CAT 2003 Answer Key

1.	1	41.	1	81.	3	121.	3
2.	4	42.	3	82.	4	122.	1
3.	2	43.	1	83.	3	123.	4
4.	3	44.	1	84.	2	124.	2
5.	2	45.	3	85.	4	125.	4
6.	4	46.	3	86.	1	126.	3
7.	4	47.	1	87.	1	127.	4
8.	1	48.	2	88.	1	128.	4
9.	3	49.	3	89.	2	129.	3
10.	1	50.	3	90.	3	130.	2
11.	3	51.	4	91.	3	131.	1
12.	2	52.	2	92.	4	132.	3
13.	1	53.	4	93.	1	133.	2
14.	3	54.	2	94.	4	134.	3
15.	2	55.	1	95.	3	135.	4
16.	3	56.	3	96.	1	136.	3
17.	2	57.	4	97.	3	137.	2
18.	4	58.	4	98.	3	138.	3
19.	1	59.	1	99.	2	139.	1
20.	4	60.	2	100.	1	140.	4
21.	2	61.	3	101.	4	141.	4
22.	1	62.	2	102.	3	142.	1
23.	3	63.	4	103.	3	143.	2
24.	3	64.	1	104.	2	144.	3
25.	2	65.	2	105.	3	145.	4
26.	3	66.	3	106.	1	146.	1
27.	3	67.	4	107.	2	147.	2
28.	2	68.	3	108.	3	148.	1
29.	1	69.	1	109.	4	149.	1
30.	4	70.	4	110.	1	150.	2
31.	1	71.	2	111.	3		
32.	2	72.	1	112.	2		
33.	3	73.	1	113.	4		
34.	1	74.	4	114.	2		
35.	2	75.	4	115.	4		
36.	2	76.	3	116.	2		
37.	2	77.	3	117.	3		
38.	1	78.	2	118.	3		
39.	4	79.	4	119.	3		
40.	2	80.	2	120.	2		

CAT 2003 Solutions

1.

The correct idiomatic expression is "...fall back on". "....on the fatalism" is wrong in that fatalism has been used in a very general way and not in any special sense. Please remember that fatalism is only one explanation, so the expression explanations in line C is wrong.
2. Not only has to be coupled with but also to make i correct. Line C makes unnecessary use of two commas apart from having a wrong placement for not only. Line B changes the intended meaning by using not regarded, while line A uses the idiomatically wrong valuable for itself.
3. Line D uses consist, which doe not gel with running, the subject in this case. A similar problem ails line A which uses the same combination. C, apart from being awkward, conveys a wrong meaning. Thus the only option which seems to convey the right idea is 2 .
4. Line B places sixteenth century at the wrong position, thereby rendering it awkward. Line D tends top convey a wrong idea.
5. Line C makes an unnecessarily long sentence, while D changes the idea. Between A and B, the latter is better because if its being clear, unambiguous and crisp.
6. It could have been a group of boy-scouts, a gang of boy scouts etc. A bundle of boy-scouts is certainly an unidiomatic expression.
8. He is clear about would have been a much better and accepted expression.
9. It should be tea of sorts.....
10. The intended idea is that of effort, while implication means involvement in some wrong-doing, because of which it is a misfit.
11. E is a brilliant general, introductory comment, being further elaborated by B. Besides, line A is continued beautifully by D .
12. A makes for a good general, opening line. B-D make an excellent pair for D tends to support B . Again C-E seem to be in good company with each other.
13. A-B form a good pair as B is a consequence of A, but it does no make any sense after D. So option 3 is ruled out. .
15. C talks of a problem, E describes it while A offers a solution to it - CEA. Besides, BD form a logically connected pair.
16. Option 1 is ruled out as the treatment of a problem cannot compound it. Friendship outside college does not facilitate the detection of maladjustment. Between the rest two, option 3 makes much more sense than the other one.
17. One does not ratify defeat, thus option 4 is ruled out. The second word in the first option does not make sense as to acquire something, one needs cash. The third option could have correct but for the absence of of after the word dispose.
18.

Rewards are not conferred, ruling out option 3. The second word in option 2 does not fit in the context. Only option 4 makes logical sense.
20. Between options 1 and 4 , the latter is more sensible, as discrete, despite meaning separate, does not imply different.
21.But do not hurry the journey at all.

