CBSE Class 12 Maths Question Paper Solution 2020 Set 65/3/1 QUESTION PAPER CODE 65/3/1
 EXPECTED ANSWER/VALUE POINTS
 SECTION - A

Question Numbers 1 to 20 carry 1 mark each.
Question Numbers 1 to 10 are multiple choice type questions.
Select the correct option.
Q.No.

Marks

1. If f and g are two functions from R to R defined as $f(x)=|x|+x$ and $g(x)=|x|-x$, then fo $g(x)$ for $x<0$ is
(A) $4 x$
(B) $2 x$
(C) 0
(D) $-4 x$

Ans: (D) -4 x
2. The principal value of $\cot ^{-1}(-\sqrt{3})$ is
(A) $-\frac{\pi}{6}$
(B) $\frac{\pi}{6}$
(C) $\frac{2 \pi}{3}$
(D) $\frac{5 \pi}{6}$

Ans: (D) $\frac{5 \pi}{6}$
3. If $A=\left[\begin{array}{rrr}-2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -2\end{array}\right]$, then the value of $|\operatorname{adj} A|$ is
(A) 64
(B) 16
(C) 0
(D) -8

Ans: (A) 64
4. The maximum value of slope of the curve $y=-x^{3}+3 x^{2}+12 x-5$ is
(A) 15
(B) 12
(C) 9
(D) 0

Ans: (A) 15
5. $\int \frac{e^{x}(1+x)}{\cos ^{2}\left(x^{x}\right)} d x$ is equal to
(A) $\tan \left(x e^{x}\right)+c$
(B) $\cot \left(x e^{x}\right)+c$
(C) $\cot \left(e^{x}\right)+c$
(D) $\tan \left[\mathrm{e}^{\mathrm{x}}(1+\mathrm{x})\right]+\mathrm{c}$

Ans: (A) $\tan \left(\mathrm{xe}^{\mathrm{x}}\right)+\mathrm{c}$
6. The degree of the differential equation $x^{2} \frac{d^{2} y}{d x^{2}}=\left(x \frac{d y}{d x}-y\right)^{3}$
(A) 1
(B) 2
(C) 3
(D) 6

Ans: (A) 1
7. The value of p for which $p(\hat{i}+\hat{j}+\hat{k})$ is a unit vector is
(A) 0
(B) $\frac{1}{\sqrt{3}}$
(C) 1
(D) $\sqrt{3}$

Ans: (B) $\frac{1}{\sqrt{3}}$
8. The coordinates of the foot of the perpendicular drawn from the point $(-2,8,7)$ on the XZ-plane is
(A) $(-2,-8,7)$
(B) $(2,8,-7)$
(C) $(-2,0,7)$
(D) $(0,8,0)$

Ans: (C) $(-2,0,7)$
(C) $(-2,0,7)$
9. The vector equation of XY-plane is
(A) $\overrightarrow{\mathrm{r}} \cdot \hat{\mathrm{k}}=0$
(B) $\overrightarrow{\mathrm{r}} \cdot \hat{\mathrm{j}}=0$
(C) $\overrightarrow{\mathrm{r}} \cdot \hat{\mathrm{i}}=0$
(D) $\overrightarrow{\mathrm{r}} \cdot \overrightarrow{\mathrm{n}}=1$

Ans: (A) $\overrightarrow{\mathrm{r}} . \hat{\mathrm{k}}=0$
10. The feasible region for an LPP is shown below:

Let $z=3 x-4 y$ be the objective function. Minimum of z occurs at

(A) $(0,0)$
(B) $(0,8)$
(C) $(5,0)$
(D) $(4,10)$

Ans: (B) $(0,8)$
Fill in the blanks in questions numbers 11 to 15
11. If $y=\tan ^{-1} x+\cot ^{-1} x, x \in R$, then $\frac{d y}{d x}$ is equal to \qquad .
Ans: 0

OR

If $\cos (x y)=k$, where k is a constant and $x y \neq n \pi, n \in Z$, then $\frac{d y}{d x}$ is equal to \qquad .

