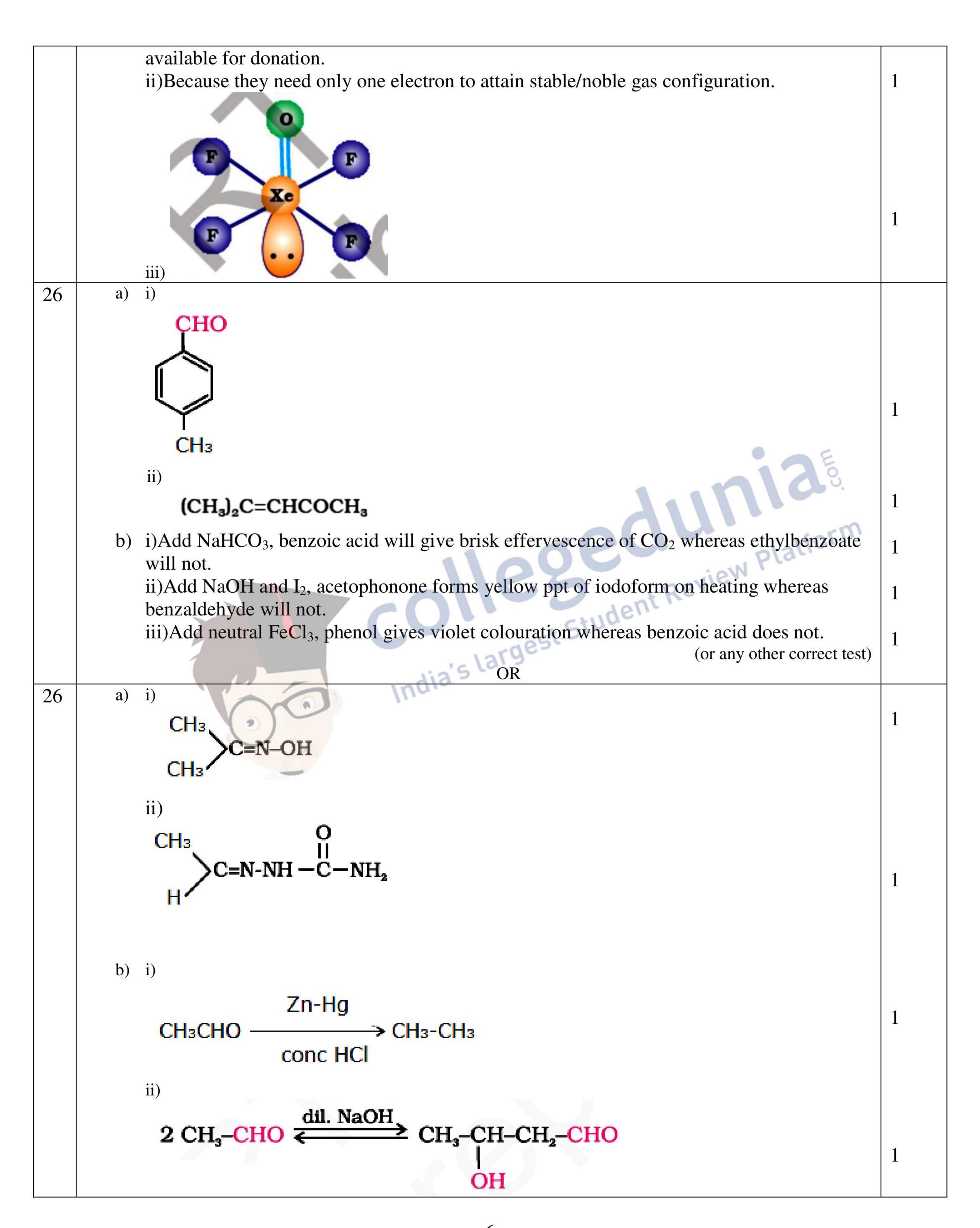
CHEMISTRY MARKING SCHEME SET -56/1 Compt. July, 2015