Better if it lasts for years, so you are old by the time you reach the island,
22. The last lines of the second and the fourth stanzas hold the key to this question.
23.Wise as you will have become, so full of experience,
you will have understood by then what these Ithakas mean....
25. It is quite an encouraging poem. Thus the answer is justified.
26. Please refer back to the $4^{\text {th }}$ line of the $6^{\text {th }}$ paragraph.
27.The anti-GM campaign has been quite effective in Europe, with several European Union member countries imposing a virtual ban
28. You just need to go back to the very last paragraph.
29. ...It is quite likely that the GM controversy will soon hit the headlines in India since a spokesperson of the Indian Central government has recently announced that the government may use the protato in its midday meal
31. Please red the first few lines of the second paragraph.
32. Interest, wonder, sympathy, and love, the first two leading to the last two, are the psychological prerequisites for social life; and the need for the first two must not be underrated.
33. Please refer back to the first few lines of the $5^{\text {th }}$ paragraph.
35. The penultimate paragraph contains the answer to this question.
36. Please refer to the $4^{\text {th }}$ paragraph.
39. The doctor's research sets up a link between the consumption of red wine and low incidence of heart disease. Obviously, only option 4 tends to support the doctor's conclusion.
40. Please go back to the first few lines from the fifth paragraph.
41. The last few lines of the $3^{\text {rd }}$ paragraph hold the answer to this one.
43. After 1857, the British stopped annexing one princely state after another, and instead treated the princes as allies. 44 . The white man's burden came up as a new moral rationale for conquest. It was supposedly for the good of the conquered.
45. Please go back to the concluding paragraph, last few lines to get the answer.
46.it appeared unlikely that this mathematical law and order should turn out to be restricted to certain special
phenomena \qquad all the physical processes of nature would prove to be unfolding themselves according to rigorous mathematical
47.
laws.
Please refer to lines 4-5 of the first paragraph.
48. The first few lines of the second paragraph hold the key.
50. Read the middle of the concluding paragraph to locate the answer.
51. Here it would be futile for the students to compare all the universities stated above and hence they must keep in mind that they should look through the options and try to locate the answer! The best thing to be done would be to mark these universities in pencil and find the answer! Another thing to be noted is that the answer is choice four, and hence, if the students have checked the first three choices they need not look at the fourth choice (which must be the answer!). Hence $4^{\text {th }}$ option.
52. 2 (Stanford and New York). Northwestern has a tie at median salary and hence won't be considered.
53. Reading all the rankings from the table, it is easy to see that 8 universities have single digit rankings on 3 of the 4 parameters.
54. The most critical part is that an older child is always taller and weighs more than a younger child. Here, the number of children with Age 9 years or less is 48 (Not exceeding that age) and the height of upto 135 cm . would mean a number of 45 students. Now since the limiting factor is 135 cm . as height, the number of students would be 45 !
55. The most confusing part here could be what values to consider and which ones to leave out. Here the critical data: an older child is always taller and weighs more than a younger child, would help in solving! 40 students are above 10 years, 25 exceed 150 cms in height, and 9 students weigh more than 48 Kg . Out of 40 students above 10 years of age, only 25 exceed 150 cm . in height and since the oldest students are the heaviest, 9 students out of this should be excluded! Hence, the answer would be (25-9) i.e 16! Choice 1 is the answer!
56. The number of children between 6 years and 12 years is $77-22=55$. The number of children greater than 38 kg is $100-33=67$. So it seems that the answer should be 55 . However, there are 33 children who are less than 38 kg . Therefore the required answer is $77-33=44$.
57. A. Success rate for males in $2003=637 / 60133$ Success rate for female 2003 $=399 / 40763$ so male success rate is higher \& stmt is false.
B. S. R - female $-2002=138 / 15389$
S. R female $-2003=399 / 407631^{\text {st }}$ much less than $10 \% 2^{\text {nd }}$ is almost 10%, but slightly lesser So stmt B is also false.
58. $2002-f-48 / 19236$ (2.5%) $2002-m$ - $\quad 171 / 61205(2.8 \%)$ so stmt A is false.
S.R. 2002 - males - 171/684
S.R. 2002 - females $-48 / 138$ so stmt. B is false.
59. A. $F-$ absentees in $2002=$
$(19236-15389) / 19236=20 \%$
$F-$ Absentees in $2003=$
$(45292-40763) / 45292=10 \%$. So A is a true.
B. $\mathrm{M}-$ Absentees in $2003=(61205-5998) /$

61205
= 20\%
This is higher than 10% So B is false.
60. For this draw a diagonal of the square of graph. All cos above diagonal have profit margin > $10 \% \mathrm{No}=7$
61. Steel cos. With turnover $>2000=3$. Profits for

| each of them are $120,280, \& 330$ So 2 cos with |
| :--- | :--- |
| profit less than 300. |

Ratio of times taken by A and $\mathrm{C}=5: 8$
If B takes y second then C takes $y+30$ seconds to .

