Set -[A				2				MT

	(A) $c = 1.5$	(B)	c = 1	(C)	c = 0	(D) c = 2
10.	The function $f(x)$	$(x) = x_1^2$	$y + (\frac{1}{y} + \frac{1}{y})$ is n	mnim	um at the point	
	(A) (1.1)		500			
11.	The magnitude of g	al ene	rgy	(B)	total boundar	
	(C) degree of mis	-orien	itation	(1)	None of these	
12.	Reducing gas used (A) CO ₂				CO+N	(D) both (B) and (C
13.	$(A) \{ \ \mathrm{CO}_2 \} + < \mathrm{C}$	>g =			-	
	C = 2 C0 = <0	2 >g +	{ CO ₂ }	1]);	None of these	2
14.	Boudouard equilibration $(A) = \{ CO_2 \} + < C$ $(C) = 2 < C > g + \{ O_2 \}$	>g =	2 (CO)		2(CO) = < C None of these	7:
15.	Nanman reversion (A) $2\{CO\} = < C$ (C) $< C > g + \{CO\}$	'>g +	[C() ₂]		$< C > g+{O_2}$ None of these	7.
16.	Oxygen potential of $\frac{CO_2}{CO}$			(C)	$\frac{H}{H_2}$	(D) O ₂
17.	At the temperature	670 :	C, the oxygen [ootenti	ial, i.e. $\frac{CO}{CO_2}$ is	
	(A) 0			(C)		(D) 3
18.	If coke burned by a	ir aloi	ne in tuyers reg	ion, it	generates one	unit of
	(A) CO ₂	(B)	H:		CO	(D) O ₂

3

Set - A

If $f(x) = x + x^2$ satisfy Lagrange Mean Value theorem in [0,2] at c. then

MT

19.	(A)	spatter detect too high weld low voltage			(B)	too low weld too high volt	-	rrent	
20.	In Hy (A)	L processes, t W ₂	he cat (B)			O_2	(D)	CH.	
21.		olid solubility				0.0020			
		0.35		0.03%		0.003%	(D)	0.0003%	
22.	Deox	idiser used in	the ste	el making i	n the fori	n ot			
	(A)	sinter	(B)	pellet	(C)	pure form	(D)	ferro alloys	
23.	The a	mount of nitre	gen d	issolved in :	ron unde	r equilibrium	cendit	ion is given by	
	(A)	Grahm's law	(B)	Charle's la	w_(C)	Boyle's law	(D)	Sievert's law	
24.	(A) (B) (C)	ing by oreing an endotherm an exothermic an endotherm None of these	ic proce proce ic or c	ess	orocess, c	lepending on t	he furi	nace	
25.	The o	xidising abilit	y of th	ne slag in A	OH is due	e to			
		SiO ₂					(D)	P_2O_h	
26.	As the	e impurities ar	e oxid	lised, the me	elting poi	nt of the iron			
	(A)	increases			(B)	decreases			
	(C)	remains consta	ınt		(D)	uncertain			
27.		s phase rule is					-		
	(A)	C + P	(B)	C – P	(C)	C + P - 2	(D)	C - P + 2	
28.		nical potential				-2 -000			
	(A)	$\left(\frac{\omega_{1}}{n_{1}}\right)_{T,V,\Pi_{2}}$	(B)	$\left(\frac{\mathrm{SU}}{\mathrm{Nn_1}}\right)_{\mathrm{S,V} \mathrm{n_1}}$	(C)	$\left(\frac{\partial H}{\partial n_1}\right)_{T,S,n_2}$	(D)	$\left(\frac{au^2}{c}\right)^{1-b}u^2$	
Set -	A				4				MT

				5			M
120000000000000000000000000000000000000	carbon-chron	ne stee	I	1000	mild steel		
	s for bearing ar	e made	e of	/D\	stainless stee		
(D)	All the above						
	the affinity of	100 CO	uticular type o	f carb	on for oxygen		
(B)	the temperatu	ire and	pressure of the	e blas			
(A)	the area of fu	el expo	sed to the blas	st.			
The	rate of burning	of col	te in blast furn	ace is	directly propo	rtiona	l to
(D)	top half of me	ould be	Σ				
ICI	coating on the						
(B)	bottom portio		-	X			
	middle portio						
	e in foundry pr						
(.4.)	5 m/s	1.031	TO HVS	(C)	5m Hbz	(D)	DU IIVS
	ferrous drawing		n 8 %		17		20 m/s
2020	0.01				21 65		
(D)	None of these						
(C)	High speed fi	ve hig.	h tandem mills				
(B)	Three high ta	ndem i	mills				
(A)	High speed fo	our hig	h tandem mills				
Cole	d rolling of cop	per allo	vys uses				
	50 m/s				40 m/s	(D)	60 m/s
The	delivery speed	of five	stand mill wil	II be			
(A)	billet	(B)	bloom	(C)	slab	(D)	plate
Proc	luct of the first	breakd	lown of the ing	ot in	rolling is		
(A)	$\alpha + \beta \longrightarrow \gamma$	(B)	$L + o \longrightarrow \beta$	(C)	$L_1 + L_2 \rightarrow \beta$	(D)	$L+\alpha+\beta{\longrightarrow} \gamma$
A pe	eritectic reactio	n is					
		SAR-V	17CAP (-u t)	15	exp (a*t)	(L)	