Qu es.	Value points	Marks
1	Frenkel defect	1
2	Emulsions are liquid – liquid colloidal systems. For example – milk, cream (or any other one correct example)	1/2 + 1/2
3	Formation of stable complex by polydentate ligand.	1
4	Propanal	1
5	p-Nitroaniline < Aniline < p-Toluidine	1
6	Mole fraction of a component = Number of moles of the component Total number of moles of all the components	1
	Total number of moles of all the components ii) Molality (m) is defined as the number of moles of the solute per kilogram (kg) of the solvent. Or Molality (m) = Moles of solute Mass of solvent in kg	1
7	Zero order: mol L ⁻¹ s ⁻¹ Second order: L mol ⁻¹ s ⁻¹	1 1
8	 i) Due to high bond dissociation enthalpy of N ≡ N ii) Due to low bond dissociation enthalpy of F₂ than Cl₂ and strong bond formation between N and F 	1
9	Potassium permanganate is prepared by fusion of MnO ₂ with an alkali metal hydroxide and an oxidising agent like KNO ₃ . This produces the dark green K_2MnO_4 which disproportionates in a neutral or acidic solution to give permanganate. $2MnO_2 + 4KOH + O_2 \rightarrow 2K_2MnO_4 + 2H_2O$ $3MnO_4^{2-} + 4H^+ \rightarrow 2MnO_4^{-} + MnO_2 + 2H_2O$	1
	Oxalate ion or oxalic acid is oxidised at 333 K: $5C_2O_4^{2-} + 2MnO_4^{-} + 16H^+ \longrightarrow 2Mn^{2+} + 8H_2O + 10CO_2$ OR	1
9	Iodine is liberated from potassium todide: $10I^- + 2MnO_4^- + 16H^+ \longrightarrow 2Mn^{2+} + 8H_2O + 5I_2$	1
	Hydrogen sulphide is oxidised, sulphur being precipitated: $H_2S \longrightarrow 2H^+ + S^{2-}$ $5S^{2-} + 2MnO_4^- + 16H^+ \longrightarrow 2Mn^{2+} + 8H_2O + 5S$	1

10		1
10	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1/2
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1/2
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1
11	$r = \frac{\sqrt{2}a}{4}$ 1.414 x 4.077 x 10 ⁻⁸ cm	1
	$r = \frac{1.414 \times 4.077 \times 10^{-6} \text{ cm}}{4}$ $r = 1.44 \times 10^{-8} \text{ cm}$	1 1
12	$ \pi_{\text{cane sugar}} = \pi_{\text{X}} $	
	Therefore, $c_{cane\ sugar} = c_X$ (where c is molar concentration) $\frac{W_{cane\ sugar}}{M_{cane\ sugar}} = \frac{W_X}{M_X}$ 5 g 0.877	1
	$\overline{342 \ g \ mol^{-1}} = \overline{M_X}$	1
	$M_{\rm X} = \frac{0.877 \times 342}{5} \rm g mol^{-1}$	
	$M_{\rm X} = 59.9 \text{ or } 60 \text{ gmol}^{-1}$	1
13	$k = \frac{2.303}{t} \log \frac{[R]_0}{[R]}$	1
	$60 \text{ s}^{-1} = \frac{2.303}{t} \log \frac{[R]_0}{\frac{[R]_0}{10}}$	
	$t = \frac{2.303}{60 s^{-1}} \log 10$	1
	$t = \frac{2.303}{60} \text{ s}$	
	t = 0.0384 s	1
14	i) It is a process of removing the dissolved substance from a colloidal solution by means	1
	of diffusion through a semi - permeable membrane. ii) The movement of colloidal particles under an applied electric potential towards oppositely charged electrode is called electrophoresis.	1



	iii)	Colloidal particles scatter light in all directions in the colloid		1	
15	 illuminates the path of beam in the colloidal dispersion. i) It lowers the melting point of alumina / acts as a solvent. ii) 			1	
		Roasting	Calcination	1	
		Ore is heated in a regular supply of air	Heating in a limited supply or		
			absence of air.		
	 (Or with equation) iii) It is a process of separation of different components of a mixture which are differently adsorbed on a suitable adsorbent. 				
82 MOG.C			OR		
15	3Fe ₂ O ₃ -	+ CO→2Fe ₃ O ₄ +CO ₂ e)		$6 \times \frac{1}{2}$ $= 3$	
		CO→3FeO +CO₂			
	CaCO ₃ -	→ CaO +CO₂ one)			
	CaO + S	$SiO_2 \rightarrow CaSiO_3$ (Slag)			
		$CO \rightarrow Fe + CO_2$			
	C + CO	→ 2CO			
	Coke C + Q -	\ CO	Leorm Leorm		
		$C \rightarrow Fe + CO$	a O G an Plan		
16	(any 6 correct equations) Disproportionation: The reaction in which an element undergoes self-oxidation and self-		1 1/2		
		simultaneously. For example –	Stude		
			deze	1 1/2	
		$- \rightarrow Cu^{2+} (aq) + Cu(s)$ other correct equation)			
17	i)	Hexaamminecobalt(III) chloride		1	
	ii)	Tetrachlorido nickelate(II)		1 1	
	iii)	Potassium hexacyanoferrate(III)		Onstands	
	i)	2-bromobutane		1	
18	ii)	1, 3-dibromobenzene		1	
18	1			1	
18	iii)	3-choloropropene		_	
18	iii)	3-choloropropene CH ₂ Cl CH ₂ ON	a CH ₂ OH	1	
	iii)		a CH ₂ OH	1	
	iii)		a CH ₂ OH	1	
	iii)		a CH ₂ OH	1	
	iii) i)		EH2 OH	1	
	iii) i)	CH ₂ Cl + NaOH -HCl HCHO		1	
	iii) i)	CH ₂ Cl + NaOH -HCl -HCl		1	