Hence $5(y+30)=8 \mathrm{x} \ldots$ (i)
and $\frac{1000}{x+60}=\frac{1000}{y}$
Solving we get the values of x and y.
Hence both statements are required.
the professor. It is also given that the lawyer is married to housewife, D. Also A has married a housewife. Since there are only two married couples, A has to be the lawyer.
93.

E is an Engineer.

We cannot say for sure about A \& E so cannot be determined.

Each friend eats both idli + vada except one

96. Each friend eats both idli + vada except one

	Idlis				
	1	4	5	6	8
I	\times	\times	\times	$\sqrt{ }$	\times
S	$\sqrt{ }$	\times	\times	\times	\times
M	\times	$\sqrt{ }$	\times	\times	\times
D	\times	\times	$\sqrt{ }$	\times	\times
B	\times	\times	\times	\times	$\sqrt{ }$
	Wadas				
	0	1	2	4	6
I	\times	\times	\times	\times	$\sqrt{ }$
S	$\sqrt{ }$	\times	\times	\times	\times
M	\times	\times	$\sqrt{ }$	\times	\times
D	\times	$\sqrt{ }$	\times	\times	\times
B	\times	\times	\times	$\sqrt{ }$	\times
Chutney					
			N		
I			\times		
S			$\sqrt{ }$		
M			\checkmark		
D			\times		
B			$\sqrt{ }$		

97. Each friend eats both idli + vada except one

Since four figures are known to us the fifth figure is
generated by either treating 2517 as the maximum or 1193 as minimum with difference of 1378 and prepare two charts. Treating 1193 as minimum will have a contrasting situation while comparing the information of Helen and Dhenuka. Keeping 2517 as max will generate $2517-1378=1139$ as the min amount spent which will belong to Chellama. After satisfying all the conditions we get the following information about the amounts spent: Shehnaz-2517
Archana - 2234
Helen - 1340
Dhenuka - 1193
Chellama-1139
99. Since four figures are known to us the fifth figure is generated by either treating 2517 as the maximum or 1193 as minimum with difference of 1378 and prepare two charts. Treating 1193 as minimum will have a contrasting situation while comparing the information of Helen and Dhenuka. Keeping 2517 as max will generate $2517-1378=1139$ as the min amount spent which will belong to Chellama. After satisfying all the conditions we get the following information about the amounts spent:
Shehnaz-2517
Archana - 2234
Helen - 1340
Dhenuka - 1193
Chellama-1139
100. Since four figures are known to us the fifth figure is generated by either treating 2517 as the maximum or 1193 as minimum with difference of 1378 and prepare two charts. Treating 1193 as minimum will have a contrasting situation while comparing the information of Helen and Dhenuka. Keeping 2517 as max will generate $2517-1378=1139$ as the min amount spent which will belong to Chellama. After satisfying all the conditions we get the following information about the amounts spent: Shehnaz - 2517
Archana - 2234
Helen - 1340
Dhenuka-1193
Chellama-1139
101. Let the radius of the sphere A be a and that of B be b. Since area is proportional to the square of the radius we can say that $(b / a)^{\wedge} 2=4 / 1$
So $b / a=2 / 1$. The volume has a cubic relationship, So $\mathrm{V} b / \mathrm{V} a=(2 / 1)^{\wedge} 3=8 / 1$. So $\mathrm{V} b-\mathrm{V} a / \mathrm{V} a=7 / 8$ $=87.5 \%$
102. For a score of 32 , the net rights has to be >32 Let the no. of rights be R
Let the no. of wrongs be W
So no. of non-attempts would be $50-R-W$
$32=R-W / 3-(50-R-W) / 6$
Simplifying this we get,
$7 R-W=242$. But R and W can only have integral values. If we take W as 3 , then $7 R$ is 245 , in which case R is 35 .
103. $a+2 d+a+14 d=a+5 d+a+10 d+a+12 d$.
$0=a+11 d ; \Rightarrow 12^{\text {th }}$ term $=0$
104. $\log _{10} x=X \Rightarrow \log _{10} X=1 / x \Rightarrow 10^{1 / x}=X$,
$\Rightarrow \quad X^{1 / x}=10$.
which will be possible for only one value of x between 2 and 3 . So answer is option 2 .
105.

and $\mathrm{p}=10$.