Ans: $-\frac{y}{x}$
12. The value of λ so that the function f defined by $f(x)=\left\{\begin{array}{cll}\lambda x, & \text { if } & x \leq \pi \\ \cos x, & \text { if } & x>\pi\end{array}\right.$ is continuous at $\mathrm{x}=\pi$ is \qquad
Ans: $-\frac{1}{\pi}$
13. The equation of the tangent to the curve $y=\sec x$ at the point $(0,1)$ is \qquad -
Ans: $\mathrm{y}=1$
14. The area of the parallelogram whose diagonals are $2 \hat{i}$ and $-3 \hat{k}$ is
\qquad square units.

Ans: 3
1

OR

The value of λ for which the vectors $2 \hat{i}-\lambda \hat{j}+\hat{k}$ and $\hat{i}+2 \hat{j}-\hat{k}$ are orthogonal is \qquad -

Ans: $\frac{1}{2}$
15. A bag contains 3 black, 4 red and 2 green balls. If three balls are drawn simultaneously at random, then the probability that the balls are of different colours is \qquad Ans: $\frac{2}{7}$

Question numbers 16 to 20 are very short answer type questions

16. Construct a 2×2 matrix $\mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right]$ whose elements are given by $\mathrm{a}_{\mathrm{ij}}=\left|(\mathrm{i})^{2}-\mathrm{j}\right|$.
Ans: $\left[\begin{array}{ll}0 & 1 \\ 3 & 2\end{array}\right]$
$\frac{1}{2}$ mark for any two correct $=\mathbf{1}$
17. Differentiate $\sin ^{2}(\sqrt{x})$ with respect to x.

$$
\begin{equation*}
\text { Ans: } \frac{\sin (2 \sqrt{x})}{2 \sqrt{x}} \text { or } \frac{\sin \sqrt{x} \cos \sqrt{x}}{\sqrt{x}} \tag{1}
\end{equation*}
$$

18. Find the interval in which the function f given by $f(x)=7-4 x-x^{2}$ is strictly increasing.

Ans: $f^{\prime}(x)=-4-2 x$
$\Rightarrow f(x)$ is increasing on $(-\infty,-2)$
19. Evaluate: $\int_{-2}^{2}|x| d x$.

Ans: $\int_{-2}^{2}|x| d x=-\int_{-2}^{0} x d x+\int_{0}^{2} x d x=4$
$1 / 2+1 / 2$

OR

Find $\int \frac{d x}{9+4 x^{2}}$
Ans: $\int \frac{d x}{9+4 x^{2}}=\frac{1}{6} \tan ^{-1} \frac{2 \mathrm{x}}{3}+\mathrm{c}$
1/2+1/2
20. An unbiased coin is tossed 4 times. Find the probability of getting at least one head.
Ans: $1-\left(\frac{1}{2}\right)^{4}=\frac{15}{16}$

SECTION-B

Question numbers 21 to 26 carry 2 marks each.
21. Solve for $x: \sin ^{-1} 4 x+\sin ^{-1} 3 x=-\frac{\pi}{2}$

$$
\text { Ans: } \begin{aligned}
& \sin ^{-1}(4 x)+\sin ^{-1}(3 x)=-\frac{\pi}{2} \\
& \Rightarrow \quad \sin ^{-1}(4 x)=-\frac{\pi}{2}-\sin ^{-1}(3 x) \\
& \Rightarrow \quad 4 x=-\sin \left(\frac{\pi}{2}+\sin ^{-1} 3 x\right) \\
& =-\cos \left(\sin ^{-1} 3 x\right) \\
& \Rightarrow \quad-4 x=\sqrt{1-9 x^{2}} \\
\Rightarrow & 16 x^{2}=1-9 x^{2} \\
\Rightarrow & 25 x^{2}=1 \\
\Rightarrow & x^{2}=\frac{1}{25} \Rightarrow x= \pm \frac{1}{5} \\
& \text { As } \quad \sin ^{-1} 4 x+\sin ^{-1} 3 x<0, x \neq \frac{1}{5} \\
& \text { So, } x=-\frac{1}{5}
\end{aligned}
$$

