CBSE Class 12 Maths Question Paper Solution 2020 Set 65/3/1

QUESTION PAPER CODE 65/3/1

EXPECTED ANSWER/VALUE POINTS

SECTION – A

		SEC	ΓΙΟN – A							
	Question Number	rs 1 to 20 carry 1	mark each.							
Question Numbers 1 to 10 are multiple choice type questions.										
O N	Select the correct option.									
Q.No.										
1.	1. If f and g are two functions from R to R defined as $f(x) = x + x$ and $g(x) = x - x$, then fo $g(x)$ for $x < 0$ is									
	(A) 4x	(B) 2x	(C) 0	(D) –4 x						
	Ans: (D) –4x				1					
2	The main size 1 and 1	$-1(\sqrt{2})$								
2.	The principal value	$(-\sqrt{3})$ is								
	$(\mathbf{A}) -\frac{\pi}{6}$	$(\mathbf{B}) \ \frac{\pi}{6}$	(C) $\frac{2\pi}{3}$	(D) $\frac{5\pi}{6}$						
	Ans: (D) $\frac{5\pi}{6}$				1					
	Γ 2 0	0]								
3.	If $A = \begin{bmatrix} -2 & 0 \\ 0 & -2 \\ 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0\\0\\-2 \end{bmatrix}$, then the value	ie of adj A is							
	(A) 64	(B) 16	(C) 0	(D) −8						
					1					
	Ans: (A) 64				1					
4.	The maximum valu	ue of slope of the c	curve $y = -x^3 + 3x^2$	+ 12x - 5 is						
	(A) 15	(B) 12	(C) 9	(D) 0						
	Ans: (A) 15				1					
	Alls. (A) 15				1					
5.	$\int \frac{e^x(1+x)}{\cos^2\left(xe^x\right)} dx \text{ is }$	equal to								
	(A) $\tan(xe^x)+c$		(B) $\cot(xe^x)$)+c						
	(C) $\cot(e^x) + c$		(D) $\tan\left[e^{x}\right]$	$ +x\rangle + c$						
	Ans: (A) $tan(xe^{2})$	⁽)+c			1					
		/								
6.	The degree of the	differential equation	$x^2 \frac{d^2 y}{dx^2} = \left(x \frac{dy}{dx} - y\right)$	y) ³						
	(A) 1	(B) 2	(C) 3	(D) 6						
	Ans: (A) 1				1					
					I					

7. The value of p for which $p(\hat{i} + \hat{j} + \hat{k})$ is a unit vector is

(A) 0 (B)
$$\frac{1}{\sqrt{3}}$$
 (C) 1 (D) $\sqrt{3}$
Ans: (B) $\frac{1}{\sqrt{3}}$ 1

8. The coordinates of the foot of the perpendicular drawn from the point (-2, 8, 7) on the XZ-plane is
(A) (-2, -8, 7)
(B) (2, 8, -7)
(C) (-2, 0, 7)
(D) (0, 8, 0)

9. The vector equation of XY-plane is

Ans: (C) (-2, 0, 7)

(A)
$$\vec{r} \cdot \hat{k} = 0$$
 (B) $\vec{r} \cdot \hat{j} = 0$ (C) $\vec{r} \cdot \hat{i} = 0$ (D) $\vec{r} \cdot \vec{n} = 1$
Ans: (A) $\vec{r} \cdot \hat{k} = 0$

10. The feasible region for an LPP is shown below:

Let z = 3x - 4y be the objective function. Minimum of z occurs at

$$(A) (0, 0) (B) (0, 8) (C) (5, 0) (D) (4, 10)$$

$$(A) (0, 0) (B) (0, 8) (C) (5, 0) (D) (4, 10)$$

Fill in the blanks in questions numbers 11 to 15

11. If $y = \tan^{-1} x + \cot^{-1} x$, $x \in R$, then $\frac{dy}{dx}$ is equal to ______ Ans: 0

OR

If cos(xy) = k, where k is a constant and $xy \neq n\pi$, $n \in Z$,

then
$$\frac{dy}{dx}$$
 is equal to _____.

