

PHYSICS

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which **ONLY ONE** is correct.

Choose the correct answer:

1. In the circuit shown find the equivalent resistance between terminals *A* and *B*.

(4) R

2

Redrawing the structure.

It is wheatstone bridge so

$$R_{\rm net} = \frac{2R \times 2R}{2R + 2R} = R$$

An object of height *h* is placed in front of a convex mirror (radius of curvature = 20 cm).
 Find the height of the image.

Sol.
$$\frac{1}{v} + \frac{1}{u} = \frac{1}{f}$$

 $\Rightarrow \frac{1}{v} + \frac{1}{-20} = \frac{1}{10}$
 $\Rightarrow \frac{1}{v} = \frac{3}{20}$
 $\Rightarrow v = \frac{20}{3}$
 $\Rightarrow m = -\frac{v}{u} = \frac{1}{3}$

- 3. A uniform solid cylinder of radius R, is released from a 600 m long ramp, inclined at 30° from the horizontal. Find the time taken to reach the bottom of ramp. (Consider sufficient friction for pure rolling)
 - (1) 60 sec
 - (2) $6\sqrt{10}$ sec
 - (3) 3√10 sec
 - (4) 20 sec

Answer (2)

 $mg\sin\theta - f_r = ma$

Also,
$$\frac{3}{2}mR^2\alpha = mg\sin\theta \times R$$

$$\Rightarrow \quad \frac{3}{2}mR = mg\sin\theta$$

$$a = \frac{2}{3}g\sin\theta = \frac{2}{3} \times g \times \sin 30^\circ = \left(\frac{g}{3}\right) = \frac{10}{3} \text{ m/s}^2$$

$$S = 600 \text{ m}$$
time = $\sqrt{\frac{2s}{a}} = \sqrt{\frac{1200 \times 3}{10}}$

$$= \sqrt{360}$$

 $= 6\sqrt{10}$ seconds

JEE (Main)-2023 : Phase-1 (01-02-2023)-Morning

 A ball is thrown horizontally from a height of 10 m with a speed of 5 ms⁻¹ as shown. Find the speed with which it strikes the ground.

- (1) 15 m/s
- (2) 5 m/s
- (3) 10 m/s
- (4) 20 m/s

Answer (1)

Sol.

 $v^2 = u^2 + 2gh$

 $v^2 = 25 + 2 \times 10 \times 10$

 $v^2 = 225$

$$v = \sqrt{225}$$

= 15 m/s

- 5. An ideal gas (adiabatic constant = 3/2) undergoes an adiabatic expansion process where change in temperature is -T. If there are 2 moles of the gas, find the work done by the gas.
 - (1) 3*RT*
 - (2) 2*RT*
 - (3) 4*RT*
 - (4) –*RT*

Sol.
$$W = \frac{nR\Delta T}{1-\gamma}$$
$$= \frac{2 \cdot R \cdot (-T)}{1-\frac{3}{2}}$$

= 4RT

6. **Statement-1** : Value of acceleration due to gravity is same at all the point inside earth assuming it to be made up of uniform density.

Statement-2: Value of gravitational field increases as we go towards centre in a uniform spherical shell.

- (1) Both statement-1 and statement-2 are true
- (2) Statement-1 is true but statement-2 is false
- (3) Statement-1 is false but statement-1 is true
- (4) Both statement-1 and statement-2 are false

Answer (4)

- **Sol.** Value of acceleration due to gravity decreases as we go inside the earth and it does not change inside the spherical shell.
- 7. An infinite wire is bent in the shape as shown:

Find the magnetic field at point C.

(1)
$$\frac{\mu_0 i(1+\pi)}{4\pi R}$$
 (2) $\frac{\mu_0 i(2+\pi)}{4\pi R}$
(3) $\frac{\mu_0 i(1+\pi)}{2\pi R}$ (4) $\frac{\mu_0 i}{2R}$

Answer (1)

Sol.
$$B = \frac{\mu_0 i}{4\pi R} [\sin 90^\circ + \sin 0^\circ] + \frac{\mu_0 i}{4R} + 0$$

 $= \frac{\mu_0 i}{4\pi R} [1 + \pi]$

 A force of 30 N is applied on a block of mass 5 kg. The block travels a distance of 50 m in 10 sec starting from rest. Find coefficient of friction

$$5 \text{ kg} \rightarrow 30 \text{ N}$$

Rough
(1) 0.5 (2) 0.7
(3) 0.3 (4) 0.8

Answer (1)

