M.Sc Bioinformatics 16P/212/24 Question Book

Question Booklet No. 362

(To be filled	up by the candidate by blue/black ball-point pen)	
Roll No.		
Roll No. (Write the digits in words)	code No (493)	
Serial No. of OMR Answer Sheet		
Day and Date	(Signature of Invigil	ator)

INSTRUCTIONS TO CANDIDATES

(Use only blue/black ball-point pen in the space above and on both sides of the Answer Sheet)

- 1. Within 10 minutes of the issue of the Question Booklet, check the Question Booklet to ensure that it contains all the pages in correct sequence and that no page/question is missing. In case of faulty Question Booklet bring it to the notice of the Superintendent/Invigilators immediately to obtain a fresh Question Booklet.
- 2. Do not bring any loose paper, written or blank, inside the Examination Hall except the Admit Card without its envelope.
- 3. A separate Answer Sheet is given. It should not be folded or mutilated. A second Answer Sheet shall not be provided. Only the Answer Sheet will be evaluated.
- 4. Write your Roll Number and Serial Number of the Answer Sheet by pen in the space provided above.
- 5. On the front page of the Answer Sheet, write by pen your Roll Number in the space provided at the top, and by darkening the circles at the bottom. Also, wherever applicable, write the Question Booklet Number and the Set Number in appropriate places.
- 6. No overwriting is allowed in the entries of Roll No., Question Booklet No. and Set No. (if any) on OMR sheet and also Roll No. and OMR Sheet No. on the Question Booklet.
- 7. Any change in the aforesaid entries is to be verified by the invigilator, otherwise it will be taken as unfair means.
- 8. Each question in this Booklet is followed by four alternative answers. For each question, you are to record the correct option on the Answer Sheet by darkening the appropriate circle in the corresponding row of the Answer Sheet, by ball-point pen as mentioned in the guidelines given on the first page of the Answer Sheet.
- 9. For each question, darken only one circle on the Answer Sheet. If you darken more than one circle or darken a circle partially, the answer will be treated as incorrect.
- Note that the answer once filled in ink cannot be changed. If you do not wish to attempt a question, leave all the circles in the corresponding row blank (such question will be awarded zero mark).
- 11. For rough work, use the inner back page of the title cover and the blank page at the end of this
- 12. Deposit only the OMR Answer Sheet at the end of the Test.
- 13. You are not permitted to leave the Examination Hall until the end of the Test.
- 14. If a candidate attempts to use any form of unfair means, he/she shall be liable to such punishment as the University may determine and impose on him/her.

[उपर्युक्त निर्देश हिन्दी में अन्तिम आवरण-पृष्ठ पर दिये गए हैं]

[No. of Printed Pages: 32+2

No. of Questions: 150

Time: 2½ Hours
Full Marks: 450

Note:

- (1) This paper comprises of Two Sections, viz., Section—A and Section—B having 30 Multiple Choice Questions in Section—A, and 120 Multiple Choice Questions in Section—B comprising 40 questions of Biology, 40 questions of Chemistry and 40 questions of Physics. A candidate has to attempt all 150 questions.
- (2) Attempt as many questions as you can. Each question carries 3 marks.
 One mark will be deducted for each incorrect answer. Zero mark will be awarded for each unattempted question.
- (3) If more than one alternative answers seem to be approximate to the correct answer, choose the closest one.

Section-A

1. The slope of tangent to the curve represented by $x = t^2 + 3t - 8$ and $y = 2t^2 - 2t - 5$ at the point M(2, -1) is

(1) $\frac{7}{6}$

(2) $\frac{2}{3}$

(3) $\frac{3}{2}$

 $(4) \frac{6}{7}$

(161)

1

- 2. If $f(x) = \frac{x^2 1}{x^2 + 1}$ for every real number, then minimum value of f
 - (1) is equal to -1
 - (2) is equal to 1
 - (3) does not exist
 - (4) is not attained even though f is bounded
- 3. If $y = \log \tan \left(\frac{\pi}{4} + \frac{\pi}{2}\right)$, then $\frac{dy}{dx}$ is
 - (1) 0
- $(2) \cos x$
- (3) sec x
- $(4) \sec x$
- 4. The slope of tangent is zero at (x_1, y_1) then the equation of tangent at (x_1, y_1) is
 - (1) $y_1 = mx_1 + c$ (2) $y_1 = mx_1$ (3) $y y_1$ (4) y = 0

- 5. The value of $\int \frac{dx}{x + \sqrt{x}}$ is
 - (1) $\log (+\sqrt{x})$

(2) $\frac{1}{2} \log (1 + \sqrt{x})$

(3) $\log(x + \sqrt{x})$

- (4) $2 \log (1 + \sqrt{x})$
- A coin is tossed three times, what is the probability that it lands on heads exactly one time?
 - (1) 0.125
- (2) 0.250
- (3) 0.375
- (4) 0.333
- The area included between the parabolas $y^2 = 4ax$ and $x^2 = 4ay$ is
 - (1) $16\frac{a^3}{3}$ (2) $\frac{9}{2}a^2$ (3) $14\frac{a^3}{2}$ (4) $\frac{a^2}{4}$

8.	The difference $f(x) = \cos x + \frac{1}{2}$	between the $\cos 2x - \frac{1}{3}\cos x$	e greatest	and lea	st values of t	he function
	(1) $\frac{2}{3}$	(2) $\frac{8}{7}$	(3) 9/4	(4) $\frac{3}{8}$	
9.	The value of					
	* 8	li:	$ \frac{\sin \alpha - \cos \alpha}{\alpha + \frac{\pi}{4}} = \frac{\sin \alpha - \cos \alpha}{\alpha + \frac{\pi}{4}} $	osα		
			4 α – 4	Ī		
	is					
	(1) √2	(2) 2	. (3) 1	(4) 0	* :
10.	If \vec{a} , \vec{b} , \vec{c} are three $\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}$	e vectors, suc is equal to	ch that \vec{a} +	$\overrightarrow{b} + \overrightarrow{c} = \overrightarrow{0},$	$ \overrightarrow{a} = 1, \overrightarrow{b} = 2, $	\vec{c} = 3, then
	(1) 0	(2) -7	(3)	7	(4) 1	
11.	If the difference mean and media	between mea an will be	en and mo	de is 63, 1	then the differen	ice between
	(1) 21	(2) 31.5		48.5	(4) 189	
12.	The mean of 100 the resulting me	observations an will be	is 40. If on	e of observ	ations 50 is repl	aced by 60,
	(1) 50	(2) 30		60	(4) 40·10	
13.	The probability to	hat a leap ye	ar selected	at randor	n contains 53 o	[2]
	(1) $\frac{1}{7}$	(2) $\frac{7}{366}$	(3)	26 183	(4) ²	undays is
(161)			3		7	
			J			(P.T.O.)
			2			

