GGSIPU mathmatics 2012

1. If the lines x-y-1=0, 4x+3y=k and 2x-3y+1=0 are concurrent, then k is

a 1 b -1

c 25 d 5

2. the number of common tangents to the circles $x^2+y^2=4$ and $x^2+y^2-8x+12=0$ is

a 1 b 2 c 3 d 4

3. The centroid of a triangle formed by the points 0,0, $\cos \theta$, $\sin \theta$ and $\sin \theta$, $-\cos \theta$ lie on the line y = 2x; then θ is

a tan $^{-1}$ 2 b tan $^{-1}\frac{1}{3}$

c tan $-1\frac{1}{2}$ d tan -1 -3

4. The orthocentre of the triangle formed by 8,0 and 4,6 with the origin, is

a 4, $\frac{8}{3}$) b 3, -4

b 4,3 d 3,4

5. If the angle between two lines represented by $2x^2+5xy+3y^2+7y+4=0$ is tan^{-1} m, then m is equal to

a $\frac{1}{5}$ b 1

c $\frac{7}{5}$ d 7

6. If xy-4x+3y- λ = 0 represents the asymptotes of xy-4x+3y = 0, then λ is

a 3 b -6 c 8 d 12

7. The equation of the chord of the parabola $y^2 = 8x$ which is bisected at the point 2, -3, is

a 4x+3y+1=0

b 3x+4y -1 = 0

c 4x -3y-1 = 0

d 3x - 4y + 1 = 0

8. If x+y+1 = 0 touches the parabola $y^2 = \lambda x$, then λ is equal to

- aa) 2 b 4 (c 6 d 8
- 9. The equations $x = \frac{e^{t} + e^{-t}}{2}$, $y = \frac{e^{t} e^{-t}}{2}$ where t is real number, represents
 - a an ellipse b a parabola
 - c a hyperbola d a circle
- 10. if e_1 and e_2 are the eccentricities of two conics with $e_1^2 + e_2^2 = 3$, then the conics are
 - a ellipses b parabolas
 - c circles d hyperbolas
- 11. The sum of the distances of any point on the ellipse $3x^2+4y^2=24$ from its foci, is
 - a 8 $\sqrt{2}$ b 8
 - c 16 $\sqrt{2}$ d 4 $\sqrt{2}$
- 12. In AABC, if a tends to 2c and b tends to 3 c, then cos B tends to
 - a -1 b $\frac{1}{2}$ c $\frac{1}{3}$ d $\frac{2}{3}$
- 13. if $\sin \pi \cos \theta = \cos \pi \sin \theta$, hen which of the following is correct
 - a cos $\theta = \frac{3}{2\sqrt{2}}$
 - b cos $\left(\theta \frac{\pi}{2}\right) = \frac{1}{2\sqrt{2}}$
 - c cos $\left(\theta \frac{\pi}{4}\right) = \frac{1}{2\sqrt{2}}$
 - d cos $\left(\theta + \frac{\pi}{4}\right) = \frac{1}{2\sqrt{2}}$
- 14. The value of $\sin 12^{0} \sin 48^{0} \sin 54^{0}$ is equal to
 - $a = \frac{2}{3} b = \frac{1}{3}$
 - (c) $\frac{1}{8}$ (d) $\frac{1}{3}$
- 15. If $3\sin^{-1}\left(\frac{2x}{1+x^2}\right) 4\cos^{-1}\left(\frac{1-x^2}{1+x^2}\right) + 2\tan^{-1}\left(\frac{2x}{1-x^2}\right) = \frac{\pi}{3}$ then x is equal to
 - $a \quad \frac{1}{\sqrt{3}} \qquad b \quad -\frac{1}{\sqrt{3}}$