20.	reducing agent used in the restary rum process is											
	(A)	coke			(B)	Aluminium						
	(C)	metallurgical	coal		(1))	CO_2						
39.	The	machinability o	of the	steel is mereas	ed by							
	(A)	silicon and su	lphur									
	(B)	sulphur, grapi	hite ar	nd aluminium								
	(C)	phosphorous	and al	uminium								
	(D)	phosphorous.	lead a	and sulphur								
40.	The	refining reaction	n dur	ing steel makir	ng taka	es place at the						
	(A)	gas-metal into	erface		(B)	gas-gas inter	face					
	(C)	gas-slag inter	face		([)	slag-metal in	ter fac o	2				
41.	Coin	ing is the oper	ation (of								
	(A)	cold forging	(B)	hot forging	(C)	cold extrusio	n (D)	piercing				
13	C 1											
42.	3550 CT *11	hur in pig iron			.0	sa u sakar	Dy	ř. de				
	(A)	hard	(B)	tough	(()	malleable	(17)	ductile				
43.	The	L 1in . in		hatar is								
40.		bonding in sen ionic	(B)		(C)	covalent	.IV.	mat alla				
	1,71/	ютис	(1)	co-ordinate	(0)	COVATER	1.4.60	metanic				
44.	Blasi	furnaces use v	which	of the following	no as f	uel ?						
		Coke		Coal			(D)	Liquid oxygen				
15	Mark.	L 6.6 6 H					.07	0				
45.		ch of the follow				107						
	1,4)	Platinum stee	IID)	mvai steer	(C)	Stanness stee	21 (D)	COMIL MEET				
46.	Whi	ch of the follow	ving p	rocess is differ	rent fro	om rest of the	proces:	ses ?				
		Shot peening				Cold extrusion						
	ICI	Sand blasting			(D)	Drop forging						
47.	In sc	rew dislocation	i, the	direction of m	oveme	nt is						
	(A)	parallel to the	stres	s direction	(B)	perpendicula	r to the	stress direction				
	(C)	at 60° to the s	tress	direction	(D)	None of thes	e					
Set -[A				6				MT			

40.		е раскица таст 0.68			(C)	0.74	(D)	0.82
		*****					1-	W//-
49.	Ratio	of long unit co	ell len	gth to short un	t cell	length (c/a) for	HCP	is
	(A)	1.633	(B)	1 733	(C)	0.633	(D)	0.733
50	Dices	to a server of the	y to so	and the second second				
50.		ion coefficien			2 D 1			SATES.
		decreasing ten diffusion flux	nperai	HIC.		None of these	333	ure
	161	amesion nux			(12)	None of these		
51.	Numb	er of slip syste	em of	BCC in the sli	o plan	e1321) is		
T0550	(A) ((B)		(C)		(D)	S
52.	The dr	riving force fo	r the r	recrystallizatio	n 18			
		strain energy		an en				
	(B)	dislocation me	veme	nt				
	(C) i	internal energ	y betw	een the straine	d and	unstrained ma	tenal	
	(D)	None of the al	oove					
53.	Recry	stallization pro	oceed:	s more rapidly	in			
	(A)	metals			(B)	alloys		
	(C) :	at same rate in	both	(A) and (B)	(\mathbb{D})	None of these		
54.	For all	love recristal	lizane	n temperature	ie			
						0.7 T _m	(D)	0.9 T
	1.17	' I □	(D)	A.m	101	V. Z. I in	(LC)	S. Z. Am
55.	Polym	er with filler	is					
	(A) 1	fiber reinforce	d con	iposite				
	(B)	particle reinfo	rced c	omposite				
	(C)	dispersion – st	rengti	hened composi	te			
	(D)	concrete						
56.		ritical fiber le ials depend on		that is necessa	ry for	r effective stre	ngthe	ning of the composite
	(A)	fiber diameter						
	(B)	its ultimate str	ength					
	(C)	the interfacial	fiber	- matrix bond	streng	th		
	(D) .	All of the abo	ve					
Set -	A				7			MT