(161)

14.	The empirical relati	tionship among me	ean, median and m	node is
	(1) Mode = 3 Medi	ian - 2 Mean	(2) $Mean = 3 Mod$	le - 2 Median
	(3) Median = 3 Mo	ode – 2 Mean	(4) Mean = 2 Mod	le – 3 Mean
15.	The mode of the inc	dividual series 8, 9,	11, 12, 12, 10, 15,	16, 12, 17, 9, 12, 10 is
	(1) 10	(2) 12	(3) 16	(4) 17
16.	If 50% of the observati		are less than 60,	then the median of the
	(1) 30	(2) 45	(3) 60	(4) 120
17.	The product 32 (3	$(32)^{\frac{1}{6}} (32)^{\frac{1}{36}} \cdots \text{ up to}$	infinity is equal to	0
	(1) 0	(2) 32	(3) 64	(4) ∞
18.	A sample consist deviation?	ts of four observa	ations {1, 3, 5, 7}.	What is the standard
	(1) 2	(2) 0.258	(3) 6	(4) 6.67
19.	The sum of all tv	vo-digit odd natura	al numbers is	
	(1) 2475	(2) 2530	(3) 4905	(4) 5049
20.	The sum of serie	s		
		$1 + \frac{1}{5} + \frac{1.3}{5.10} +$	$\frac{1.3.5}{5.10.15} + \cdots$	
	e:	and the same of	water to the same of the same	
	is		5	(4) 3
	(1) $\sqrt{3}$	(2) √5	(3) $\sqrt{\frac{5}{3}}$	(4) $\sqrt{\frac{3}{5}}$
			4	

21.	A CPU generally	contains		
	(1) registers and	ALU		
	(2) a control and	d timing section	v i	
	(3) instruction d	ecoding circuit		
	(4) All of the ab	ove		
22.	When the decima binary digits nee	d number 9 is condeded is	verted to the binar	y number, the number of
	(1) 3	(2) 4	(3) 5	(4) 6
23.	Which memory is	s volatile?		
	(1) RAM	(2) ROM	(3) EPROM	(4) PROM
24.	The heart of any	computer is the		
	(1) CPU	(2) memory	(3) I/O unit	(4) disks
2 5.	Which of the foll	owing computers	is the least powers	ful?
	(1) Minicomputer		(2) Microcompu	
	(3) Mainframe co	mputer	(4) Supercompu	
26.	World Wide Web	is		
	(1) another name	for Internet		
	(2) world wide co	nnection for comp	outers	
	(3) a collection of Internet	linked information	n residing on com	outers connected by the
	(4) a collection of	world wide inform	nation	by the
161)		5		
				(P.T.O)

27.	All of the following are examples of input devices, except a						
	(1) scanner (2) mouse	(3)	keyboard (4) printer				
28.	The term Gigabyte refers to						
	(1) 1024 bytes	(2)	1024 kilobytes				
	(3) 1024 megabytes	(4)	1024 gigabytes				
29.	Verification of a login name and pas	swo	rd is known as				
	(1) authentication	(2)	accessibility				
	(3) configuration	(4)	logging in				
30.	Two broad categories of software are	9					
	(1) word processing and spreadshee	t					
	(2) transaction and application						
	(3) Windows and Mac OS						

(4) system and application

Section—B

BIOLOGY

31.	The principal eukaryotic DNA replicating enzyme is						
	(1) DNA polymerase α	(2) DNA polymerase β					
	(3) DNA polymerase γ	(4) DNA polymerase δ					
		8					
32 .	Corticotropin is produced by						
	(1) adrenal cortex	(2) adrenal medulla					
	(3) uterus	(4) pituitary gland					
33.	Which one of the following organelle	es is essential for life on earth?					
	(1) Mitochondria	(2) Golgi bodies					
	(3) Ribosome	(4) Plastids					
34.	The largest living invertebrate is	*					
	(1) octopus (2) loligo	(3) starfish (4) mussel					
35.	Split genes were indentity						
00.	Split genes were independently disco	overed by					
	(1) Watson and Crick	(2) Roberts and Sharp					
	(3) Ochoa and Nirenberg	(4) Balimore and Temmin					
(161)	7						
			(P,T,O)				

36.	Which amino acid is twenty first am	ino	acid found in any protein?
	(1) Tryptophan	(2)	Methionine
	(3) Solenocysteine	(4)	Proline
37.	The first amino acid discovered is		×
	(1) asparagine (2) cysteine	(3)	valine (4) glycine
38.	Which one of the following RNA has	cap	at its 5' end?
	(1) Prokaryotic m-RNA	(2)	Eukaryotic m-RNA
	(3) Prokaryotic t-RNA	(4)	Eukaryotic t-RNA
39.	In humans malaria is caused by bit	ing	of
	(1) Culex male	(2)	Culex female
	(3) Anopheles male	(4)	Anopheles female
40.	Which one of the following arteries	carr	ies deoxygenated blood?
	(1) Aorta	(2)	Pulmonary artery
	(3) Lingual artery	(4)	Carotid artery
	Total number of spinal nerves in h	uma	ns is
41.	01	(3)	10 pairs (4) 43 pairs
	(1) 12 pairs . (2) 31 pairs	,U	

42.	2. The sequence (according to merit) of h	The sequence (according to merit) of human five vital organs is						
	(1) heart, brain, lungs, kidney, liver							
	(2) brain, heart, lungs, liver, kidney	(2) brain, heart, lungs, liver, kidney						
	(3) heart, kidney, liver, brain, lungs							
	(4) brain, lungs, liver, heart, lungs							
43.	Which one of the following hormones is human?	required for every minute survival of						
	(1) Growth hormone (2)	Corticosteroid						
	(3) Antidiuretic hormone (4)	Corticotropin						
44.	. ATP was first discovered by							
	(1) H. Krebs (2)	Karl Lohmann						
	(3) Mitchell	Lehninger						
45.	Biosynthesis of glucose from non-carbol	lydrate sources is sell to						
	[]] glycogenesis	glycogenolysis						
	(3) glycolysis	None of these						
46.	Deficiency of vitamin B ₁₂ causes							
	(1) beri-beri (2)	rickets						
	(3) pernicious anaemia	scurvy						
(161)	9							