Express $\tan ^{-1}\left(\frac{\cos x}{1-\sin x}\right),-\frac{3 \pi}{2}<x<\frac{\pi}{2}$ in the simplest form.
Ans: $\begin{aligned} & \tan ^{-1}\left(\frac{\cos x}{1-\sin x}\right)=\tan ^{-1}\left(\frac{\sin \left(\frac{\pi}{2}-x\right)}{1-\cos \left(\frac{\pi}{2}-x\right)}\right) \\ & =\tan ^{-1}\left[\cot \left(\frac{\pi}{4}-\frac{x}{2}\right)\right] \\ & =\tan ^{-1}\left[\tan \left(\frac{\pi}{2}-\frac{\pi}{4}+\frac{x}{2}\right)\right]=\frac{\pi}{4}+\frac{x}{2}\end{aligned}$
22. Express $A=\left[\begin{array}{ll}4 & -3 \\ 2 & -1\end{array}\right]$ as a sum of a symmetric and a skew symmetric matrix.

Ans: $A=\left[\begin{array}{ll}4 & -3 \\ 2 & -1\end{array}\right] \Rightarrow A^{T}=\left[\begin{array}{cc}4 & 2 \\ -3 & -1\end{array}\right]$

$$
\begin{aligned}
& \mathrm{P}=\frac{\mathrm{A}+\mathrm{A}^{\mathrm{T}}}{2}=\frac{1}{2}\left[\begin{array}{cc}
8 & -1 \\
-1 & -2
\end{array}\right] \\
& \mathrm{Q}=\frac{\mathrm{A}-\mathrm{A}^{\mathrm{T}}}{2}=\frac{1}{2}\left[\begin{array}{cc}
0 & -5 \\
5 & 0
\end{array}\right]
\end{aligned}
$$

Now, $\mathrm{A}=\mathrm{P}+\mathrm{Q}$

$$
\mathrm{P}+\mathrm{Q}=\frac{1}{2}\left[\begin{array}{ll}
8 & -6 \\
4 & -2
\end{array}\right]=\left[\begin{array}{ll}
4 & -3 \\
2 & -1
\end{array}\right]=\mathrm{A}
$$

23. If $y^{2} \cos \left(\frac{1}{x}\right)=a^{2}$, then find $\frac{d y}{d x}$.

Ans: $y^{2} \cos \left(\frac{1}{x}\right)=\mathrm{a}^{2}$

$$
\begin{array}{ll}
& \text { Then } 2 y \frac{d y}{d x} \cdot \cos \left(\frac{1}{x}\right)-y^{2} \sin \left(\frac{1}{x}\right)\left(-\frac{1}{x^{2}}\right)=0 \\
\Rightarrow & 2 y \cdot \cos \left(\frac{1}{x}\right) \frac{d y}{d x}=-\frac{y^{2}}{x^{2}} \sin \left(\frac{1}{x}\right) \\
\therefore \quad & \frac{d y}{d x}=-\frac{y}{2 x^{2}} \tan \left(\frac{1}{x}\right)
\end{array}
$$

24. Show that for any two non-zero vectors \vec{a} and $\vec{b},|\vec{a}+\vec{b}|=|\vec{a}-\vec{b}|$ iff \vec{a} and \vec{b} are perpendicular vectors.

Ans: $\quad|\vec{a}+\vec{b}|=|\vec{a}-\vec{b}|$
$\Rightarrow \quad|\vec{a}+\vec{b}|^{2}=|\vec{a}-\vec{b}|^{2}$
$\Rightarrow \quad 4 \vec{a} \cdot \vec{b}=0$ or $\vec{a} \cdot \vec{b}=0$ or $\vec{a} \perp \vec{b}$
Let $\vec{a} \perp \vec{b}$
Then $\vec{a} \cdot \vec{b}=0$
Thus, $|\vec{a}+\vec{b}|^{2}=|\vec{a}|^{2}+|\vec{b}|^{2}$ and $|\vec{a}-\vec{b}|^{2}=|\vec{a}|^{2}+|\vec{b}|^{2}$
$\Rightarrow \quad|\vec{a}+\vec{b}|=|\vec{a}-\vec{b}|$

OR

Show that vectors $2 \hat{i}-\hat{j}+\hat{k}, 3 \hat{i}+7 \hat{j}+\hat{k}$ and $5 \hat{i}+6 \hat{j}+2 \hat{k}$ form the sides of a right-angled triangle.