Ans:
$$-\frac{y}{x}$$

1

1

1

1

12. The value of λ so that the function f defined by $f(x) = \begin{cases} \lambda x, & \text{if } x \le \pi \\ \cos x, & \text{if } x > \pi \end{cases}$

is continuous at $x = \pi$ is _____

Ans:
$$-\frac{1}{\pi}$$

13. The equation of the tangent to the curve y = sec x at the point (0, 1) is _____.

14. The area of the parallelogram whose diagonals are $2\hat{i}$ and $-3\hat{k}$ is

______ square units.

Ans: 3

OR

The value of λ for which the vectors $2\hat{i} - \lambda\hat{j} + \hat{k}$ and $\hat{i} + 2\hat{j} - \hat{k}$ are orthogonal is _____.

Ans:
$$\frac{1}{2}$$

15. A bag contains 3 black, 4 red and 2 green balls. If three balls are drawn simultaneously at random, then the probability that the balls are of different colours is _____

Ans:
$$\frac{2}{7}$$

Question numbers 16 to 20 are very short answer type questions

16. Construct a 2 × 2 matrix A = $[a_{ij}]$ whose elements are given by $a_{ij} = |(i)^2 - j|$.

Ans:
$$\begin{bmatrix} 0 & 1 \\ 3 & 2 \end{bmatrix}$$
 $\frac{1}{2}$ mark for any two correct = 1

17. Differentiate $\sin^2(\sqrt{x})$ with respect to x.

Ans:
$$\frac{\sin(2\sqrt{x})}{2\sqrt{x}}$$
 or $\frac{\sin\sqrt{x}\cos\sqrt{x}}{\sqrt{x}}$ 1

18. Find the interval in which the function f given by $f(x) = 7 - 4x - x^2$ is strictly increasing.

Ans:
$$f'(x) = -4 - 2x$$

 $\Rightarrow f(x)$ is increasing on $(-\infty, -2)$
1/2

1

1

1

19. Evaluate:
$$\int_{-2}^{2} |x| dx$$
.
Ans: $\int_{-2}^{2} |x| dx = -\int_{-2}^{0} x dx + \int_{0}^{2} x dx = 4$
OR
Find $\int \frac{dx}{9+4x^2}$
Ans: $\int \frac{dx}{9+4x^2} = \frac{1}{6} \tan^{-1} \frac{2x}{3} + c$
1/2+1/2

20. An unbiased coin is tossed 4 times. Find the probability of getting at least one head.

Ans:
$$1 - \left(\frac{1}{2}\right)^4 = \frac{15}{16}$$
 1/2+1/2

SECTION-B

Question numbers 21 to 26 carry 2 marks each.

21. Solve for $x: \sin^{-1} 4x + \sin^{-1} 3x = -\frac{\pi}{2}$

Ans:
$$\sin^{-1}(4x) + \sin^{-1}(3x) = -\frac{\pi}{2}$$

 $\Rightarrow \sin^{-1}(4x) = -\frac{\pi}{2} - \sin^{-1}(3x)$
 $\Rightarrow 4x = -\sin\left(\frac{\pi}{2} + \sin^{-1} 3x\right)$
 $= -\cos(\sin^{-1} 3x)$
 $\Rightarrow -4x = \sqrt{1 - 9x^2}$
 $\Rightarrow 16x^2 = 1 - 9x^2$
 $\Rightarrow 25x^2 = 1$
 $\Rightarrow x^2 = \frac{1}{25} \Rightarrow x = \pm \frac{1}{5}$
As $\sin^{-1} 4x + \sin^{-1} 3x < 0, x \neq \frac{1}{5}$
So, $x = -\frac{1}{5}$

OR

Express $\tan^{-1}\left(\frac{\cos x}{1-\sin x}\right), -\frac{3\pi}{2} < x < \frac{\pi}{2}$ in the simplest form.