47.	The largest energy	reserve (in terms	of kilocalories) in	humans is
	(1) blood glucose		(2) liver glycogen	*
	(3) muscle glycoge	en	(4) adipose trigly	cerol
48.	Bacteriophage is a	a/an (2) bacterium	(3) protozoon	(4) insect
49.	The most heterog			
	(1) t-RNA	(2) m-RNA	(3) r-RNA	(4) s-RNA
50.	Which one of the	following is an in	sect?	
	(1) Silverfish	(2) dogfish	(3) Starfish	(4) devilfish
51.	Which one of the	following is a ph		
	(1) Blue green		(2) Rhodospirillu	ım
	(3) Azospirillum		(4) Methanogen	
52.	Which one of the	e following microb	es is used by astro	
	(1) Yeast	(2) Bacteria	(3) Chlorella	(4) Diatoms
53	. Which one of th	e following is know	wn as living fossil?	
50.	(1) Taxus		(2) Cephalotaxu	ıs
	(3) Pinus		(4) Gingo	
	(3) 111143			
(16	1)		10	

54.	Which one of the	following is know	wn as false fruit?	
	(1) Litchi	(2) Apple	(3) Castor (4) Cashew nut	
55.	Sugarcane is			
	(1) C ₂ plant	(2) C ₃ plant	(3) C ₄ plant (4) None of thes	e
56 .	In C ₃ plants, the	first stable produ	uct is	
	(1) PGA	(2) DHAP	(3) RUDP (4) PEPA	
57.	Sucrose is		*	
	(1) monosacchario	de	(2) oligosaccharide	
	(3) polysaccharide		(4) disaccharide	
58.	Late blight of pota	ato is caused by		
	(1) Pythium debar	yanum	(2) Phytophthora infestens	
	(3) Peronospora destruction		(4) Synchytrium endobioticum	
5 9 .	Which system of o	classification is pr	proposed by Benthum and Hooker?	
	(1) Natural	(2) Artificial	(3) Numerical (4) Phylogenetic	
60.	Raphano brassica	is a classical exan		
	(1) autopolyploidy		(2) allopolyploidy	
	(3) segmental poly	ploidy	(4) aneuploidy	
(161)		11	1	
()			1	

collegedunia India's largest Student Review Platform

61.	Which one of the	following is bever	age?			
	(1) Flax	(2) Cotton	(3)	Tea	(4)	Coir
62.	Orientation of Z I	ONA is				di di
	(1) left handed	*	(2)	right handed		
	(3) both left and	right handed	(4)	c DNA		
63.	In artificial seeds,	, the somatic emb	ryoid	s are encapsul	ated	by
	(1) wax		(2)	fibre paper		
	(3) cellophane pa	per	(4)	Ca-algenate		
64.	NBRI is situated	at	14		8	
	(1) Howrah	(2) Darjeeling	(3)	Lucknow	(4)	Delhi
65.	Staminal tube is	formed in the flow	ver o	f		
	(1) China rose	(2) Datura	(3)	Marigold	(4)	Gladiolus
66.	Ribosome is the	site for the synthe	sis (of		
	(1) carbohydrates	5	(2)	proteins		
	(3) steroids		(4)) lipids		
67.	The drug chlorar	nphenicol blocks				
•	(1) cell-wall synt	thesis	(2) translation-termination			nation
	(3) polypeptide (chain elongation	(4	polypeptide o	hair	n initiation
(161			12			
(161	·J			-		

68.	which brings about stomatal closure under water stress?						
	(1) Abscisis acid		(2)	Ethylene			
	(3) Ferulic acid		(4)	Coumarin			
69.	Male gametophyte (1) anther	in angiosperm is		pollen sac	. (4)		
70.	Which of these eco	(*)		***		pollen luction per sq	uare
	(1) A salt marsh			An open ocean			
	(3) A coral reef			A grassland	-		

CHEMISTRY

71.	Which	of	the	following	will	act	as	an	acid	in	liquid	SO	,?
-----	-------	----	-----	-----------	------	-----	----	----	------	----	--------	----	----

(1) Na_2SO_3

(2) HC1

(3) SOCl₂

(4) K_2SO_3

72. Which of the following is lux-flood base?

(1) NaOH

(2) SiO₂

(3) CO₂

(4) Na₂O

73. Relative order of Lewis acid strength is

(1) $BF_3 > BCl_3 > BBr_3 > BI_3$

(2) $BF_3 < BCl_3 < BBr_3 < Bl_3$

(3) $BCl_3 > BF_3 > BBr_3 > BI_3$

(4) $BCl_3 < BF_3 < BBr_3 < BI_3$

74. The metallic character of beryllium is due to

(1) partially filled 2s band

(2) completely filled 2s band

(3) overlap of 2s and 2p bands

(4) empty 2s band

75. Which of the following has the highest lattice energy?

(1) NaF

(2) KF

(3) CsF

(4) RbF

76. Which oxide of chlorine is a mixed anhydride?

(1) Cl₂O

(2) ClO₂

(3) Cl₂O₃

(4) Cl₂O₇

77. The chemical formula of hypophosphoric acid is

(1) H₃PO₄

(2) H DO

(°) H₄P₂O₅

(4) H₄P₂O₆

14

(161)