In Dec 98 he had how many goats -100
In Jan 99, he added how much? - 10\%
So how many does he have now? - 110
In Dec 99, how many goats? - 100
So how many did he sell? - 10
As a percentage how much is it? $-10 / 110=9.9 \%$.
So $p>q$.
106. Check for each of the options

$\quad m / c A(700)$	$m / c B(1250)$	Profit
1. $4 * 75+5 * 80$	$6 * 75+10 * 80$	$75 * 20+80 * 30$
2. $4 * 100+5 * 60$	$6 * 100+10 * 60$	$100 * 20+60 * 30$
3. $4 * 50+5 * 100$	$6 * 50+10 * 100$	$50 * 20+100 * 30$
4. $4 * 60+5 * 90$	$6 * 60+10 * 90$	$60 * 20+90 * 30$
Only opt. 1 does not violate time avail on both m / c		

107. Such a function has its minimum value when one of the quantities inside the modulus function is zero.
Substitute $x=2,2.5$ and 3.6.
108. $0+0.5+1.6=2.1$
109. $0.5+0+1.1=1.6$
110. $1.6+1.1+0=2.7$

So lowest is at $x=2.5$.
108. Let slow runner speed be $x \mathrm{~m} / \mathrm{min}$ so fast runner speed be $2 x \mathrm{~m} / \mathrm{min}$ $1000 \mathrm{~m} /(2 x-x)=5=200 \mathrm{~m} / \mathrm{min}$ So Faster runner speed $=400 \mathrm{~m} / \mathrm{min}$ Time taken for $4000 \mathrm{~m}=4000 / 400=10 \mathrm{~min}$
109. Check each of the options - and their representation in each notation.

	Base		
	2	3	5
31	11111	1011	111
63	111111	2100	223
75	1001011	2210	300
91	1011011	10101	331

All odd numbers will end with 1 in base 2 - also they will start with base 1 . Now if we look at the other condition, we have to find a number in which in exactly one of the bases, it starts with 1 . Check with 91 - the notation in base 3 starts with 1 , that in base 5 doesn't - so this is the answer.
110. Substitute the values for p, q, r in the options and check
111. There are 51 even integers but of these 112,126 , $140, \ldots \ldots .162,180,196$ are divided by 7 (7 nos) out of these $108,126,144, \ldots \ldots . .198$, are divided $9(6$ nos $) \& 126, \ldots \ldots$. is divided by both $7 \& 9$ so answer is $51-(7+6-1)=39$.
112. If we consider the situation other wise, to satisfy condition 2 , the first person must have 26 acquaintances, the second 25 , third 24 and so on. If we continue, the last one should have 0
acquaintance, which is not possible.
113. We have to check by substituting different values of X between 0\& 5

X	$5-X$	$X+2$	$\max (5-X, X+2)$
0	5	2	5
1	4	3	4
2	3	4	4
3	2	5	5

Now value is between $1 \& 2$ so we check for 1.5 $\begin{array}{llll}1.5 & 3.5 & 3.5 & 3.5\end{array}$
114.
4.

1

B

121. If $y=2$ (it cannot be 0 or 1), then x can take 1 value and z can take 2 values.
Thus with $y=2$, a total of $1 \times 2=2$ numbers can be
formed. With $y=3,2 \times 3=6$ numbers can be formed.
Similarly checking for all values of y from 2 to 9 and
adding up we get the answer as 240 .
122. Consider $\triangle \mathrm{AOB}, 180-(\mathrm{x}+\mathrm{y})+2 y+2 y=180$
$\mathrm{x}+\mathrm{y}=4 y$ Or $\mathrm{x}=3 y ; \quad k=3$
123. Substitute options and check

Opt $1 ; \log 2, \log 27, \log 57 / 2$
Opt $2 ; \log 11, \log 2, \log 25 / 2$
Opt $3 ; \log 2, \log ($ not defined)
Opt $4 ; \log 2, \log 3, \log 9 / 2=\log 2,1, \log 9-\log 2$
$=\log 2,1,2-\log 2$ common difference is same
between 2 terms, opt 4 is in AP
124. $\mathrm{AB} / \mathrm{PQ}=\mathrm{BD} / \mathrm{QD} \& \mathrm{CD} / \mathrm{PQ}=\mathrm{BD} / \mathrm{BQ}$

Combining the two we get
$\mathrm{AB} / \mathrm{CD}=\mathrm{BD} / \mathrm{QD} * \mathrm{BQ} / \mathrm{BD}=\mathrm{BQ} / \mathrm{QD}=3 / 1$
So $\mathrm{QD} / \mathrm{BQ}=1 / 3$ So BD $/ \mathrm{BQ}=4 / 3$ OR $1: 0.75$
125. ABC is a a right Δ with area $1 / 2.6 .8=24$
$1 / 2$. BD $.10=24$
$\mathrm{BD}=4.8$ So $\mathrm{AD}=6-4.8=1.2$
$\mathrm{QC}=8-4.8=3.2$
$\mathrm{AP}: \mathrm{QC}=1.2: 3.2=3: 8$

126.