J1.	r tastic deformation operation is carried	a out at temperature	
	(A) above recrystallization temperatu	ure	
	(B) below recrystallization temperatu	ure	
	(C) 20 °C below recrystallization ten	mperature	
	(D) None of these		
58.	For coordination number of tour, and occupied by cation.	nion sits at the centre ofwhere corners a	те
	(A) Cube (B) Tetrahedron	n (C) Trangle (D) Octobedron	
59.	Presence of sulphur makes steel brittle.	e. Its effect can be reduced by adding	
	(A) copper (B) silicon	(C) magnesium (D) manganese	
60.	The corrosion rate increases with		
	(A) increasing temperature	(B) decreasing temperature	
	(C) remains constant	(D) uncertain	
61.	The stacking sequence of HCP is		
	(A) AAA BBB AAA	(B) AB ABAB	
	(C) ABC ABCABC	(D) BABABABA	
62.	The strength of grain boundary and gra	ains are equal	
		(B) above equicohesive temperature	
	(C) below equicohesive temperature	(D) at recrystallization temperature	
63.	For better fluidity, which of the following	ving is added in the blast furnace?	
	(A) Phosphorus (B) Carbon	(C) Manganese (D) Sulphur	
64.	Stress corrosion occurs due to		
	(A) tensile stress		
	(B) compression stress		
	(C) shear stress		
	(D) combined action of tensile stress	s and corrosive environment	
Set -[A	8 N	ИΤ

uz.	SICV	ert Slaw ucais	with					
	(A)	dissolution o	l'gases	in metals		(B)	dissolution of metals in gases	
	(C)	diffusion of i	ons in s	olutions		(D)	diffusion of atoms in solutions	
66.	Rein	forcing bars us	ed in R	CC slabs	are n	nade	of	
	(A)	medium carb	on steel	S		(B)	cast iron	
	(C)	alloy steels				(D)	wrought iron	
67.	Grea	ter the amount	of defo	ormation				
	(A)	lower is the r	ecrystal	llization t	emper	rature	S	
	(B)	high is the re-	- E		- 5			
	(C)	2 to 10. 0 0 to 20					depends on the material	
		None of the a					50	
68.		-			10000		timate strain is equal to	
	(A)	n	(B)	2n		r(^)	3n (D) 4n	
69.	For	a plastic materi	al, the l	Poisson's	ratio	18		
		0.33	(B)				0.42 (D) 0.28	
	38						8 3	
70.	The	dislocation of l	low mo	bility tha	t is pr	oduc	ed by a dislocation rk" is called a	1
	(A)	dislocation el	imb			(B)	glissile	
	ICI	sessile				(D)	None of these	
71	p _{nar}	lite is the comb	sinativa	of				
7.1.		ferrite and ce				(B)	ferrite and iron graphite	
		pearlite and f				(D)		
72.	Recr	ystallization te	mperat	ure can b	e low	ered l	by	
	(A)	grain refinen	ent			(B)	working at lower temperature	
	(C)	purification e	f metal			(D)	All the above	
73.	Basic	e solution is or	ie whic	h has nH	value			
0.500							greater than 7 (D) None of th	wse
Set -[A			120		9	22 SX	MT

7-4.		ienapiniy of ste								
	(A)	is the depth o	f pene	tration obtain	ed by v	ickers test.				
	(B)	is the ability t	o with	istand shocks.	ä					
	(C)	is the ability of	of stee	l resist abraso	on, wei	r and penetration	on.			
	(D)	is the proper quenching	rty wi	nich determin	ies the	depth of the	harde	ned zo	one induce	d by
75.	White	th of the follow	vina e	lement is adde	ed to so	eel to import his	th sto	enath a	nd toughne	166.
4.5.0		Magnesium						(D)	Tungsten	
76.	Whie	ch of the follow	ving n	naterial has me	ore shr	nkage allowane	u l			
		1.ead	-			Aluminium al		([))	Brass	
77.	Whie	ch one of the fo	ollowi	ng has the hig	hest sp	ecific strength o	or all :	structu	ral material	ls ?
	(A)	Magnesium a	lloys		(13)	Titamum alloy	/ S			
	(C)	Magnetic stee	el allo	y's	(1))	None of the at	ouve			
78.	Whit	e metal contain	ns							
	(A)	alloy of tin, le	ead an	d cadmium	(B)	Silver and Chr	omiu	m		
	(C)	malleable cas	t iron	and silver	(D)	88', copper a	nd 10'	% tin .i	nd rest zin	4
79.	Addi	ition of lead an	d bisn	nuth to alumin	ium re	sults in				
	(A)	Improvement	of co	rosion resista	ince					
	(B)	Improving the								
		Improving ma			20.000					
		None of these								
80.	The	alloy used for a	makin-	σ electrical re	sistance	and heating el	ement	t is		
		Invar				Nichrome			anese	
					0.000					
81.		mechanical proc treatment proc			stings c	an be improved	by v	vhich o	of the tollo	wing
	(A)	Phase anneali	ng		(B)	Full annealing	,			
	(C)	Normalizing			(D)	Tempering				
82.		ch of the follo tance to shock		elements is al	loyed s	vith high carbo	n too	l steels	to increas	e the
	(A)	Carbon	(B)	Tungsten	(C)	Nickel	(D)	Vanac	dium	
Set -[Α				10					MT