Ans: Let $\vec{a}=2 \hat{i}-\hat{j}+\hat{k}, \vec{b}=3 \hat{i}+7 \hat{j}+\hat{k}$ and $\vec{c}=5 \hat{i}+6 \hat{j}+2 \hat{k}$

Since $\vec{c}=\vec{a}+\vec{b}$, three vectors form a triangle.
Also, $\vec{a} \cdot \vec{b}=0$.
So, triangle is a right angled triangle.
25. Find the coordinates of the point where the line through $(-1,1,-8)$ and $(5,-2,10)$ crosses the ZX-plane.
Ans: Let the line segment AB is cut by ZX-plane in the ratio $1: \lambda$.
So, y-coordinate is zero.
i.e., $\frac{-2+\lambda}{1+\lambda}=0$ i.e. $\lambda=2$
\therefore The point of intersection is $(1,0,-2)$
26. If A and B are two events such that $P(A)=0.4, P(B)=0.3$ and $\mathrm{P}(\mathrm{A} \cup \mathrm{B})=0.6$, then find $\mathrm{P}\left(\mathrm{B}^{\prime} \cap \mathrm{A}\right)$.

Ans: $\quad \mathrm{P}(\mathrm{A} \cap \mathrm{B})=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A} \cup \mathrm{B})=0.1$

$$
\mathrm{P}\left(\mathrm{~B}^{\prime} \cap \mathrm{A}\right)=\mathrm{P}(\mathrm{~A})-\mathrm{P}(\mathrm{~A} \cap \mathrm{~B})=0.3
$$

SECTION-C

Question numbers 27 to 32 carry 4 marks each.
27. Show that the function $f:(-\infty, 0) \rightarrow(-1,0)$ defined by $\mathrm{f}(\mathrm{x})=\frac{\mathrm{x}}{1+|\mathrm{x}|}, x \in(-\infty, 0)$ is one-one and onto.

Ans: Let $x_{1}, x_{2} \in(-\infty, 0)$ such that $f\left(x_{1}\right)=f\left(x_{2}\right)$

$$
\begin{array}{cc}
& \text { i.e., } \frac{x_{1}}{1+\left|x_{1}\right|}=\frac{x_{2}}{1+\left|x_{2}\right|} \\
\Rightarrow & \frac{x_{1}}{1-x_{1}}=\frac{x_{2}}{1-x_{2}} \\
\Rightarrow & x_{1}-x_{1} x_{2}=x_{2}-x_{1} x_{2} \\
\Rightarrow & x_{1}=x_{2}
\end{array}
$$

$\therefore \quad \mathrm{f}$ is one-one.
Let $\mathrm{y} \in(-1,0)$ such that $\mathrm{y}=\frac{\mathrm{x}}{1+|\mathrm{x}|}$
$\Rightarrow \quad y=\frac{x}{1-x}$
$\Rightarrow \quad x=\frac{y}{1+y}$
For each $y \in(-1,0)$, there exists $x \in(-\infty, 0)$,
such that $f(x)=f\left(\frac{y}{1+y}\right)=\frac{\frac{y}{1+y}}{1+\left|\frac{y}{1+y}\right|}$

$$
=\frac{\frac{y}{1+y}}{1-\frac{y}{1+y}}=y
$$

Hence f is onto.

OR

Show that the relation R in the set $\mathrm{A}=\{1,2,3,4,5,6\}$ given by $\mathrm{R}=\{(\mathrm{a}, \mathrm{b}):|\mathrm{a}-\mathrm{b}|$ is divisible by 2$\}$ is an equivalence relation.
Ans: Reflexive: $|a-a|=0$, which is divisible by 2 for all $a \in A$.
$\therefore(a, a) \in R \Rightarrow R$ is reflexive.
Symmetric: Let $(a, b) \in R$ i.e., $|a-b|=2 \lambda, \lambda \in \omega$
then $|b-a|=|-(a-b)|=|a-b|=2 \lambda$

$$
\Rightarrow(b, a) \in R \Rightarrow R \text { is symmetric. }
$$

Transitive : Let $(a, b),(b, c) \in R$ i.e., $|a-b|=2 \lambda,|b-c|=2 \mu$

$$
\begin{aligned}
& a-c=(a-b)+(b-c)= \pm 2 \lambda \pm 2 \mu= \pm 2(\lambda+\mu) \\
& |a-c|=2|\lambda+\mu|, \text { which is divisible by } 2 \\
& \Rightarrow(a, c) \in R \Rightarrow R \text { is transitive. }
\end{aligned}
$$