(1) O ₂ (2) O ₂ (3) O ₂ (4) O ₂ ²⁻ 79. Which of the following is an explosive? (1) PCl ₃ (2) SbCl ₃ (3) NCl ₃ (4) BiCl ₃ 80. S—S bond is present in (1) S ₂ O ₆ ²⁻ (2) S ₂ O ₇ ²⁻ (3) S ₂ O ₅ ²⁻ (4) S ₂ O ₈ ²⁻ 81. The formula of pyrosilicate ion is (1) SiO ₄ ⁴⁻ (2) Si ₂ O ₇ ⁶⁻ (3) Si ₃ O ₉ ⁶⁻ (4) Si ₆ O ₁₈ ¹²⁻ 82. The crystal field stabilization energy (CFSE) value for Ti(H ₂ O ₎₆ ³⁺ that has an absorption maximum at 492 nm is (1) 20325 cm ⁻¹ (2) 12195 cm ⁻¹ (3) 10162 cm ⁻¹ (4) 8130 cm ⁻¹ 83. The reaction between NH ₄ Br and Na metal in liquid ammonia (solvent) results in the products (1) NaBr, HBr (2) NaBr, H ₂ (3) H ₂ , HBr (4) NaBr ₃ , H ₂ 84. Among the following pairs of ions/molecules, the one having the similar shape is (1) CO ₂ and H ₂ O (2) BF ₃ and H ₃ C ⁺ (3) CCl ₄ and PtCl ₄ (4) NH _a and BF ₃ (161)	78.	. Which of the following	Which of the following species possesses the highest bond order?							
(1) PCl ₃ (2) SbCl ₃ (3) NCl ₃ (4) BiCl ₃ 80. S—S bond is present in (1) S ₂ O ₆ ²⁻ (2) S ₂ O ₇ ²⁻ (3) S ₂ O ₅ ²⁻ (4) S ₂ O ₈ ²⁻ 81. The formula of pyrosilicate ion is (1) SiO ₄ ⁴⁻ (2) Si ₂ O ₇ ⁶⁻ (3) Si ₃ O ₉ ⁶⁻ (4) Si ₆ O ₁₈ ¹² 82. The crystal field stabilization energy (CFSE) value for Ti(H ₂ O) ₆ ³⁺ that has an absorption maximum at 492 nm is (1) 20325 cm ⁻¹ (2) 12195 cm ⁻¹ (3) 10162 cm ⁻¹ (4) 8130 cm ⁻¹ 83. The reaction between NH ₄ Br and Na metal in liquid ammonia (solvent) results in the products (1) NaBr, HBr (2) NaBr, H ₂ (3) H ₂ , HBr (4) NaBr ₃ , H ₂ 84. Among the following pairs of ions/molecules, the one having the similar shape is (1) CO ₂ and H ₂ O (2) BF ₃ and H ₃ C ⁺ (3) CCl ₄ and PtCl ₄ (4) NH ₂ and BF ₃										
80. S—S bond is present in (1) S ₂ O ₆ ²⁻ (2) S ₂ O ₇ ²⁻ (3) S ₂ O ₅ ²⁻ (4) S ₂ O ₈ ²⁻ 81. The formula of pyrosilicate ion is (1) SiO ₄ ⁴⁻ (2) Si ₂ O ₇ ⁶⁻ (3) Si ₃ O ₉ ⁶⁻ (4) Si ₆ O ₁₈ ¹²⁻ 82. The crystal field stabilization energy (CFSE) value for [Ti(H ₂ O) ₆] ³⁺ that has an absorption maximum at 492 nm is (1) 20325 cm ⁻¹ (2) 12195 cm ⁻¹ (3) 10162 cm ⁻¹ (4) 8130 cm ⁻¹ 83. The reaction between NH ₄ Br and Na metal in liquid ammonia (solvent) results in the products (1) NaBr, HBr (2) NaBr, H ₂ (3) H ₂ , HBr (4) NaBr ₃ , H ₂ 84. Among the following pairs of ions/molecules, the one having the similar shape is (1) CO ₂ and H ₂ O (2) BF ₃ and H ₃ C ⁺ (3) CCl ₄ and PtCl ₄ (4) NH ₂ and BF ₃	79.	Which of the foll	lowing is an explo	sive?						
(1) S ₂ O ₆ ²⁻ (2) S ₂ O ₇ ²⁻ (3) S ₂ O ₅ ²⁻ (4) S ₂ O ₈ ²⁻ 81. The formula of pyrosilicate ion is (1) SiO ₄ ⁴⁻ (2) Si ₂ O ₇ ⁶⁻ (3) Si ₃ O ₉ ⁶⁻ (4) Si ₆ O ₁₈ ¹²⁻ 82. The crystal field stabilization energy (CFSE) value for [Ti(H ₂ O) ₆] ³⁺ that has an absorption maximum at 492 nm is (1) 20325 cm ⁻¹ (2) 12195 cm ⁻¹ (3) 10162 cm ⁻¹ (4) 8130 cm ⁻¹ 83. The reaction between NH ₄ Br and Na metal in liquid ammonia (solvent) results in the products (1) NaBr, HBr (2) NaBr, H ₂ (3) H ₂ , HBr (4) NaBr ₃ , H ₂ 84. Among the following pairs of ions/molecules, the one having the similar shape is (1) CO ₂ and H ₂ O (2) BF ₃ and H ₃ C ⁺ (3) CCl ₄ and PtCl ₄ (4) NH ₂ and BF ₃		(1) PCl ₃	(2) SbCl ₃	(3) NCl ₃	(4) BiCl ₃					
 81. The formula of pyrosilicate ion is (1) SiO₄⁴⁻ (2) Si₂O₇⁶⁻ (3) Si₃O₉⁶⁻ (4) Si₆O₁₈¹² 82. The crystal field stabilization energy (CFSE) value for [Ti(H₂O)₆]³⁺ that has an absorption maximum at 492 nm is (1) 20325 cm⁻¹ (2) 12195 cm⁻¹ (3) 10162 cm⁻¹ (4) 8130 cm⁻¹ 83. The reaction between NH₄Br and Na metal in liquid ammonia (solvent) results in the products (1) NaBr, HBr (2) NaBr, H₂ (3) H₂, HBr (4) NaBr₃, H₂ 84. Among the following pairs of ions/molecules, the one having the similar shape is (1) CO₂ and H₂O (2) BF₃ and H₃C⁺ (3) CCl₄ and PtCl₄ (4) NH₂ and BF₃ (161) 15 	80.	S—S bond is pre	sent in							
(1) SiO ₄ ⁴⁻ (2) Si ₂ O ₇ ⁶⁻ (3) Si ₃ O ₉ ⁶⁻ (4) Si ₆ O ₁₈ ¹² 82. The crystal field stabilization energy (CFSE) value for [Ti(H ₂ O) ₆] ³⁺ that has an absorption maximum at 492 nm is (1) 20325 cm ⁻¹ (2) 12195 cm ⁻¹ (3) 10162 cm ⁻¹ (4) 8130 cm ⁻¹ 83. The reaction between NH ₄ Br and Na metal in liquid ammonia (solvent) results in the products (1) NaBr, HBr (2) NaBr, H ₂ (3) H ₂ , HBr (4) NaBr ₃ , H ₂ 84. Among the following pairs of ions/molecules, the one having the similar shape is (1) CO ₂ and H ₂ O (2) BF ₃ and H ₃ C ⁺ (3) CCl ₄ and PtCl ₄ (4) NH ₂ and BF ₃		(1) S ₂ O ₆ ²⁻	(2) S ₂ O ₇ ²⁻	(3) S ₂ O ₅ ²⁻	(4) S ₂ O ₈ ²⁻					
82. The crystal field stabilization energy (CFSE) value for [Ti(H ₂ O) ₆] ³⁺ that has an absorption maximum at 492 nm is (1) 20325 cm ⁻¹ (2) 12195 cm ⁻¹ (3) 10162 cm ⁻¹ (4) 8130 cm ⁻¹ 83. The reaction between NH ₄ Br and Na metal in liquid ammonia (solvent) results in the products (1) NaBr, HBr (2) NaBr, H ₂ (3) H ₂ , HBr (4) NaBr ₃ , H ₂ 84. Among the following pairs of ions/molecules, the one having the similar shape is (1) CO ₂ and H ₂ O (2) BF ₃ and H ₃ C ⁺ (3) CCl ₄ and PtCl ₄ (4) NH ₂ and BF ₃	81.	The formula of p	yrosilicate ion is							
(1) 20325 cm ⁻¹ (2) 12195 cm ⁻¹ (3) 10162 cm ⁻¹ (4) 8130 cm ⁻¹ 83. The reaction between NH ₄ Br and Na metal in liquid ammonia (solvent) results in the products (1) NaBr, HBr (2) NaBr, H ₂ (3) H ₂ , HBr (4) NaBr ₃ , H ₂ 84. Among the following pairs of ions/molecules, the one having the similar shape is (1) CO ₂ and H ₂ O (2) BF ₃ and H ₃ C ⁺ (3) CCl ₄ and PtCl ₄ (4) NH ₂ and BF ₃ (161)			J		8394 8-30- 3 50					
 83. The reaction between NH₄Br and Na metal in liquid ammonia (solvent) results in the products (1) NaBr, HBr (2) NaBr, H₂ (3) H₂, HBr (4) NaBr₃, H₂ 84. Among the following pairs of ions/molecules, the one having the similar shape is (1) CO₂ and H₂O (2) BF₃ and H₃C⁺ (3) CCl₄ and PtCl₄ (4) NH₂ and BF₃ (161) 	82.	The crystal field s	tabilization energy num at 492 nm is	(CFSE) value for [T	i(H ₂ O) ₆ ³⁺ that has an					
 83. The reaction between NH₄Br and Na metal in liquid ammonia (solvent) results in the products (1) NaBr, HBr (2) NaBr, H₂ (3) H₂, HBr (4) NaBr₃, H₂ 84. Among the following pairs of ions/molecules, the one having the similar shape is (1) CO₂ and H₂O (2) BF₃ and H₃C⁺ (3) CCl₄ and PtCl₄ (4) NH₂ and BF₃ (161) 		(1) 20325 cm ⁻¹	(2) 12195 cm ⁻¹	(3) 10162 cm ⁻¹	(4) 8130 cm ⁻¹					
(1) NaBr, HBr (2) NaBr, H ₂ (3) H ₂ , HBr (4) NaBr ₃ , H ₂ 84. Among the following pairs of ions/molecules, the one having the similar shape (1) CO ₂ and H ₂ O (2) BF ₃ and H ₃ C ⁺ (3) CCl ₄ and PtCl ₄ (4) NH ₂ and BF ₃ (161)	83.									
84. Among the following pairs of ions/molecules, the one having the similar shape (1) CO ₂ and H ₂ O (2) BF ₃ and H ₃ C ⁺ (3) CCl ₄ and PtCl ₄ (4) NH _a and BF ₃ (161)		(1) NaBr, HBr	(2) NaBr, H ₂	(3) H ₂ , HBr	(4) NaBr 11					
(1) CO ₂ and H ₂ O (2) BF ₃ and H ₃ C ⁺ (3) CCl ₄ and PtCl ₄ (4) NH _a and BF ₃ (161)	84.	Among the following is	ng pairs of ions/m	olecules, the one ha	ving the similar shape					
(3) CCl ₄ and PtCl ₄ (4) NH ₂ and BF ₃ (161)		(1) CO_2 and H_2O		*						
15		(3) CCl ₄ and PtCl ₄								
(P.T.O.)	(161)		15							
					(P.T.O.)					