Sol.

$$m = 5 \text{ kg}$$

$$30 - \mu mg = ma \Rightarrow a = \left(\frac{30 - 50\mu}{5}\right)$$

$$S = \frac{1}{2}at^{2}$$

$$\Rightarrow 50 = \frac{1}{2}a \times t^{2}$$

$$\Rightarrow \frac{100}{100} = a$$

$$a = 1 \text{ m/s}^{2}$$

$$\Rightarrow \frac{30 - 50\mu}{5} = 1$$

$$\Rightarrow \mu = \frac{25}{50} = \frac{1}{2} = 0.5$$

- 9. Which of the following is not the frequency of frequency modulated (FM) signal?
 - (1) 90 MHz
 - (2) 89 MHz
 - (3) 106 MHz
 - (4) 100 KHz

Answer (4)

- Sol. Band of FM is in MHz
- 10. For a real gas, the equation of gas is given by $\left(P + \frac{an^2}{V^2}\right) (V bn) = nRT$. If symbols have their

usual meaning then the dimensions of $\frac{V^2}{an^2}$ is same

as that of

- (1) Compressibility (2) Bulk modulus
- (3) Viscosity (4) Energy density

Answer (1)

Sol.
$$[P] = \left[\frac{an^2}{V^2}\right] =$$
 dimension of bulk modulus.
So $\left[\frac{V^2}{an^2}\right]$ has dimension of compressibility.

JEE (Main)-2023 : Phase-1 (01-02-2023)-Morning

11. A solid cylinder starts pure rolling from top of a fixed inclined plane of slant length 60 cm as shown in the figure. Velocity of centre of mass when the cylinder reaches the bottom is equal to $(g = 10 \text{ m/s}^2)$

- (1) 1 m/sec
- (2) 2 m/sec
- (3) 3 m/sec
- (4) 4 m/sec

Answer (2)

Sol. Using energy conservation

$$mg(0.3) = \frac{1}{2}mv_{cm}^2 + \frac{1}{2} \times \frac{mR^2}{2} \frac{v_{cm}^2}{R^2}$$
$$mg \times 0.3 = \frac{3}{4}mv_{cm}^2$$

v_{cm} = 2 m/sec

12. A stone is thrown vertically up with speed v_0 from a cliff of height *H*. Find the average speed of the ball till the moment it reaches ground. Given that H = 100 m, $v_0 = 10$ m/s, g = 10 m/s².

(1)
$$\frac{64}{1+\sqrt{21}}$$
 m/s (2) 55 m/s

(3)
$$110(1+\sqrt{21})$$
 m/s (4) $\frac{110}{1+\sqrt{21}}$ m/s

Answer (4)

Sol. Total distance =
$$\frac{v_0^2}{2g} \times 2 + 100$$

= 110 m

Total time = t_0

 $\Rightarrow t_0 = 1 + \sqrt{21} s$

$$\Rightarrow -100 = 10t_0 - \frac{1}{2} \times 10 \times t_0^2$$

$$\Rightarrow$$
 Avg. speed = $\frac{110}{1+\sqrt{21}}$ m/s

JEE (Main)-2023 : Phase-1 (01-02-2023)-Morning

- (1) 1.41 × 10⁻⁴ J
- (2) 7.06 × 10⁻⁴ J
- (3) 8.47 × 10⁻⁴ J
- (4) 5.65 × 10⁻⁴ J

Answer (4)

Sol. Let radius of bigger drop was R so

$$\frac{4}{3}\pi R^3 = 125 \times \frac{4}{3}\pi \times (10^{-3})^3$$

$$\Rightarrow R = 5 \times 10^{-3} \text{ m}$$

So $U_i = 4\pi R^2 \sigma = 4\pi \times (5 \times 10^{-3})^2 \times 0.45 = 1.41 \times 10^{-4} \text{ J}$
 $U_f = 125 \times 4\pi t^2 \sigma = 500\pi (10^{-3})^2 \times 0.45 = 7.06 \times 10^{-4} \text{ J}$
So $\Delta U = U_f - U_i$
= 5.65 × 10^{-4} J