00,	riot working operation is carried out					
	(A) Recrystallization temperature					
	(B) Near plastic stage temperature					
	(C) Below recrystallization temperatur	'e				
	(D) Above recrystallization temperatur	re				
84.	The imperfection in the crystal structure	of m	etal is called			
	(A) slip (B) impurity	(C)	dislocation	(D)	cleavage	
85.	During LD blow in steel making the imp	urity	that gets remov	ed fir	st is	
	(A) Carbon (B) Phosphorous	1(`)	Manganese	([))	Silison	
86.	Weld spatter defect in welding is due to					
	(A) too high welding current					
	(B) too low welding current					
	(C) low voltage					
	(D) too high voltage					
87.	For super plasticity forming, strain rate i					
	(A) 0.1 s ⁻¹ (B) 0.01 s ⁻¹	(C)	0.001 s ⁻¹	(Ω)	01 (000)1 s	
88.	Dynamic recovery in metal occurs havin	112				
	(A) Low stacking fault energy	E Co	High stacking	fault	energy	
	(C) There is no effect		None of these			
89.	In Brinell hardness testing the minimum	thick	ness of the spec	imen	should be	
	(A) Less than 5 times the depth of imp	ressio	n.			
	(B) Less than 10 times the depth of im	press.	ion			
	(C) Equal to 10 times the depth of imp	ressio	M)			
	(D) More than 10 times the depth of in	npress	sion			
90.	Deformation band is not observed in					
	(A) BCC (B) FCC	(C)	HCP	(D)	SC	
91.	Tungsten filament used in electric bulb i	s proc	cessed by			
	(A) Extrusion	(B)	Wire drawing			
	(C) Powder metallurgy	(D)	All the above			
Set -[A	11				MT

94.	THE	oucumy or a m	aterra	и мин могк на	пасши	g			
	(A)	Increases			(B)	Decreuses			
	(C)	Remains unat	fectec	I	(D)	Unpredictable	2		
93.	Whic	ch compound in	ı steel	leads to the In	ntergra	nular fracture	7		
	(A)	Oxide	(B)	Carhide	(C)	Sulphide	(D)	Nitrides	
94.	Tran	sverse cracking	occu	rs due to the p	resenc	e nf			
	(A)	N,	(B)	S	((*)	P	iD)	St	
95.	The	elastic stress-st	rain b	ehaviour of ru	bber is				
	(A)	Non-linear			(\mathbf{B})	No fixed relat	ionshi	ip	
	(C)	Plastic			(1):	Linear			
96.	Moh	's Scale has a r	ange (of					
	(A)	1 to 12			(B)	1 to 15			
	(C)	1 to 5			(D)	1 to 10			
97.	In co	ompression, a p	rism c	of brittle mater	rial wil	l break			
	(A)	by crushing ir	ito the	ousands of pied	ces				
	(B)	by forming a	hulge						
	(C)	by shearing al	long o	blique plane					
	(D)	in direction pe	erpend	licular to appli	ication	ot load			
98.		fatigue strengt ice by a process		•	roved	by setting up	comp	ressive stresses in	the
	(A)	1.ancing	(B)	Spinning	(C)	Hemming	(D)	Shot peening	
99,	A tes	st used to deter	mine t	he endurance	limit f	or a metal is kn	own a	s	
	(A)	Hardness test	(B)	Creep test	(C)	Fatigue test	(D)	Tensile test	
Set -	A				12				МТ