<i>85</i> .	A triple point is	
	(1) monovariant	(2) bivariant
	(3) invariant	(4) trivariant
86.	In electron capture	
	(1) gamma rays are emitted	(2) a neutron is formed
	(3) a positron is formed	(4) an alpha particle is emitted
87.	The number of molecules reacted called	or formed per photon of light absorbed is
	(1) yield of the reaction	(2) quantum yield
	(3) quantum efficiency	(4) quantum productivity
88.	Potassium crystallizes in b.c.c. potassium in potassium metal is	structure. The coordination number of
	(1) 2 (2) 4	(3) 6 (4) 8
89.	A reaction proceeds with increase reaction will be spontaneous if	se in both the enthalpy and entropy. The
		(2) $\Delta H > T \Delta S$
	(1) $\Delta H = T \Delta S$	(4) None of the above
	(3) $\Delta H < T \Delta S$	

90	90. The high electronic mobility of H ⁺ ions is due to	
	(1) the small size of the H ⁺ ions	
	(2) the small charge of the H ⁺ ions	
	(3) the high velocity of H ⁺ ions	
	(4) the effective transfer of proton along a series of I molecules by arrangement of hydrogen bonds	ydrogen bonded water
91.	91. Which compound has bond angles nearest to 120°?	
	(1) O=C=S (2) CHI ₃	*
	(3) $H_2C=0$ (4) $HC=C-H$	
92.	92. An increasing order of acidity of the following compou	nds
	(a) 3-Chloropropanoic acid (b) 2,2-Dichloropropanoic	
	(c) 2-Chloropropanoic acid (d) Propanoic acid	
	is (a) Tropation acid	1
	(1) $(a) < (b) < (c) < (d)$ (2) $(b) < (c) < (d) <$	· ·
5	(3) $(d) < (b) < (c) < (a)$ (4) $(d) < (a) < (c) <$	
93.		
	(1) Cu (2) Cu O	s a red precipitate of
	(2) Cu_2O (3) CuO	(4) Cu O
94.	4. Which reaction intermediate is involved in the full	
	2-Methylbutane $\xrightarrow{\text{Br}_2, hv}$ 2-bromo-3-methylbutane (m. (1) A secondary radical (2) A tertions 1:	reaction?
	(1) A secondary radical (2) A tertiam 1	inor product)
	(3) A secondary cont	al .
(161)	(4) A tertiary carbo	cation
, ,	17	