- 14. A charged particle with charge 2×10^{-6} C, at rest, is first accelerated through a potential difference of 100 V and then it is subjected to a transverse magnetic field of 4 mT. In region of magnetic field, it undergoes a circular path of radius 3 cm. Mass of the particle is equal to
 - (1) $1.44 \times 10^{-16} \text{ kg}$
 - (2) 7.2×10^{-16} kg
 - (3) 1.44 × 10⁻¹⁰ kg
 - (4) $7.2 \times 10^{-10} \text{ kg}$

Sol. $R = \frac{\sqrt{2mqV}}{aB}$

$$3 \times 10^{-2} = \frac{\sqrt{2m \times 100}}{\sqrt{2 \times 10^{-6}} \times 4 \times 10^{-3}}$$

$$\Rightarrow m = 1.44 \times 10^{-16} \text{ kg}$$

- 15. A string of mass per unit length equal to 7×10^{-3} kg/m is subjected to a tension equal to 70 N. The speed of transverse wave on this string
 - (1) 10 m/sec

is equal to

- (2) 50 m/sec
- (3) 100 m/sec
- (4) 200 m/sec

Sol.
$$v = \sqrt{\frac{T}{\mu}}$$
$$= \sqrt{\frac{70}{7 \times 10^{-3}}}$$
$$= 100 \text{ m/sec}$$

16. Two thin insulating sheets (each having charge density $+\sigma$) are arranged as shown:

Then find the net electric field (magnitude) in the 3 regions:

(1)
$$E_{1} = \frac{\sigma}{\varepsilon_{0}}$$
$$E_{2} = 0$$
$$E_{3} = \frac{\sigma}{\varepsilon_{0}}$$
(2)
$$E_{1} = E_{2} = E_{3} = 0$$
(3)
$$E_{1} = 0$$
$$E_{2} = \frac{\sigma}{2\varepsilon_{0}}$$
$$E_{3} = \frac{\sigma}{\varepsilon_{0}}$$
(4)
$$E_{1} = \frac{\sigma}{\varepsilon_{0}}$$
$$E_{2} = 0$$
$$E_{3} = \frac{\sigma}{2\varepsilon_{0}}$$

Answer (1)

Sol.
$$E_1 = \frac{\sigma}{2\varepsilon_0} + \frac{\sigma}{2\varepsilon_0} = \frac{\sigma}{\varepsilon_0}$$

 $E_2 = \frac{\sigma}{2\varepsilon_0} - \frac{\sigma}{2\varepsilon_0} = 0$
 $E_3 = \frac{\sigma}{2\varepsilon_0} + \frac{\sigma}{2\varepsilon_0} = \frac{\sigma}{\varepsilon_0}$

17. Match the two columns:

	Column I		Column II
a.	Intrinsic semiconductor	1.	Fermi level is closer to conduction band
b.	p-type semiconductor	2.	Fermi level is closer to valence band
c.	n-type semiconductor	3.	Fermi level is inside conduction band
d.	Metal	4.	Fermi level is in between the two bands
(1) $a - 4$, $b - 2$, $c - 1$, $d - 3$ (2) $a - 1$, $b - 3$, $c - 2$, $d - 4$			

- (3) a 3, b 2, c 1, d 4
- (4) a 2, b 1, c 3, d 4

Answer (1)

- Sol. In intrinsic, fermi level is between the two bands.In p-type, fermi level is closer to valence band.In n-type, fermi level is closer to conduction band.In metal, fermi level is inside conduction band.
- 18.

19.

20.

SECTION - B

Numerical Value Type Questions: This section contains 10 questions. In Section B, attempt any five questions out of 10. The answer to each question is a **NUMERICAL VALUE.** For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to the second decimal place; e.g., 06.25, 07.00, -00.33, -00.30, 30.27, -27.30) using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.

21. A cylindrical rod of length 10 cm is placed along the principal axis of concave mirror (f = 20 cm) in such a way that the COM of the rod is at 40 cm from the

pole of mirror. The length of image of rod is $\frac{x}{3}$ cm.

Find x.