100.	A test used to determine the behaviour of materials when subjected to high rates of loading, is known as							
	(A)	Hardness test (B)	Impact test	(C)	Fatigue test (D) Torsion test			
101.	. Fatigue strength of steel can be increased by							
	es							
	(B)	increasing the gran	ı s iz e					
	(C) increasing the specimen size							
(D) increasing compressive surface residual stresses								
102.	2. The tensile load-elongation curve of a metal does not describe							
	(A)	Work hardening		(B)	Yield stress			
	(C)	Anisotropy index		11):	Necking strain			
103.	Mechanical properties of the metal improve in hot working due to							
	(A)	Recovery of grains		(B)	Recrystallization			
	(C)	Grain growth		(D)	Retinement of grain size			
104.	In general, the draft on castings is of the order of							
	(A)	1 – 5 mm/m		(B)	5 – 10 mm/m			
	(C)	10 – 15 mm/m		(D)	15 – 20 mm/m			
105.								
	In shish casting process (A) molten metal is fed into the cavity in metallic mould by gravity.							
	(B)	3) metal is poured into die cavity and after a predetermined time the mould is inverted to permit a part of metal still in molten state to flow out of cavity						
	(C) cavity is filled with a pre-calculated quantity of metal and a core or plu inserted to force the metal into cavity.							
(D) metal is forced into mould under high pressure.								
106.	Radiography technique of detecting defects is based on the principle of							
	(A)	Diffraction (B)	Reflection	(C)	Interference (D) Absorption			
Set -[A			13	MT			

	(A)	surface defect	(B)	internal defect				
	(C)	crack	(1)	notch				
108.	Semi-centrifugal casting							
	(A)	A) is used to ensure purity and density at extremities of a casting.						
	(B)	is used to cast symmetrical objects.						
	(C)	is used to obtain high density and pure castings.						
	(D)	uses heavy cast iron mould to act as chill						
109.	Spru	ce in casting refers to						
	(A)	horizontal passage	(B)	runner				
	(C)	riser	(I)	vertical passage				
110.	Scales or buckles are the casting defects							
	(A)	(A) which occur due to some sand shearing from the cope.						
	(B) which take the form of internal voids or surface depression due to excessive gaseous material not able to escape.							
	(C)	which occur due to discontinu contraction.	ity in	metal casting resulting from hindered				
	(D)	caused by two streams of metals th	nat are	too cold to tuse property				
111.	Dow	Down spruce in casting is given a tapered shape for						
	(A) easy flow of molten metal							
	(B)	(B) easy withdrawal of casting						
	(C)	(C) preventing aspiration of gases through spruce						
	(D) preventing bulging of spruce during poring							
112.	Cold	working process can be applied on	the co	omponents having diameter upto				
	(A)	12 mm (B) 25 mm	(C)	49 mm (D) 50 mm				
113.	Pre-heating and post-heating is essential in welding							
	(A)	low carbon steel	(B)	medium carbon steel				
	(C)	high carbon steel	(D)	nickel				
Set -	A		14	MT				
STEEL N.			450	8-5-52				

10). Stag inclusion in casting is a

114. mor press forging

- (A) causes a steadily applied pressure instead of impact force.
- (B) is used to force the end of a heated bur into a desired shape.
- (C) is a forging operation in which (wo halves of a rotating die open and close rapidly while impacting the end of the heated tube or shell.
- (D) is a forging method for reducing the diameter of a bar and in the process making it longer.
- 115. In a solid extrusion die, purpose of knock out pin is
 - shopping the part to extrude through the hose
 - (B) ejecting the part after extrusion.
 - (C) allowing the job to have better surface finish.
 - (D) reducing the waste of material.
- 116. In drawing operation the metal flows due to
 - (A) ductility

(B) work hardening

(C) plasticity

- (1)) shearing
- 117. In arc welding, too low welding speed results in
 - (A) wastage of electrode
 - (B) excessive pilling up of weld metal
 - (C) overhauling without penetration edges
 - (D) All of the above
- 118. In welding magnesium with TIG arc welding
 - (A) direct current with reverse polarity (DCRP) is used.
 - (B) direct current with straight polarity (DCSP) is used.
 - (C) A.C. is used.
 - (D) All of the above are used.
- 119. Porosity of welded joint is due to
 - (A) high welding speed
- (B) low welding speed
- (C) wrong size of electrode
- (D) poor base metal
- 120. The width of heat affected zone is more in
 - (A) plasma are welding
- (B) electron beam welding
- (C) electro slag welding
- (D) electric resistance welding

Set - A 15 MT

SPACE FOR ROUGH WORK