- Which of the following compounds would give negative iodoform test with I2 and *9*5. aqueous NaOH?
 - (1) Ethanol
- (2) 2-Propanol
- (3) 2-Pentanone (4) 3-Pentanone
- For a species to be aromatic, it should satisfy certain criteria. Identify them 96. from the following
 - (1) The species should be planar
 - (2) It should be a cyclic conjugated system
 - (3) It must contain $(4n+2)\pi$ electrons
 - (4) All the above three
- Give the product of the following reaction

$$\begin{array}{c}
CH_2CH_3 \\
CH_3
\end{array}$$

$$\begin{array}{c}
Na_2Cr_2O_7/H^+ \\
?
\end{array}$$

(1)
$$CH_2COOH$$

	Which of the following alkenes	s cannot exhibit geometrical isomerism?
	(1) CH ₂ =CHCH ₂ CH ₃	(2) DCH=CHCH ₂ CH ₃

(3)
$$CH_3CH=CHCH_3$$
 (4) $CH_3CH=C(CH_3)Cl$

The reagent commonly used to reduce carbonyl >C=O functional group to methylene >CH2 is

(4) NaBH₄

- (1) H₂/Pt (2) LiAlH₄ (3) H₂N-NH₂/OH-
- Which of the following isomeric carbocations is the most stable? 100.

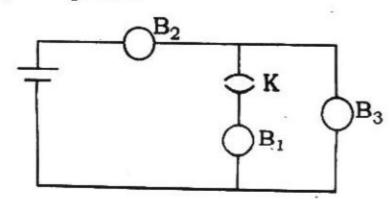
(1)
$$CH_2$$
 (2) CH_3 (4) CH_3

- An oxygen containing compound shows an absorption band at $\sim 1700~\text{cm}^{-1}$ and 101. no absorption band around 3300 cm⁻¹, 2700 cm⁻¹ or 1100 cm⁻¹. What class of
 - (1) Aldehyde (2) Carboxylic acid (3) Ketone (4) Ester
- Among the following choices, the group that activates the benzene ring toward
- (2) —NO₂ (1) —NH₂ (3) —Cl (4) —COOCH₃ (161)19

103.	It is possible to distinguish between	optical isomers by
	(1) IR spectroscopy	(2) UV spectroscopy
	(3) chemical tests	(4) polarimetry
104.	Which of the following best represes	nts the strength of a hydrogen bond?
	(1) 5-10 kcal	(2) 60-80 kcal
	(3) 80-100 kcal	(4) 100-120 kcal
105.	On reduction with LiAlH ₄ , which of optically active product?	f the following compounds would give an
	(1) Butanal (2) Propanone	(3) Butanone (4) 2-Nitropropane
106.	Phenol on treatment with bromine	in CS ₂ at 0 °C gives
	(1) m-bromophenol	(2) o- and p-bromophenol
	(3) 2,3,4-tribromophenol	(4) 2,4,6-tribromophenol
107	The numbers of ¹ H—NMR signals compounds propanone and propa	or peaks given by two isomeric carbonyl nal, respectively, are
	(1) one and three	(2) two and two
	(3) one and two	(4) two and three
108	3. Among the following, a natural p (2) Cellulose	olymer is (3) Nylon (4) Teflon
		20
(1	61)	

1 0 9.	The reaction of benzene	with chlorine in	the presence of	iron gives
	(1) benzyl chloride	(2)	benzoyl chloride	
	(3) BHC	(4)	chlorobenzene	ž
110.	Glucose is converted int	o ethanol by the	e enzyme	
	(1) pepsin (2) in	vertase (3)	zvmase (4) diastase

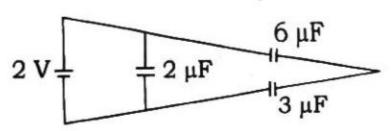
(161)


21

PHYSICS

	On the mast of a ship there is a source of green light of wavelength 500 nm. If the refractive index of water is $\frac{4}{3}$ the colour and wavelength measured by a diver submerged in water by the side of the ship would be
	(1) blue of wavelength 376 nm
	(2) green of wavelength 376 nm
	(3) red of wavelength 600 nm
	(4) green of wavelength 500 nm
	An inductance coil and a capacitor are connected to identical bulbs in two separate AC circuits. The bulb glows more brightly if
	(1) the number of turns in the inductance coil is increased
	(2) the separation between the plates of the capacitor is increased
	(3) an iron rod is introduced into the inductance coil
	(4) a dielectric is introduced in the gap between the plates of the capacitor
113.	A 5 kg stone is thrown vertically up with a kinetic energy of 490 J. The height at which the kinetic energy of the stone becomes half of the original value is
	(1) 5 m (2) 10 m (3) 2·5 m (4) 12·5 m
	22

114. The identical bulbs are connected to a battery of steady e.m.f. as shown in the figure below with key K closed. What will happen to the brightness of bulbs B_2 and B_3 when the key is opened?


- (1) Brightness of the bulbs B_2 and B_3 decreases
- (2) Brightness of the bulbs B_2 and B_3 increases
- (3) Brightness of bulb B_2 decreases and that of B_3 increases
- (4) Brightness of bulb B_2 increases and that of B_3 decreases
- 115. A logical circuit can be constructed by using only
 - (1) OR gates
- (2) NOR gates
- (3) AND gates
- (4) NOT gates
- 116. If an object weighing 15 Newtons is lifted from ground to a height of 0.22 metre, the increase in its gravitational energy is approximately
 - (1) 0·33 J
- (2) 3·1 J
- (3) 3.0 1
- (4) 3·3 J
- 117. The moment of inertia of a circular disc of radius 2 m and mass 1 kg about an axis through its centre of mass and perpendicular to its plane is 2 kg m². Its moment of inertia about an axis parallel to this axis but passing through the edge of the disc will be
 - (1) 6 kg m²
- (2) 10 kg m²
- (0) 4 kg m
- (4) 8 kg m²

(161)

23

118. Using a battery of 2 V the total energy stored in the capacitors shown in the figure below is

- (1) 4 µJ
- (2) 6 mJ
- (3) 8 µJ
- (4) 12 μJ

119. During an ice age, the polar ice caps grow in size and the water level drops in oceans all around the earth. This causes the earth's day to be

(1) stay the same

(2) shorter

(3) longer

(4) infinite

120. If the electrical potential of a single electron is 1 volt in an electrical field, what would be the electric potential of 10 electrons at the same position in the field?