Ans:
$$\tan^{-1}\left(\frac{\cos x}{1-\sin x}\right) = \tan^{-1}\left(\frac{\sin\left(\frac{\pi}{2}-x\right)}{1-\cos\left(\frac{\pi}{2}-x\right)}\right)$$

= $\tan^{-1}\left[\cot\left(\frac{\pi}{4}-\frac{x}{2}\right)\right]$
= $\tan^{-1}\left[\tan\left(\frac{\pi}{2}-\frac{\pi}{4}+\frac{x}{2}\right)\right] = \frac{\pi}{4}+\frac{x}{2}$ 1

22. Express $A = \begin{bmatrix} 4 & -3 \\ 2 & -1 \end{bmatrix}$ as a sum of a symmetric and a skew symmetric matrix.

Ans:
$$A = \begin{bmatrix} 4 & -3 \\ 2 & -1 \end{bmatrix} \Rightarrow A^{T} = \begin{bmatrix} 4 & 2 \\ -3 & -1 \end{bmatrix}$$

$$P = \frac{A + A^{T}}{2} = \frac{1}{2} \begin{bmatrix} 8 & -1 \\ -1 & -2 \end{bmatrix}$$

$$A - A^{T} = 1 \begin{bmatrix} 0 & -5 \end{bmatrix}$$
1/2

$$Q = \frac{A - A}{2} = \frac{1}{2} \begin{bmatrix} 0 & -3 \\ 5 & 0 \end{bmatrix}$$
Now, $A = P + Q$
1/2

P + Q =
$$\frac{1}{2}\begin{bmatrix} 8 & -6 \\ 4 & -2 \end{bmatrix} = \begin{bmatrix} 4 & -3 \\ 2 & -1 \end{bmatrix} = A$$

23. If $y^2 \cos\left(\frac{1}{x}\right) = a^2$, then find $\frac{dy}{dx}$.

Ans:
$$y^2 \cos\left(\frac{1}{x}\right) = a^2$$

Then
$$2y \frac{dy}{dx} \cdot \cos\left(\frac{1}{x}\right) - y^2 \sin\left(\frac{1}{x}\right) \left(-\frac{1}{x^2}\right) = 0$$
 1

$$\Rightarrow 2y \cdot \cos\left(\frac{1}{x}\right) \frac{dy}{dx} = -\frac{y^2}{x^2} \sin\left(\frac{1}{x}\right)$$

 \vec{a} and \vec{b} are perpendicular vectors.

Ans:
$$|\vec{a} + \vec{b}| = |\vec{a} - \vec{b}|$$
 \Rightarrow $|\vec{a} + \vec{b}|^2 = |\vec{a} - \vec{b}|^2$ \Rightarrow $4\vec{a} \cdot \vec{b} = 0$ or $\vec{a} \cdot \vec{b} = 0$ or $\vec{a} \perp \vec{b}$ Then $\vec{a} \cdot \vec{b} = 0$ Thus, $|\vec{a} + \vec{b}|^2 = |\vec{a}|^2 + |\vec{b}|^2$ and $|\vec{a} + \vec{b}| = |\vec{a} - \vec{b}|$ 1ORShow that the vectors $2\hat{i} - \hat{j} + \hat{k}$, $3\hat{i} + 7\hat{j} + \hat{k}$ and $5\hat{i} + 6\hat{j} + 2\hat{k}$ form the sides of a right-angled triangle.Ans:Let $\vec{a} = 2\hat{i} - \hat{j} + \hat{k}$, $\vec{b} = 3\hat{i} + 7\hat{j} + \hat{k}$ and $\vec{c} = 5\hat{i} + 6\hat{j} + 2\hat{k}$ Since $\vec{c} = \vec{a} + \vec{b}$, three vectors form a triangle.1Also, $\hat{a} \cdot \vec{b} = 0$.So, triangle is a right angled triangle.1Find the coordinates of the point where the line through (-1, 1, -8)1and $(5, -2, 10)$ crosses the ZX-plane.1Ans:Let the line segment AB is cut by ZX-plane in the ratio $1 : \lambda$.So, y-coordinate is zero.1 $i.c., \frac{-2+\lambda}{1+\lambda} = 0$ i.e. $\lambda = 2$ \therefore The point of intersection is $(1, 0, -2)$ 1If A and B are two events such that $P(A) = 0.4$, $P(B) = 0.3$ and $P(A \cup B) = 0.6$, then find $P(B' \cap A)$.Ans: $P(A \cap B) = P(A) + P(B) - P(A \cup B) = 0.1$ 1

$$P(B' \cap A) = P(A) - P(A \cap B) = 0.3$$

1

65/3/1

25.