c
$$\sqrt{3}$$
 (1 $-\frac{\sqrt{3}}{2}$

- 16. The shadow of a pole is $\sqrt{3}$ times longer. The angle of elevation is equal to
 - a 40 ° b $\frac{45^0}{2}$
 - c 60 ° d 30 °
- 17. The point of contact of the line x-y+2=0 with the parabola y^2 -8x = 0 is
 - a 2,4 b -2,4
 - c 2, -4 d 2,2
- 18. If the sides of a triangle are $x^2 + x + 1$, $x^2 1$ and 2x + 1, then the greatest angle is
 - a 90 ° b 135 ° c 115 ° d 120 °
- 19. The value of cos 10. Cos 20. cos 30... cos 1790 is equal to
 - a $\frac{1}{\sqrt{2}}$ b 0
 - c 1 d -1
- 20. If cot $\alpha+\beta=0$, then sin $\alpha+2\beta$ is equal to
 - a sin α b cos α
 - c sin β d cos 2 β
- 21. The value of 4 sin A cos³ A 4 cos A sin³ A is equal to
 - a cos 2A b sin 3A
 - c sin 2A d sin 4A
- 22. If the solutions for θ of cos of cos p θ +cos q θ = 0, 0>q>0 arer in AP, then the numerically smallest common difference of AP is
 - a $\frac{\pi}{p+q}$ b $\frac{2\pi}{p+q}$
 - $\mathsf{c} \quad \frac{\pi}{2 \; p+q)} \quad \mathsf{d} \quad \frac{1}{p+q}$
- 23. The value of k for which $\cos x + \sin x^2 + k \sin x \cos x 1 = 0$ is that identity, is
 - a -1 b -2 c 0 d 1

- 24. If $4 \cos^{-1} x + \sin^{-1} x = \pi$, then the value of x is
 - $a \quad \frac{1}{2} \qquad b \quad \frac{1}{\sqrt{2}}$

 - c $\frac{\sqrt{3}}{2}$ d $\frac{2}{\sqrt{3}}$
- 25. a problem in mathematics is given to 3 students whose chances of solving individually are $\frac{1}{2}$ and $\frac{1}{4}$. The probability that the problem will be solved at least by one, is

 - a $\frac{1}{4}$ b $\frac{1}{24}$
 - c $\frac{23}{24}$ d $\frac{3}{4}$
- 26. In a non-leap year the probability of getting 53 Sundays or 53 Tuesdays or 53 Thursdays is

- 27. The probability for a randomly chosen month to have its 10th day as Sunday, is
 - a $\frac{1}{84}$ b $\frac{10}{12}$
- - c $\frac{10}{84}$ d $\frac{1}{7}$
- 28. If the mean of numbers 27+x, 31+x, 89+x,107+x,156+x is 82, then the mean of 130+x,126+x,68+x,50+x,1+x is
- b 157
- c 82
- d 75
- 29. if μ is the mean distribution of $\{Y_i, f_i\}$, then $\sum fi(\cdot_i \mu)$ is equal to
 - a MD
- c 0
- d relative frequency
- 30. Two cards are drawn successively with replacement from a well-shuffled pack of 52 cards. The probability of drawing two aces is

 - a $\frac{1}{13}$ b $\frac{1}{13}$ x $\frac{1}{17}$
 - c $\frac{1}{52} \times \frac{1}{51}$ d $\frac{1}{13} \times \frac{1}{13}$

- 31. If $\sec\left(\frac{x+y}{x-y}\right) = a$, then $\frac{dy}{dx}$ is
 - a $\frac{x}{y}$ b $\frac{y}{x}$
 - (c) y dx
- 32. If $x^y = e^{x-y}$, then $\frac{dy}{dx}$ is equal to
 - a $\frac{\log x}{1 + \log x}$ (b) $\frac{\log x}{1 \log x}$