- (1) 1 volt
- (2) 0·1 volt
- (3) 10 volts
- (4) 100 volts

121. An infrared laser beam and an ultraviolet laser beam both have the same number of photons. Which of the following is true?

- (1) Both laser beams have same energy
- (2) Ultraviolet laser beam has less energy
- (3) Infrared laser beam has more energy
- (4) Infrared laser beam has less energy

122.	If the objects listed below are all moving with the same speed, then on the basis of quantum mechanics which one of them will have the shortest wavelength?							
	(1) An electron (2) A proton	(3) The earth (4) A space-ship						
123.	When an impurity is doped into a	semiconductor its conductivity						
	(1) remains the same	(2) increases						
20	(3) decreases	(4) becomes zero						
124.	If a sample of radioactive isotope has a half life of one day, how much of the original sample will remain at the end of third day?							
	(1) $\frac{1}{8}$ of original	(2) \(\frac{1}{4}\) of original						
	(3) $\frac{1}{12}$ of original	(4) $\frac{1}{6}$ of original						
125.	Which layer of the atmosphere refle	cts radio waves?						
	(1) Stratosphere (2) Troposphere	(3) Ionosphere (4) Mesosphere						
126.	Which of the following has no melting	ng point?						
	(1) Mercury	(2) Glass						
	(3) Carbon dioxide	(4) Copper						
127.	An intrinsic semiconductor at absolu	ite zero temponoto						
	(1) an extrinsic conductor	(2) a perfect insulator						
	(2)							
(161)	•	(4) a super conductor						
(161)	25							
		(P.T.O.)						

128.	A rotating frame of reference is		
	(1) pseudo inertial	(2)	inertial
	(3) non-inertial	(4)	pseudo non-inertial
129.	If a particle moves in a circle under proportional to distance r , then its		ne action of a central force inversely d is
	(1) proportional to r	(2)	independent of r
	(3) proportional to $\frac{1}{r}$	(4)	proportional to r^2
			*
130.	The Franck-Hertz experiment proved	l tha	at .
	(1) clectron orbits in atom are circu	ılar	
	(2) electron has spin		To be seen it.
	(3) nucleus is positively charged		
	(4) internal energy of atom is quan	tize	i
131.	If earth's atmosphere had no gases	the	length of day would
	(1) increase		
	(2) be the same as at present		
	(2) increase in winter and decrease	e in	summer

(4) decrease

	m1	_	2 2					
132.	The atmosphere of	planet	Mars is	s characterized	by	the	following	feature

- (1) Surface atmospheric pressure same as earth's atmospheric pressure at sea level with equal proportion of CO₂ and CH₄
- (2) Surface atmospheric pressure approximately 1% of the earth's atmospheric pressure at sea level consisting mainly CH₄
- (3) Surface atmospheric pressure approximately 1% of earth's atmospheric pressure at sea level with equal proportion of CO₂ and CH₄
- (4) Surface atmospheric pressure approximately 1% of earth's atmospheric pressure at sea level consisting mainly CO₂
- 133. Two identical counter propagating Laser beams are linearly polarized in mutually perpendicular directions. The region of their overlap would exhibit light with
 - (1) uniform linear polarization
 - (2) periodic change in both linear and circular polarizations
 - (3) periodic change in linear polarization
 - (4) periodic change in circular polarization
- 134. For which of the following materials the magnetic susceptibility is independent of temperature?
 - (1) Paramagnetic

(2) Ferromagnetic

(3) Ferrite

(4) Diamagnetic

(161)

27

135.	Which of the follo	owing forces is the	e wea	kest?			
	(1) Magnetic	(2) Electrostatic	(3)	Nuclear	(4)	Gravitation	al
136.		constant is 6.6× 0 nm in units of				ntum of a	photon
	(1) 10^{-27}	(2) 2×10^{-27}	. (3)	10 ⁻³⁰	(4) 2	2×10^{-30}	
137.	Assuming the ma of hydrogen mole	ss of a hydrogen a cule to be 4 · 8 × 10	tom to	be 1.67 × the vibrat	10 ⁻²⁷ kg a ional frequ	nd force co tency of H	nstant would
	(1) 1.4×10^{12} Hz		(2)	$1\cdot2\times10^{13}$	Hz		
	(3) 1·2×10 ¹⁴ Hz		(4)	1.4×10^{16}	Hz		4
138.	When Zeeman sp observed in a dir- components is	litting of an atomi ection perpendicul	c line ar to	resulting the magne	from 1D_2 -tic field, the	$\rightarrow^1 P_1$ transition the number 1	sition is mber of
	(1) 2	(2) 3	(3)	4	(4)	5	
139.	The electronic configuration of carbon atom leads to three energy states 1D , 1S and 3P in accordance with Pauli exclusion principle. The ground state of carbon atom is $3P$ in view of the following						
	(1) Lande interv	al rule					
	(2) Hund's rule		5				
		spondence princip	ole	*			
	(4) Sommerfeld	rule					
(161			28				

- 140. Abnormally large isotope shifts are observed in spectral lines of heavy elements with mass number greater than 50. This has been explained in terms of
 - (1) mass effect of the nucleus
 - (2) charge distribution on the nucleus as a function of neutron number
 - (3) nuclear magnetic moment and orbital motion of electron
 - (4) nuclear magnetic moment and electron spin
- 141. The lightning discharge between a cloud and flat country originates due to
 - (1) a positively charged cloud with its potential positive than earth underneath
 - (2) a cloud with electron accumulation at the top and positive charges at the bottom
 - (3) an electrically homogeneous cloud
 - (4) a cloud with negative bottom with its potential more negative than the earth underneath
- 142. If α is the atomic polarizability, N the number of atoms per unit volume and K is the dielectric constant, then Clausius-Mossotti equation for liquids is given by

$$(1) K - 1 = \frac{N\alpha}{1 - \frac{N\alpha}{3}}$$

$$(2) K+1=\frac{N\alpha}{1-\frac{N\alpha}{3}}$$

$$(3) K+1=\frac{N\alpha}{1+\frac{N\alpha}{3}}$$

$$(4) K - 1 = \frac{N\alpha}{1 + \frac{N\alpha}{3}}$$

(161)