26.

Question numbers 27 to 32 carry 4 marks each.

27. Show that the function f: $(-\infty, 0) \rightarrow (-1, 0)$ defined by

$$f(x) = \frac{x}{1+|x|}, x \in (-\infty, 0)$$
 is one-one and onto.

Ans: Let $x_1, x_2 \in (-\infty, 0)$ such that $f(x_1) = f(x_2)$

i.e.,
$$\frac{x_1}{1+|x_1|} = \frac{x_2}{1+|x_2|}$$

$$\Rightarrow \qquad \frac{x_1}{1-x_1} = \frac{x_2}{1-x_2} \qquad 1$$

$$\Rightarrow \qquad x_1 - x_1 x_2 = x_2 - x_1 x_2$$

$$\Rightarrow \qquad x_1 = x_2$$

$$\therefore \quad \text{f is one-one.} \qquad 1$$
Let $y \in (-1, 0)$ such that $y = \frac{x}{1+|x|}$

$$\Rightarrow \qquad y = \frac{x}{1-x}$$

$$\Rightarrow \qquad x = \frac{y}{1+y} \qquad 1$$
For each $y \in (-1, 0)$, there exists $x \in (-\infty, 0)$,
such that $f(x) = f\left(\frac{y}{1+y}\right) = \frac{\frac{y}{1+y}}{1+\left|\frac{y}{1+y}\right|}$

$$= \frac{\frac{y}{1-y}}{1-\frac{y}{1-y}} = y$$

Hence f is onto.

OR

Show that the relation R in the set $A = \{1, 2, 3, 4, 5, 6\}$ given by $R = \{(a, b) : |a - b| \text{ is divisible by } 2\}$ is an equivalence relation.

Ans: Reflexive: |a-a|=0, which is divisible by 2 for all $a \in A$.

 $\therefore (a, a) \in R \Rightarrow R \text{ is reflexive.}$ Symmetric: Let $(a, b) \in R$ i.e., $|a-b| = 2\lambda$, $\lambda \in \omega$

then $|b-a| = |-(a-b)| = |a-b| = 2\lambda$

1+y

1

1

 \Rightarrow (b, a) \in R \Rightarrow R is symmetric. 1 **Transitive :** Let (a, b), (b, c) $\in \mathbb{R}$ i.e., $|a-b| = 2\lambda$, $|b-c| = 2\mu$ $a - c = (a - b) + (b - c) = \pm 2\lambda \pm 2\mu = \pm 2(\lambda + \mu)$ $|\mathbf{a} - \mathbf{c}| = 2|\lambda + \mu|$, which is divisible by 2 \Rightarrow (a, c) \in R \Rightarrow R is transitive. 1 1 Hence R is an equivalence relation. **28.** If $y = x^3 (\cos x)^x + \sin^{-1} \sqrt{x}$, find $\frac{dy}{dx}$. Ans: Let $u = x^3 (\cos x)^x$ and $v = \sin^{-1} \sqrt{x}$ so that y = u + v $\log u = 3\log x + x\log(\cos x)$ 1/2 $\Rightarrow \frac{1}{u}\frac{du}{dx} = \frac{3}{x} - x \tan x + \log \cos x$ 1 $\Rightarrow \quad \frac{du}{dx} = x^3 (\cos x)^x \left[\frac{3}{x} - x \tan x + \log \cos x \right] \quad \dots \quad (i)$ 1/2 and $v = \sin^{-1}\sqrt{x} \Rightarrow \frac{dv}{dx} = \frac{1}{2\sqrt{x}\sqrt{1-x}}$... (ii) 1 $\frac{dy}{dx} = \frac{du}{dx} + \frac{dv}{dx}$ $\Rightarrow \qquad \frac{dy}{dx} = x^3 (\cos x)^x \left[\frac{3}{x} - x \tan x + \log \cos x \right] + \frac{1}{2\sqrt{x - x^2}}$ 1 29. Evaluate: $\int_{-1}^{3} (|x|+|x+1|+|x-5|) dx$ **Ans:** If $x \in [-1,0] \Rightarrow f(x) = -x + x + 1 - x + 5 = 6 - x$ 1 If $x \in [0,5] \Rightarrow f(x) = x + x + 1 - x + 5 = x + 6$ 1 $\therefore \int_{-1}^{5} (|x|+|x+1|+|x-5|) dx = \int_{-1}^{0} (6-x) dx + \int_{0}^{5} (x+6) dx$ 1 $= \left[\frac{(6-x)^2}{-2}\right]^0 + \left[\frac{(x+6)^2}{2}\right]^5$ $=\frac{13}{2}+\frac{85}{2}=49$ 1