Refer to a typical polygon described in the question.

Let no of convex corners be x. Let no of concave corners be c. We can see that $x-c=4$. So for 25 convex corners, the number of concave corners must be 21 .
127. Now $p^{2}+q^{2}$ can be written as $(p+q)^{2}-2 p q$
$=(\alpha-2)^{2}+2(\alpha+1)=\alpha^{2}-2 \alpha+6$
$=\alpha^{2}-2 \alpha+1+5=(\alpha-1)^{2}+5-$ Since a square
can never be negative, the min value will be 5 .
128.
$1-\underline{a}-1 \quad 1$
$2-b-2 \quad 3$
$3-\mathrm{c}-3 \quad 6$
$4-\mathrm{d}-4 \quad 10 \quad$ (include the $4^{\text {th }}$ alphabet)
what value of $\sum n$ is close to 288 (but <then that)
check $n=24, \quad \sum n=12.25=300$
$n=23 \quad \sum n=12.23=276$
so the $24^{\text {th }}$ alphabet will be the $288^{\text {th }}$ term.
So alphabet would be x
129. Base $=2 \sqrt{3} R \mathrm{Ht}=R+2 R=3 R$

Area of $\Delta=$ $1 / 2.2 \sqrt{ } 3 R .3 R$ $=3 \sqrt{ } 3 R^{2}$
$\sqrt{3} \mathrm{R}$

2R

Now $4 \pi R^{2}=12$
$R^{2}=3 / \pi$
So area of $\Delta=3 \sqrt{ } 3.3 / \pi$
$=9 \sqrt{ } 3 / \pi$
130. Min positive integer is 1 So min $a+b+c+d=5$

Now $a=b=c=1$ and $d=2$ satisfies above
In that case $a^{2}+b^{2}+c^{2}+d^{2}=7$
$\begin{array}{lll}\text { RHS of opt. } & 1 \rightarrow 3 & 2 \rightarrow 7 \\ & 3 \rightarrow 1 & 4 \rightarrow 7\end{array}$
Ans is either 2 or 4 . but if we take any of the integers as - ve, $a^{2}+b^{2}+c^{2}+d^{2}$ will only \uparrow.
Therefore the correct answer is option 2.
131. Refer diagram Area (in question paper)

If X is the center of the hexagon,
Required area $=1 / 2$ of area $\Delta \mathrm{AXF}=1 / 2 * 1 / 6=1 / 12$
132.
133.

If the radius of the field is r, then the total area of the field $=\pi r^{2} / 2$
The radius of the semi-circles with centre's P and R $=\mathrm{r} / 2$

Hence, their total area $=\pi r^{2} / 4$
Let the radius if the circle with centre S be x .
$(r-x)^{2}+(r / 2)^{2}=(r / 2+x)^{2}=>x=r / 3$.
Thus the area of the circle with centre $S=\pi r^{2} / 9$ The total area that can be grazed $=\pi \mathrm{r}^{2} / 9(1 / 4+$ $1 / 9)=13 \pi r^{2} / 36$

Thus the fraction of the field that can be grazed $=$
$\frac{26}{36} \times \frac{\text { Area that can be grazed }}{\text { Area of the field }}$
The fraction that cannot be grazed $=10 / 36$
$=28 \%$ (approx.)
134. Lengths are $\mathrm{OR} \rightarrow 30 \pi$. IR $\rightarrow 20 \pi$ chord $\rightarrow 15 \sqrt{ } 15$.
Let inner radius be R .
Outer radius will be 2 R .
Each chord road will have a length
$=\sqrt{ } 5 \mathrm{R}$. Length covered by Amit $=1 / 4.2 \pi$. $2 \mathrm{R}+\sqrt{ } 5$
$\mathrm{R}=\pi \mathrm{R}+\sqrt{ } 5 \mathrm{R}$. Time taken $=\pi \mathrm{R} / 30 \pi+\sqrt{ } 5 \mathrm{R} / 15$
$\sqrt{5}=3 / 2$. So $R=15 \mathrm{~km}$. Outer road radius $=2 \mathrm{R}=$
30 km .
135. Time taken $=r / 20+r / 15=7 r / 60$. Since $r=15$, total time $=105 \min (1.75 \mathrm{hr})$
136. Sum of all cords $=4 * \sqrt{5} \mathrm{R}$ length of cord $=2 \pi *$ $2 R$ so ratio is $4 \sqrt{ } 5: 4 \pi=\sqrt{5}: \pi$
137.
($\mathrm{n}-1$!) is not divisible by n when n is prime, so basically we are looking at primes between 12 and
$40-13,17,19,23,29,31,37$.
138.