Hence R is an equivalence relation.
28. If $y=x^{3}(\cos x)^{x}+\sin ^{-1} \sqrt{x}$, find $\frac{d y}{d x}$.

Ans: Let $u=x^{3}(\cos x)^{x}$ and $v=\sin ^{-1} \sqrt{x}$ so that $y=u+v$

$$
\log u=3 \log x+x \log (\cos x)
$$

$\Rightarrow \quad \frac{1}{u} \frac{d u}{d x}=\frac{3}{x}-x \tan x+\log \cos x$
$\Rightarrow \quad \frac{d u}{d x}=x^{3}(\cos x)^{x}\left[\frac{3}{x}-x \tan x+\log \cos x\right]$
and $v=\sin ^{-1} \sqrt{x} \Rightarrow \frac{d v}{d x}=\frac{1}{2 \sqrt{x} \sqrt{1-x}}$
(ii)

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d u}{d x}+\frac{d v}{d x} \\
\Rightarrow \quad \frac{d y}{d x} & =x^{3}(\cos x)^{x}\left[\frac{3}{x}-x \tan x+\log \cos x\right]+\frac{1}{2 \sqrt{x-x^{2}}}
\end{aligned}
$$

29. Evaluate: $\int_{-1}^{5}(|x|+|x+1|+|x-5|) d x$

Ans: If $x \in[-1,0] \Rightarrow f(x)=-x+x+1-x+5=6-x$
If $x \in[0,5] \Rightarrow f(x)=x+x+1-x+5=x+6$

$$
\begin{aligned}
\therefore \int_{-1}^{5}(|x|+|x+1|+|x-5|) d x & =\int_{-1}^{0}(6-x) d x+\int_{0}^{5}(x+6) d x \\
& =\left[\frac{(6-x)^{2}}{-2}\right]_{-1}^{0}+\left[\frac{(x+6)^{2}}{2}\right]_{0}^{5} \\
& =\frac{13}{2}+\frac{85}{2}=49
\end{aligned}
$$

30. Find the general solution of the differential equation $x^{2} y d x-\left(x^{3}+y^{3}\right) d y=0$

Ans: $\frac{d x}{d y}=\frac{x^{3}+y^{3}}{x^{2} y}$

$$
\text { Put } x=v y \Rightarrow \frac{d x}{d y}=v+y \cdot \frac{d v}{d y}
$$

$\therefore \quad v+y \frac{d v}{d y}=\frac{y^{3}\left(v^{3}+1\right)}{y^{3} v^{2}}$
$\Rightarrow \mathrm{y} \frac{\mathrm{dv}}{\mathrm{dy}}=\frac{1}{\mathrm{v}^{2}}$
$\Rightarrow v^{2} d v=\frac{d y}{y}$
Integrating both sides, we get

$$
\begin{aligned}
& \frac{v^{3}}{3}=\log y+c \Rightarrow \frac{x^{3}}{3 y^{3}}=\log y+c \\
& \Rightarrow x^{3}=3 y^{3} \log y+3 c y^{3}
\end{aligned}
$$

31. Solve the following LPP graphically:

Minimise $\mathrm{z}=5 \mathrm{x}+7 \mathrm{y}$
subject to the constraints

$$
\begin{gathered}
2 x+y \geq 8 \\
x+2 y \geq 10 \\
x, y \geq 0
\end{gathered}
$$

Ans:

Corner Points	\mathbf{Z}
A (0, 8)	56
B (2, 4)	$38=8$
C $(10,0)$	50

To verify whether the smallest value of $z=38$ is the minimum value we draw open half plane.
$5 x+7 y<38$. Since there is no common point with the possible feasible region except $(2,4)$.