JEE (Main)-2023 : Phase-1 (01-02-2023)-Morning

 $=\frac{-5}{180}$

Answer (32.00)

For u = -45 cm

$$\frac{1}{v} + \frac{1}{u} = \frac{1}{f}$$

$$\frac{1}{v} - \frac{1}{45} = \frac{-1}{20}$$

$$\frac{1}{v} = \frac{-1}{20} + \frac{1}{45} = \frac{-9+4}{180}$$

$$v = -36 \text{ cm}$$
For $u = -35 \text{ cm}$

$$\frac{1}{v} = -\frac{1}{20} + \frac{1}{35}$$

$$= \frac{-7+4}{140} = \left(\frac{-3}{140}\right)$$

$$u_2 = -\left(\frac{140}{3}\right)$$

$$|v_1 - v_2| = \left|\frac{140}{3} - 36\right|$$

Length of image $=\left(\frac{32}{3}\right)$ cm

22. In an series LCR circuit connected across 220 V, 50 Hz A.C supply. If the inductive reactance of the circuit is 79.6 Ω . If the power delivered in the circuit is maximum, the capacitance of the circuit is *x* μ F. Find *x*.

Answer (40.00)

Sol. For maximum power, LCR should be resonance condition,

$$X_L = X_C$$

 $\Rightarrow 79.6 = \frac{1}{\omega_c}$

as $\omega = 2\pi f$

= $2\pi \times 50 = 100\pi$ rad/sec

JEE (Main)-2023 : Phase-1 (01-02-2023)-Morning

$$C = \frac{1}{(79.6 \times 100\pi)}$$

= 4 × 10⁻⁵

= 40 × 10⁻⁶ F

= 40 μF

23. An alpha particle and a proton having same de-broglie wavelengths will have kinetic energies in the ratio _____

Answer (00.25)

Sol. Charge on α particle = 2e

Mass of proton = m

Mass of α particle = 4m

$$\frac{\lambda_{p}}{\lambda_{\alpha}} = \frac{(P_{\alpha})}{(P_{p})} = \frac{\sqrt{2K_{\alpha}m_{\alpha}}}{\sqrt{2K_{p}m_{p}}} = 1$$
$$\frac{K_{\alpha}}{K_{p}} \times \left(\frac{m_{\alpha}}{m_{p}}\right) = 1$$
$$\frac{K_{\alpha}}{K_{p}} \times 4 = 1$$
$$\frac{K_{\alpha}}{K_{p}} = \frac{1}{4}$$

24. If mass of a planet is 9 times that of earth and radius is 2 times that of earth, then escape speed from this

planet is $\frac{xv_e}{\sqrt{2}}$. Find *x.* v_e is escape speed from earth.

Answer (03)

Sol.
$$v'_e = \sqrt{\frac{2GM'}{R'}}$$

 $v_e = \sqrt{\frac{2GM}{R}}$
 $\Rightarrow \frac{v'_e}{v_e} = \sqrt{\frac{9}{2}}$
 $\Rightarrow v'_e = \frac{3v_e}{\sqrt{2}}$

25. There are *n* number of polarizers arranged one after the other. Each polarizer pass axis is inclined at 45° with respect to the previous polarizer. Unpolarized light of intensity l_0 is incident on this

setup. Final transmitted light has intensity $\frac{l_0}{64}$. Find *n*.

Answer (06.00)

Sol.
$$I = \frac{l_0}{2} \times \frac{\cos^2 45^\circ \times \cos^2 45^\circ \times \dots}{(n-1) \text{ times}}$$

$$\Rightarrow \frac{l_0}{64} = \frac{l_0}{2} \times \left(\frac{1}{2}\right)^{n-1}$$

$$\Rightarrow n-1 = 5$$

$$\Rightarrow n = 6$$

26. Two point charges each of magnitude *Q* is kept at a separation of 2*a*. The distance from mid point on perpendicular bisector where a point charge will

experience maximum force is $\frac{a}{\sqrt{x}}$. Find the value of *x*.

Answer (02.00)

E due to one charge =
$$\frac{KQ}{(a^2 + y^2)}$$

 E_{net} at point $P = 2E\cos\alpha$

$$=\frac{2KQy}{\left(y^2+a^2\right)^{\frac{3}{2}}}$$

Force = $q E_{net}$

$$\frac{dF}{dy} = 0$$
, for maximum force, on solving $\frac{dF}{dy} = 0$,
we get, $y = \left(\frac{a}{\sqrt{2}}\right)$

27.

- 28.
- 29.

30.