30. Find the general solution of the differential equation $x^2y dx - (x^3 + y^3) dy = 0$

Ans:

$$\frac{dx}{dy} = \frac{x^3 + y^3}{x^2y}$$
Put $x = vy \Rightarrow \frac{dx}{dy} = v + y \cdot \frac{dv}{dy}$
1
 $\therefore v + y \frac{dv}{dy} = \frac{y^3(v^3 + 1)}{y^3v^2}$
1
 $\Rightarrow y \frac{dv}{dy} = \frac{1}{v^2}$
 $\Rightarrow v^2 dv = \frac{dy}{y}$
1
Integrating both sides, we get
 $\frac{v^3}{3} = \log y + c \Rightarrow \frac{x^3}{3y^3} = \log y + c$
1
 $\Rightarrow x^3 = 3y^3 \log y + 3cy^3$
Solve the following LPP graphically:
Minimise $z = 5x + 7y$
subject to the constraints
$$2x + y \ge 8$$
 $x + 2y \ge 10$
 $x, y \ge 0$
Ans:
 $4x0.8$
 $y = \frac{1}{2}$
 $4x0.8$
 $x + 2y \ge 10$
 $x + 2y = 10$

To verify whether the smallest value of z = 38 is the minimum value we draw open half plane.

5x + 7y < 38. Since there is no common point with the possible feasible region except (2, 4).

Hence minimum value of z = 38 at x = 2 and y = 4.

31.

32. A bag contains two coins, one biased and the other unbiased. When tossed, the biased coin has a 60% chance of showing heads. One of the coins is selected at random and on tossing it shows tails. What is the probability it was an unbiased coin?

Ans: Let E_1 be the event that unbiased coin is tossed.

$$E_2$$
 be the event that biased coin is tossed.
A be the event that coin tossed shows tail

$$P(E_1) = \frac{1}{2}, P(E_2) = \frac{1}{2}, P(A | E_1) = \frac{1}{2}, P(A | E_2) = \frac{2}{5}$$
 1

$$P(E_{1} | A) = \frac{P(E_{1}) \cdot P(A | E_{1})}{P(E_{1}) \cdot P(A | E_{1}) + P(E_{2}) \cdot P(A | E_{2})}$$
1

$$=\frac{\frac{1}{2}\times\frac{1}{2}}{\frac{1}{2}\times\frac{1}{2}+\frac{1}{2}\times\frac{2}{5}}=\frac{5}{9}$$

OR

The probability distribution of a random variable X, where k is a constant is given below:

$$P(X = x) = \begin{cases} 0.1, & \text{if} & x = 0\\ k x^2, & \text{if} & x = 1\\ k x, & \text{if} & x = 2 \text{ or } 3\\ 0, & \text{otherwise} \end{cases}$$

(

Determine

- (a) the value of k
- (b) $P(x \le 2)$
- (c) Mean of the variable X.

Ans:

X _i	P _i
0	0.1
1	k
2	2k
3	3k

i)
$$\sum P_i = 1$$

 $\Rightarrow 0 \cdot 1 + 6k = 1$
 $\Rightarrow k = \frac{3}{20}$

11)
$$P(x \le 2) = 0.1 + 3k$$

$$=\frac{1}{10}+\frac{9}{20}=\frac{11}{20}$$

(iii) Mean =
$$\sum P_i x_i = 14k = \frac{21}{10}$$

1

 $1\frac{1}{2}$

 $1\frac{1}{2}$

1

Question numbers 33 to 36 carry 6 marks each.