Hence minimum value of $\mathrm{z}=38$ at $\mathrm{x}=2$ and $\mathrm{y}=4$.
32. A bag contains two coins, one biased and the other unbiased. When tossed, the biased coin has a 60% chance of showing heads. One of the coins is selected at random and on tossing it shows tails. What is the probability it was an unbiased coin?
Ans: Let E_{1} be the event that unbiased coin is tossed.
E_{2} be the event that biased coin is tossed.
A be the event that coin tossed shows tail

$$
\begin{aligned}
& \mathrm{P}\left(\mathrm{E}_{1}\right)=\frac{1}{2}, \mathrm{P}\left(\mathrm{E}_{2}\right)=\frac{1}{2}, \mathrm{P}\left(\mathrm{~A} \mid \mathrm{E}_{1}\right)=\frac{1}{2}, \mathrm{P}\left(\mathrm{~A} \mid \mathrm{E}_{2}\right)=\frac{2}{5} \\
& \mathrm{P}\left(\mathrm{E}_{1} \mid \mathrm{A}\right)=\frac{\mathrm{P}\left(\mathrm{E}_{1}\right) \cdot \mathrm{P}\left(\mathrm{~A} \mid \mathrm{E}_{1}\right)}{\mathrm{P}\left(\mathrm{E}_{1}\right) \cdot \mathrm{P}\left(\mathrm{~A} \mid \mathrm{E}_{1}\right)+\mathrm{P}\left(\mathrm{E}_{2}\right) \cdot \mathrm{P}\left(\mathrm{~A} \mid \mathrm{E}_{2}\right)}
\end{aligned}
$$

$$
=\frac{\frac{1}{2} \times \frac{1}{2}}{\frac{1}{2} \times \frac{1}{2}+\frac{1}{2} \times \frac{2}{5}}=\frac{5}{9}
$$

OR

The probability distribution of a random variable X , where k is a constant is given below:

$$
\mathrm{P}(\mathrm{X}=\mathrm{x})=\left\{\begin{array}{ccc}
0 \cdot 1, & \text { if } & \mathrm{x}=0 \\
\mathrm{k} \mathrm{x}^{2}, & \text { if } & \mathrm{x}=1 \\
\mathrm{kx}, & \text { if } & \mathrm{x}=2 \text { or } 3 \\
0, & \text { otherwise } &
\end{array}\right.
$$

Determine
(a) the value of k
(b) $\mathrm{P}(\mathrm{x} \leq 2)$
(c) Mean of the variable X .

Ans:

\mathbf{x}_{i}	\mathbf{P}_{i}
0	0.1
1	k
2	2 k
3	3 k

(i) $\quad \sum \mathrm{P}_{\mathrm{i}}=1$

$$
\Rightarrow 0 \cdot 1+6 \mathrm{k}=1
$$

$$
\Rightarrow \quad \mathrm{k}=\frac{3}{20}
$$

(ii) $\mathrm{P}(\mathrm{x} \leq 2)=0.1+3 \mathrm{k}$

$$
=\frac{1}{10}+\frac{9}{20}=\frac{11}{20}
$$

(iii) Mean $=\sum \mathrm{P}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}=14 \mathrm{k}=\frac{21}{10}$

SECTION-D

Question numbers 33 to 36 carry 6 marks each.
33. Solve the following system of equations by matrix method:

$$
\begin{aligned}
x-y+2 z & =7 \\
2 x-y+3 z & =12 \\
3 x+2 y-z & =5
\end{aligned}
$$

Ans: Writing given equations in matrix form

$$
\left[\begin{array}{ccc}
1 & -1 & 2 \\
2 & -1 & 3 \\
3 & 2 & -1
\end{array}\right]\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y} \\
\mathrm{z}
\end{array}\right]=\left[\begin{array}{c}
7 \\
12 \\
5
\end{array}\right]
$$