143. When electric current flows in a loop it gives rise to magnetic field. The magnetic moment (µ) is normal to the plane of the loop and is related to the area (A) of the loop and the current (I) in the following manner

$$(1) \ \mu = \frac{I}{A}$$

(1)
$$\mu = \frac{I}{A}$$
 (2) $\mu = \frac{I^2}{A}$ (3) $\mu = IA$ (4) $\mu = I^2A$

$$(3) \mu = L^2$$

$$(4) \mu = I^2 A$$

à

144. A changing magnetic flux through a coil gives rise to an induced e.m.f. in the coil that tends to oppose the change in the magnetic flux through it. This method of finding the direction of the induced e.m.f. is known as

(1) Fleming's right-hand rule

(2) Fleming's left-hand rule

(3) Faraday's rule

(4) Lenz's rule

145. When there is an alternating current through an inductance, energy flows back and forth between it and the rest of the circuit but the average rate at which energy is delivered to the circuit is zero. The inductance is therefore known as

(1) a dissipative element

(2) an inactive element

(3) a nondissipative element

(4) a magnetic element

For frequencies from a few kilo cycles to some hundreds of megacycles, electromagnetic signals and power are transmitted via coaxial lines consisting of a central wire and an outer conductor. What would happen if the central wire is removed from the coaxial line?

(1) The electromagnetic power will stop

(2) It can still carry electromagnetic power

(3) It will result in minor oscillations

(4) There will be violent oscillators

- 147. Many metals reflect visible light very well at the surface and very little goes inside to be absorbed. This happens because
 - (1) imaginary part of their refractive index is very small
 - (2) real part of their refractive index is very large
 - (3) real part of their refractive index is very small
 - (4) imaginary part of their refractive index is very large
- 148. In a metallic beam there is a surface passing through the middle of its thickness that is known as the neutral surface to make the beam stiff against bending
 - (1) as much material as possible should be put far from the neutral surface
 - (2) most of the material should be put near the neutral surface
 - (3) material should be uniformly distributed in the thickness of the beam
 - (4) beam should have a circular cross-section
- 149. In the Ramsden eyepiece the cross-wire is placed
 - (1) between the field lens and the eye lens
 - (2) behind the eye lens
 - (3) in front of the field lens
 - (4) just in front of the eye lens

(161)

31

- 150. Michelson-Morley experiment is famous because it led to the conclusion that
 - (1) light travels in straight line
 - (2) light waves require a medium called ether
 - (3) there is no ether in space
 - (4) light travels as particles

* * *

.

19

अभ्यर्थियों के लिए निर्देश

(इस पुस्तिका के प्रथम आवरण-पृष्ठ पर तथा उत्तर-पत्र के दोनों पृष्ठों पर केवल नीली या काली बाल-प्वाइंट पेन से ही लिखें)

- 1. प्रश्न पुस्तिका मिलने के 10 मिनट के अन्दर ही देख लें कि प्रश्नपत्र में सभी पृष्ठ मौजूद हैं और कोई प्रश्न छूटा नहीं है। पुस्तिका दोषयुक्त पाये जाने पर इसकी सूचना तत्काल कक्ष-निरीक्षक को देकर सम्पूर्ण प्रश्नपत्र की दूसरी पुस्तिका प्राप्त कर लें।
- 2. परीक्षा भवन में लिफाफा रहित प्रवेश-पत्र के अतिरिक्त, लिखा या सादा कोई भी खुला कागज साथ में न लायें।
- उत्तर-पत्र अलग से दिया गया है। इसे न तो मोड़ें और न ही विकृत करें। दूसरा उत्तर-पत्र नहीं दिया जायेगा, केवल उत्तर-पत्र का ही मूल्यांकन किया जायेगा।
- अपना अनुक्रमांक तथा उत्तर-पत्र का क्रमांक प्रथम आवरण-पृष्ठ पर पेन से निर्धारित स्थान पर लिखें।
- 5. उत्तर-पत्र के प्रथम पृष्ठ पर पेन से अपना अनुक्रमांक निर्धारित स्थान पर लिखें तथा नीचे दिये वृत्तों को गाढ़ा कर दें। जहाँ-जहाँ आवश्यक हो वहाँ प्रश्न-पुस्तिका का क्रमांक तथा सेट का नम्बर उचित स्थानों पर लिखें।
- 6. ओ० एम० आर० पत्र पर अनुक्रमांक संख्या, प्रश्न-पुस्तिका संख्या व सेट संख्या (यदि कोई हो) तथा प्रश्न-पुस्तिका पर अनुक्रमांक सं० और ओ० एम० आर० पत्र सं० की प्रविष्टियों में उपिरलेखन की अनुमित नहीं है!
- उपर्युक्त प्रविष्टियों में कोई भी परिवर्तन कक्ष निरीक्षक द्वारा प्रमाणित होना चाहिये अन्यथा यह एक अनुचित साधन का प्रयोग माना जायेगा।
- 8. प्रश्न-पुस्तिका में प्रत्येक प्रश्न के चार वैकल्पिक उत्तर दिये गये हैं। प्रत्येक प्रश्न के वैकल्पिक उत्तर के लिये आपको उत्तर-पत्र की सम्बन्धित पंक्ति के सामने दिये गये वृत्त को उत्तर-पत्र के प्रथम पृष्ठ पर दिये गये निर्देशों के अनुसार पेन से गाड़ा करना है।
- प्रत्येक प्रश्न के उत्तर के लिये केवल एक ही वृत्त को गाढ़ा करें। एक से अधिक वृत्तों को गाढ़ा करने पर अथवा एक वृत्त को अपूर्ण भरने पर वह उत्तर गलत माना जायेगा।
- 10. ध्यान दें कि एक बार स्याही द्वारा अंकित उत्तर बदला नहीं जा सकता है। यदि आप किसी प्रश्न का उत्तर नहीं देना चाहते हैं, तो सम्बन्धित पंक्ति के सामने दिये गये सभी वृत्तों को खाली छोड़ दें। ऐसे प्रश्नों पर शून्य अंक दिये जायेंगे।
- 11. रफ़ कार्य के लिये प्रश्न-पुस्तिका के मुखपृष्ठ के अन्दर वाले पृष्ठ तथा अंतिम पृष्ठ का प्रयोग करें।
- 12. परीक्षा के उपरान्त केवल *ओ०एम०आर० उत्तर-पत्र* परीक्षा भवन में जमा कर दें।
- परीक्षा समाप्त होने से पहले परीक्षा भवन से बाहर जाने की अनुमित नहीं होगी।
- यदि कोई अभ्यर्थी परीक्षा में अनुचित साधनों का प्रयोग करता है, तो वह विश्वविद्यालय द्वारा निर्धारित दंड का/की, भागी होगा/होगी।