 - c $\frac{\log x}{1 + \log x)^2}$ (d) $\frac{y \log x}{x + \log x}$
- 33. For $y = cosm sin^{-1} x$ which of the following is true?
 - a 1 $-x^2y_2 + xy_1 m^2y = 0$
 - b $1 x^2 y_2 xy_1 + m^2 y = 0$
 - c 1+x 2 y₂ + xy₁ m^{2} y = 0
 - (c., (:- x^2) $y_2 + xy_1 + m^2y = 0$
- 34. If $f(x = \begin{cases} x+1 & x \le 1 \\ 3-ax^2 & x > 1 \end{cases}$ is continuous at x =1, then the value of a is
 - a -1
 - (c) -3 (d)1
- 35. $\lim_{x \to \frac{\pi}{2}} \frac{a^{\cot x} a^{\cos x}}{\cot x \cos x}$ is equal to
 - a log a b log 2
 - (d) log x caa
- 36. If f''0 = k, then $\lim_{x\to 0} \frac{2f(x)-3f(2x)+f(4x)}{x^2}$ is equal to
 - a k b 2k c 3k d 4k_)
- 37. If g is the inverse function of f and f' x = $\frac{1}{1+x^{n}}$, then g'x is equal to
 - n b 1 -gx a 1+gx
 - d 1 -gx ⁿ c 1+gx
- 38. The curves $4x^2+9y^2 = 72$ and $x^2-y^2 = 5$ at 3,2

- a touch each other b cut orthogonally
- c interest at 45 0 d interest at 60 0
- 39. The velocity v m/s of a particle is proportional to the cube of the time. If the velocity after 2 s is 4m/s, then v is equal to
 - att b $\frac{t^3}{2}$
 - c $\frac{t^3}{3}$ d $\frac{t^3}{4}$
- 40. The minimum value of x log x is equal to
 - ae b $\frac{1}{e}$
 - $c \frac{1}{e} d \frac{2}{e}$
- 41. A particle moves along the x-axis so that its position is given $x = 2t^3 3t^2$ at a time t second. What is the time interval during which particle will be on the negative half of the axis?
 - a $0 < t < \frac{2}{3}$ b $0 \cdot 0 < 1$
 - c 0<t< $\frac{3}{2}$ d $\frac{1}{2}$ <t<1
- 42. A stone thrown vertically upwards satisfies the equations $s = 80t 16t^2$. The time required to reach the maximum height is
 - a 2s b 4s
 - c 3 s d 2.5 s
- 43. If f(x+y = f(x, f(y, f(3 = 3, f'0 = 11. Then f'3 is equal to
 - a 11.e³³ b 33
 - c 11. d lo g 33
- 44. If y = x tan y, then $\frac{dy}{dx}$ is equal to
 - a $\frac{\tan y}{x x^2 y^2}$ (b $\frac{y}{x x^2 y^2}$
 - c $\frac{\tan y}{y-y}$ $\beta = \frac{\tan x}{y-y}$
- 45. The product of the lengths of subtangent and subnormal at any point x,y of a curve is

- ax² by²
- c a constant d x
- 46. The equation of tangent to the curve

$$\left(\frac{x}{a}\right)^n + \left(\frac{y}{b}\right)^n = 2$$
 at a, this s

- a $\frac{x}{a} + \frac{y}{b} \approx 2$ b $\frac{x}{a} + \frac{y}{b} = \frac{1}{2}$
- c $\frac{x}{b} \frac{y}{a} = 2$ d ax + by = 2
- 47. If $\int_0^\infty \frac{x^2 dx}{x^2 + a^2(x^2 + b^2)(x^2 + c^2)} = \frac{x}{2(a+b)(b+c)(c+a)}$, then the value of $\int_0^\infty \frac{1}{x^2 + 4(x^2 + 9)} dx$ is
 - (a) $\frac{\pi}{60}$ (b) $\frac{\pi}{20}$ c $\frac{\pi}{40}$ d $\frac{\pi}{80}$
- 48. $\int e^{\alpha \log x} + e^{x \log a} dx$ is equal to

 - a $\frac{x^{a+1}}{a+1} + c$ b $\frac{x^{a+1}}{a+1} + \frac{a^x}{\log a} + c$

 - c $x^{a+1} + a^x + c$ d $\frac{x^{a+1}}{a-1} + \frac{\log a}{a^x} + c$
- 49. $\int_0^a \frac{dx}{x + \sqrt{a^2 x^2}}$ is
 - (a) $\frac{a^2}{4}$ b) $\frac{\pi}{2}$ cc) $\frac{\pi}{4}$ (c π
- 50. If $\int_{-1}^{4} f x dx = 4$ and $\int_{2}^{4} [3 f x dx = 7]$, then the value of $\int_{-1}^{2} f x dx$ is
 - a -2 b 3 c 5 d 8