Which is of the form $\mathrm{AX}=\mathrm{B}$
Here $|\mathrm{A}|=-2 \neq 0$

$$
\begin{aligned}
& \mathrm{A}^{-1}=\frac{1}{-2}\left[\begin{array}{ccc}
-5 & 3 & -1 \\
11 & -7 & 1 \\
7 & -5 & 1
\end{array}\right] \\
& \therefore \quad \mathrm{X}=\mathrm{A}^{-1} \mathrm{~B}=\frac{1}{-2}\left[\begin{array}{ccc}
-5 & 3 & -1 \\
11 & -7 & 1 \\
7 & -5 & 1
\end{array}\right]\left[\begin{array}{c}
7 \\
12 \\
5
\end{array}\right]=\left[\begin{array}{l}
2 \\
1 \\
3
\end{array}\right] \\
& \Rightarrow \quad \mathrm{x}=2, \mathrm{y}=1, \mathrm{z}=3
\end{aligned}
$$

OR

Obtain the inverse of the following matrix using elementary operations:
$A=\left[\begin{array}{rrr}2 & 1 & -3 \\ -1 & -1 & 4 \\ 3 & 0 & 2\end{array}\right]$
Ans: Using elementary row transformation,

$$
A=I A \Rightarrow\left[\begin{array}{ccc}
2 & 1 & -3 \\
-1 & -1 & 4 \\
3 & 0 & 2
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \cdot \mathrm{A}
$$

Operating $\mathrm{R}_{1} \rightarrow \mathrm{R}_{1}+\mathrm{R}_{2}$

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
1 & 0 & 1 \\
-1 & -1 & 4 \\
3 & 0 & 2
\end{array}\right]=\left[\begin{array}{ccc}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] A} \\
& \mathrm{R}_{2} \rightarrow \mathrm{R}_{2}+\mathrm{R}_{1}, \mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-3 \mathrm{R}_{1}
\end{aligned}
$$

$\left[\begin{array}{ccc}1 & 0 & 1 \\ 0 & -1 & 5 \\ 0 & 0 & -1\end{array}\right]=\left[\begin{array}{ccc}1 & 1 & 0 \\ 1 & 2 & 0 \\ -3 & -3 & 1\end{array}\right] \cdot \mathrm{A}$
$\mathrm{R}_{2} \rightarrow-\mathrm{R}_{2}$
$\left[\begin{array}{ccc}1 & 0 & 1 \\ 0 & 1 & -5 \\ 0 & 0 & -1\end{array}\right]=\left[\begin{array}{ccc}1 & 1 & 0 \\ -1 & -2 & 0 \\ -3 & -3 & 1\end{array}\right] \cdot \mathrm{A}$
$\mathrm{R}_{1} \rightarrow \mathrm{R}_{1}+\mathrm{R}_{3}, \mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-5 \mathrm{R}_{3}$
$\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1\end{array}\right]=\left[\begin{array}{ccc}-2 & -2 & 1 \\ 14 & 13 & -5 \\ -3 & -3 & 1\end{array}\right] \cdot \mathrm{A}$
$R_{3} \rightarrow-R_{3}$
$\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{ccc}-2 & -2 & 1 \\ 14 & 13 & -5 \\ 3 & 3 & -1\end{array}\right] \cdot \mathrm{A}$
$\Rightarrow \mathrm{A}^{-1}=\left[\begin{array}{ccc}-2 & -2 & 1 \\ 14 & 13 & -5 \\ 3 & 3 & -1\end{array}\right]$
34. Find the points on the curve $9 y^{2}=x^{2}$, where the normal to the curve makes equal intercepts with both the axes. Also find the equation of the normals.

Ans: Equation of given curve, $9 y^{2}=x^{3}$

$$
\begin{equation*}
\Rightarrow \quad 18 y \frac{d y}{d x}=3 x^{2} \Rightarrow \frac{d y}{d x}=\frac{x^{2}}{6 y} \tag{i}
\end{equation*}
$$

Slope of normal $=\frac{-6 y}{x^{2}}$

$$
-\frac{6 y}{x^{2}}= \pm 1 \quad \text { (given) }
$$

$$
\begin{equation*}
\Rightarrow \quad y= \pm \frac{x^{2}}{6} \tag{ii}
\end{equation*}
$$