33. Solve the following system of equations by matrix method:

x - y + 2z = 72x - y + 3z = 123x + 2y - z = 5

Ans: Writing given equations in matrix form

1	-1	2	x		7	
2	-1	3	у	=	12	
3	-1 -1 2	-1	z		5	

Which is of the form AX = B

Here $|\mathbf{A}| = -2 \neq 0$

$$\mathbf{A}^{-1} = \frac{1}{-2} \begin{bmatrix} -5 & 3 & -1\\ 11 & -7 & 1\\ 7 & -5 & 1 \end{bmatrix}$$

$$\therefore \quad \mathbf{X} = \mathbf{A}^{-1}\mathbf{B} = \frac{1}{-2} \begin{bmatrix} -5 & 3 & -1 \\ 11 & -7 & 1 \\ 7 & -5 & 1 \end{bmatrix} \begin{bmatrix} 7 \\ 12 \\ 5 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix}$$

 \Rightarrow x = 2, y = 1, z = 3

1

1

1

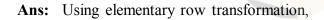
1

2

OR

Obtain the inverse of the following matrix using elementary operations:

 $\mathbf{A} = \begin{bmatrix} 2 & 1 & -3 \\ -1 & -1 & 4 \\ 3 & 0 & 2 \end{bmatrix}$



$$A = IA \Longrightarrow \begin{bmatrix} 2 & 1 & -3 \\ -1 & -1 & 4 \\ 3 & 0 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot A$$

1

Operating $R_1 \rightarrow R_1 + R_2$

$$\begin{bmatrix} 1 & 0 & 1 \\ -1 & -1 & 4 \\ 3 & 0 & 2 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} A$$

$$R_{2} \rightarrow R_{2} + R_{1}, R_{3} \rightarrow R_{3} - 3R_{1}$$

$$\begin{bmatrix} 1 & 0 & 1 \\ 0 & -1 & 5 \\ 0 & 0 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 2 & 0 \\ -3 & -3 & 1 \end{bmatrix} A$$

$$R_{2} \rightarrow -R_{2}$$

$$\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & -5 \\ 0 & 0 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 \\ -1 & -2 & 0 \\ -3 & -3 & 1 \end{bmatrix} A$$

$$R_{1} \rightarrow R_{1} + R_{3}, R_{2} \rightarrow R_{2} - 5R_{3}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} = \begin{bmatrix} -2 & -2 & 1 \\ 14 & 13 & -5 \\ -3 & -3 & 1 \end{bmatrix} A$$

$$R_{3} \rightarrow -R_{3}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} -2 & -2 & 1 \\ 14 & 13 & -5 \\ 3 & 3 & -1 \end{bmatrix} A$$

$$\Rightarrow A^{-1} = \begin{bmatrix} -2 & -2 & 1 \\ 14 & 13 & -5 \\ 3 & 3 & -1 \end{bmatrix} A$$
1

34. Find the points on the curve
$$9y^2 = x^2$$
, where the normal to the curve makes equal intercepts with both the axes. Also find the equation of the normals.

Ans: Equation of given curve, $9y^2 = x^3$... (i)

$$\Rightarrow \quad 18y \frac{dy}{dx} = 3x^2 \Rightarrow \frac{dy}{dx} = \frac{x^2}{6y}$$
 1/2

Slope of normal =
$$\frac{-6y}{x^2}$$

 $-\frac{6y}{x^2} = \pm 1$ (given)
1/2

$$\Rightarrow y = \pm \frac{x^2}{6} \qquad \dots (ii) \qquad 1$$

From (i) & (ii), we get

$$9 \cdot \frac{x^4}{36} = x^3 \Rightarrow x^3(x-4) = 0 \Rightarrow x = 0, 4 \text{ (x = 0 is rejected)}$$
$$x = 4, y^2 = \frac{64}{9} \Rightarrow y = \pm \frac{8}{3}$$