Let us substitute $X=1 Y=1 Z=1$ then term $=6$. If they are different then it would be more tha 6 .
139. For $J=3$, there are 2^{n-3} students who answered 3 or more questions wrong $\operatorname{So} J=0$, there are two students who answered wrong or more questions wrong. So ($2^{n}-2^{n-1}$) Answer 0 wrong ($2^{n}-2^{n-2}$) Answer 0 wrong. ($2^{n}-2^{n-0}$) Answer 0 wrong. Total no. of wrong answers is -
$1\left(2^{n-1}-2^{n-2}\right)+2\left(2^{n-2}-2^{n-3}\right)+3\left(2^{n-3}-2^{n-4}\right)+$ $\ldots \ldots \ldots \ldots n(2-1) \cdot 2^{n-1}+2^{n-2}+2^{n-3}+\ldots \ldots \ldots 1+1=$ 4095 GP with sum $1 \cdot\left(2^{n}-1\right) / 2-1=4095 \cdot 2^{n}-1=$ 4095. $2^{n}=4096=2^{12}$. So $n=12$
140. They intersect when both Y are equal $X^{3}+X^{2}+5=$ $X^{2}+X+5 . \Rightarrow \mathrm{X}^{3}=\mathrm{X} . \Rightarrow X=0$ is a Solution, $X=1$ is a Solution, $X=-1$ is a soln
141. Let n be the number of elements in $T .467=3+(n$ $-1) 8 . n-a=464 / 8+1=59$ terms. Sum of the first and the last term is 470 . $\left(2^{\text {nd }}\right.$ and $2^{\text {nd }}$ last also etc.) The middle term is the $30^{\text {th }}$ any sum of the $1^{\text {st }}$ 30 or the last 30 terms will not yield 470 .
142. The least number of edges will be when one point is connected to each of the other 11 points, giving a total of 11 lines. One can move from any point to any other point via the common point.
The maximum edges will be when a line exists between any two points. max no. of edge $=12 C_{2}=$ $12 * 11 / 2=66$
143. 1 consecutive ball can be placed in 6 ways 2 in 5 ways, 3 in 4 ways, 4 in 3 ways, 5 in 2 ways and 6 in 1 way.

So total no of ways is $\sum 6=6 * 7 / 2=21$.
144. Total purchase price for 3 bottles $=520+2 * 520 *$ $0.7=520 * 2.4=1248$ baht. Thus each person has to pay 416 bahts each. R pays $2 * 46=92$ bahts M pays $4 * 46+27=211$ bahts. Since M has paid $415-211=204$ less thus in dollars it would be $5 \$$.
145. R has paid 92 bahts, so he paid $416-92=324$ baht
146. Now if $16=2^{4}$ So b^{11} is definitely greater than 244 if b is greater than 16. Stmt. B alone is enough.
147. Substitute $-1 / 2$ in the $\mathrm{eq}^{\mathrm{n}} 4 * 1 / 4-b / 2+c=0$. So $b-2 c=2-------$ equation we need one more eqn to get unique values of $b \& c$ either of the statements can provide that equation. So Ans. is 2
148. Statement 1 does not give any useful information. Let the radius be R. We know $A C$ is 2.5 . Using segment B we can get $O C=R-5$, so we can then apply Pythagoras theorem and solve for R. Ans. is 1.

In case a is -ve , LHS $>$ RHS. If a is $+\mathrm{ve}(>1)$, LHS $<$ RHS. A is not sufficient, but B gives a as $1 / 2$ so it alone is sufficient.
150.

Area of DEF $=1 / 4$ (Area of ABC) stmt A gives us the sides of triangle ADF. Whose area will be same as DEF stmt B gives us sides of ABC, so area of ABC can be calculated. Either stmt is enough.