*		
	$CH_3CH=CH_2+ H_2O \xrightarrow{H'} CH_3-CH-CH_3$	
	$C11_3C11-C11_2 \cdot 11_2C \leftarrow C11_3-C11-C11_3$	
	OH	1
20	DCI ₅	1
20	i) CH₃-CH₂OH — CH₃CH₂Cl	. L
	ii)	
	OH OH	1
	Anhyd. AlCl ₃ CH ₃	1
	$+ CH_3C1 \xrightarrow{Annyu. Ancis} + \begin{bmatrix} \\ \end{bmatrix}$	
	CH ₂	
	CH₃Cl + CH₃CH₂-ONa —→ CH₃CH₂-O-CH₃	1
21	i) Peptide linkage – in proteins, ∝-amino acids are connected to each other by peptide	1
	bond or peptide linkage (-CONH- bond). Drimary structure - cook polypoptide in a protoin molecule boying emine soids which	1
	ii) Primary structure - each polypeptide in a protein molecule having amino acids which are linked with each other in a specific sequence.	1
	iii) Denaturation - When a protein is subjected to physical change like change in	1
	temperature or chemical change like change in pH, protein loses its biological activity.	
22	Copolymerisation is a polymerisation reaction in which a mixture of more than one monomeric species is allowed to polymerise and form a copolymer.	1
	species is anowed to porymense and form a coporymen.	
	CH = CH ₂	
	- CH	1
	n CH2 = CH - CH = CH2 +	
	1, 3-Butadiene - styrene copolymer	
	CN CH C	1
	$n CH_2=CH-CH=CH_2+nCH_2=CH \xrightarrow{Copolymerisation} CH_2-CH_2-CH=CH-CH_2-CH_2-CH_2$	1
	1,3-Butadiene Acrylonitrile Buna-N	
22	(or any other correct example)	1
23	i) Aspartame, Saccharin (any one)ii) No	1
	iii) Social concern, empathy, concern, social awareness (any 2)	2
24	E^{0} cell = $E^{0}_{Sn2+/Sn}$ - $E^{0}_{Zn2+/Zn}$	1
	= -0.14V - (-0.76V) = 0.62V	1
	$\Delta_{r}G^{0} = -n F E_{cell}^{0}$	1
	$= -2 \times 96500 \text{ C mol}^{-1} \times 0.62 \text{ V}$	
	$= -119660 \text{ J mol}^{-1}$	1

	$E_{\text{cell}} = E_{\text{cell}}^{0} - \frac{0.059}{n} \log \frac{[Zn^{2+}]}{[Sn^{2+}]}$ $E_{\text{cell}} = 0.62 - \frac{0.059}{2} \log \frac{[Zn^{2+}]}{[Sn^{2+}]}$	
	$F_{-11} = 0.62 - \frac{0.059}{100} \log \frac{[Zn^{2+}]}{}$	
		1
	OR	
24	a) The conductivity of a solution at any given concentration is the conductance of one unit	
	volume of solution kept between two platinum electrodes with unit area of cross section	1/2
	and at a distance of unit length.	
	Molar conductivity of a solution at a given concentration is the conductance of the volume	1/2
	V of solution containing one mole of electrolyte kept between two electrodes with area of	
	cross section A and distance of unit length.	4
	Molar conductivity increases with decrease in concentration.	1
	$b)E^{0}cell = E^{0}_{C} - E^{0}_{A}$	
	= 0.80V - 0.77V	1/
	= 0.03 V $= 0.03 V$	1/2
	$\Delta_{r}G^{0} = -n F E_{cell}^{0}$	1/2
	$= -1 \times 96500 \text{ C mol}^{-1} \times 0.03 \text{ V}$	1
	$= -2895 \text{ J mol}^{-1}$	1
	$n F^0$	1/-
	$Log K_c = 0.059$	1/2
	$Log K_c = \frac{1 \times 0.03}{0.050}$	1/2
	$Log K_c = 0.508$	1/2
25	a) Due to relatively stable half – filled p-orbitals of group 15 elements	2
23	b) i) $CaF_2 + H2SO_4 \rightarrow CaSO_4 + 2HF$	1
		1
	$_{ii)}$ SO ₂ (g) + Cl ₂ (g) \rightarrow SO ₂ Cl ₂ (l)	1
	$_{iii}$ 2NH ₄ Cl + Ca(OH) ₂ \rightarrow 2NH ₃ + 2H ₂ O + CaCl ₂	
	OR	
25	a) i)	
	F	
	Br F	
		1
	F	
	ii)	
	A.e.	
		1
	b) i)Due to small size of nitrogen, the lone pair of electron on nitrogen is localized/ easily	1
	o, 1,2 at to billar bize of introgen, the folio pair of block of introgen is focultzed cashy	I

iii) LiAlH₄ CH₃CHO → CH₃CH₂OH

Dr. Sangeeta Bhatia

Sh. S.K. Munjal

Sh. D.A. Mishra

Ms. Garima Bhutani