Point of contacts are
$$\left(4,\frac{8}{3}\right)$$
, $\left(4,\frac{-8}{3}\right)$ $1\frac{1}{2}$

Equation of normal at $\left(4, \frac{8}{3}\right)$ is $y - \frac{8}{3} = -(x - 4)$ $\Rightarrow 3x + 3y - 20 = 0$ and equation of normal at $\left(4, -\frac{8}{3}\right)$ is $y + \frac{8}{3} = -(x - 4)$ $\Rightarrow 3x + 3y = 20$ 1/2

35. Find the area of the following region using integration: $\{(x, y) : y \le |x| + 2, y \ge x^2\}$. **Ans:** [Correct figure and shade (2)]

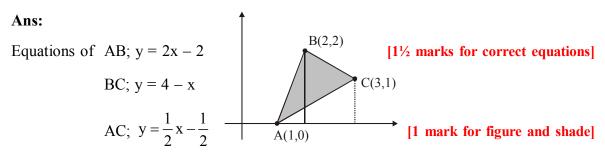
 $y = x^{2}$ $y = |x| + 2 = x + 2, \text{ if } x \ge 0$ = -x + 2, if x < 0Solving, $y = x^{2}$ and y = x + 2 $x^{2} = x + 2 \Rightarrow x^{2} - x - 2 = 0$ $\Rightarrow (x - 2)(x + 1) = 0$ $\Rightarrow x = 2, -1 (x = -1 \text{ rejected})$

Required area =
$$2\left[\int_{0}^{2} (x+2)dx - \int_{0}^{2} x^{2}dx\right]$$

$$= 2 \left[\frac{(x+2)^2}{2} - \frac{x^3}{3} \right]_0$$
 1

$$= 2\left[6 - \frac{8}{3}\right] = \frac{20}{3} \text{ sq. units}$$

Using integration, find the area of a triangle whose vertices are (1,0), (2, 2) and (3,1).



Required area =
$$2\int_{1}^{2} (x-1)dx + \int_{2}^{3} (4-x)dx - \frac{1}{2}\int_{1}^{3} (x-1)dx$$
 $1\frac{1}{2}$

$$=2\left[\frac{(x-1)^2}{2}\right]_1^2 - \left[\frac{(4-x)^2}{2}\right]_2^3 - \frac{1}{2}\left[\frac{(x-1)^2}{2}\right]_1^3$$
 1

$$=1+\frac{3}{2}-1=\frac{3}{2}$$
 sq. units 1

36. Show that the lines

$$\frac{x-2}{1} = \frac{y-2}{3} = \frac{z-3}{1}$$
 and $\frac{x-2}{1} = \frac{y-3}{4} = \frac{z-4}{2}$ intersect.

Also, find the coordinates of the point of intersection. Find the equation of the plane containing the two lines.

Ans:
$$\frac{x-2}{1} = \frac{y-2}{3} = \frac{z-3}{1} = \lambda$$
 (say)
and $\frac{x-2}{1} = \frac{y-3}{3} = \frac{z-4}{2} = \mu$ (say)

Arbitrary points on the lines are

$$(\lambda + 2, 3\lambda + 2, \lambda + 3)$$
 and $(\mu + 2, 4\mu + 3, 2\mu + 4)$

$$\Rightarrow \lambda + 2 = \mu + 2$$
, and $\lambda + 3 = 2\mu + 4$

$$\Rightarrow \quad \lambda = \mu, \text{ solving we get } \lambda = -1, \quad \mu = -1$$

$$\lambda = -1, \quad \mu = -1 \text{ satisfying y-coordinates } 3\lambda + 2 = 4\mu + 3$$
1

15

1

$$\therefore$$
 Point of intersection is $(1, -1, 2)$

Equation of plane passing through two given lines are

$$\begin{vmatrix} x-2 & y-2 & z-3 \\ 1 & 3 & 1 \\ 1 & 4 & 2 \end{vmatrix} = 0$$

$$\Rightarrow 2x - y + z - 5 = 0$$
1