From (i) \& (ii), we get
$9 \cdot \frac{x^{4}}{36}=x^{3} \Rightarrow x^{3}(x-4)=0 \Rightarrow x=0,4(x=0$ is rejected $)$
$x=4, y^{2}=\frac{64}{9} \Rightarrow y= \pm \frac{8}{3}$
Point of contacts are $\left(4, \frac{8}{3}\right),\left(4, \frac{-8}{3}\right)$
Equation of normal at $\left(4, \frac{8}{3}\right)$ is $y-\frac{8}{3}=-(x-4)$
$\Rightarrow 3 x+3 y-20=0$

$$
\text { and equation of normal at }\left(4,-\frac{8}{3}\right) \text { is } y+\frac{8}{3}=-(x-4)
$$

$$
\Rightarrow 3 x+3 y=20
$$

35. Find the area of the following region using integration: $\left\{(x, y): y \leq|x|+2, y \geq x^{2}\right\}$.

Ans:

[Correct figure and shade (2)]

$$
\begin{aligned}
& y=x^{2} \\
& \begin{aligned}
y=|x|+2 & =x+2, \text { if } x \geq 0 \\
& =-x+2, \text { if } x<0
\end{aligned}
\end{aligned}
$$

Solving, $\mathrm{y}=\mathrm{x}^{2}$ and $\mathrm{y}=\mathrm{x}+2$
$\mathrm{x}^{2}=\mathrm{x}+2 \Rightarrow \mathrm{x}^{2}-\mathrm{x}-2=0$
$\Rightarrow(\mathrm{x}-2)(\mathrm{x}+1)=0$
$\Rightarrow \mathrm{x}=2,-1(\mathrm{x}=-1$ rejected $)$

$$
\begin{align*}
\text { Required area } & =2\left[\int_{0}^{2}(x+2) d x-\int_{0}^{2} x^{2} d x\right] \tag{1}\\
& =2\left[\frac{(x+2)^{2}}{2}-\frac{x^{3}}{3}\right]_{0}^{2} \\
& =2\left[6-\frac{8}{3}\right]=\frac{20}{3} \text { sq. units }
\end{align*}
$$

OR

Using integration, find the area of a triangle whose vertices are (1,0), (2, 2) and $(3,1)$.

Ans:
Equations of $\mathrm{AB} ; \mathrm{y}=2 \mathrm{x}-2$

Required area $=2 \int_{1}^{2}(x-1) d x+\int_{2}^{3}(4-x) d x-\frac{1}{2} \int_{1}^{3}(x-1) d x$

$$
\begin{aligned}
& =2\left[\frac{(x-1)^{2}}{2}\right]_{1}^{2}-\left[\frac{(4-x)^{2}}{2}\right]_{2}^{3}-\frac{1}{2}\left[\frac{(x-1)^{2}}{2}\right]_{1}^{3} \\
& =1+\frac{3}{2}-1=\frac{3}{2} \text { sq. units }
\end{aligned}
$$

36. Show that the lines
$\frac{x-2}{1}=\frac{y-2}{3}=\frac{z-3}{1}$ and $\frac{x-2}{1}=\frac{y-3}{4}=\frac{z-4}{2}$ intersect.
Also, find the coordinates of the point of intersection. Find the equation of the plane containing the two lines.

Ans: $\frac{\mathrm{x}-2}{1}=\frac{\mathrm{y}-2}{3}=\frac{\mathrm{z}-3}{1}=\lambda$ (say)
and $\frac{x-2}{1}=\frac{y-3}{3}=\frac{z-4}{2}=\mu$ (say)
Arbitrary points on the lines are
$(\lambda+2,3 \lambda+2, \lambda+3)$ and $(\mu+2,4 \mu+3,2 \mu+4)$
$\Rightarrow \lambda+2=\mu+2$, and $\lambda+3=2 \mu+4$
$\Rightarrow \lambda=\mu$, solving we get $\lambda=-1, \mu=-1$
$\lambda=-1, \mu=-1$ satisfying y-coordinates $3 \lambda+2=4 \mu+3$
$\therefore \quad$ Point of intersection is $(1,-1,2)$
$\left|\begin{array}{ccc}x-2 & y-2 & z-3 \\ 1 & 3 & 1 \\ 1 & 4 & 2\end{array}\right|=0$

