- 1. Let A be a 2×2 nonzero real matrix. Which of the following is true?
 - (A) A has a nonzero eigenvalue.
 - (B) A^2 has at least one positive entry.
 - (C) trace (A^2) is positive.
 - (D) All entries of A^2 cannot be negative.

- 2. Let A be a 3×3 real matrix with zero diagonal entries. If 1 + i is an eigenvalue of A, the determinant of A equals
 - (A) 4. (B) -4. (C) 2. (D) -2.

- 3. Let A be an $n \times n$ matrix and let b be an $n \times 1$ vector such that Ax = b has a unique solution. Let A' denote the transpose of A. Then which of the following statements is **false**?
 - (A) A'x = 0 has a unique solution.
 - (B) A'x = c has a unique solution for any non-zero c.
 - (C) Ax = c has a solution for any c.
 - (D) $A^2x = c$ is inconsistent for some vector c.

4. Let A and B be $n \times n$ matrices. Assuming all the inverses exist,

$$(A^{-1} - B^{-1})^{-1}$$

equals

- (A) $(I AB^{-1})^{-1}B$.
- (B) $A(B-A)^{-1}B$.
- (C) $B(B-A)^{-1}A$.
- (D) $B(A-B)^{-1}A$.
- 5. Let f be a function defined on $(-\pi, \pi)$ as

$$f(x) = (|\sin x| + |\cos x|) \cdot \sin x.$$

Then f is differentiable at

- (A) all points.
- (B) all points except at $x = -\pi/2, \pi/2$.
- (C) all points except at x = 0.
- (D) all points except at $x = 0, -\pi/2, \pi/2$.
- 6. The equation of the tangent to the curve $y = \sin^2(\pi x^3/6)$ at x = 1 is
 - (A) $y = \frac{1}{4} + \frac{\sqrt{3}\pi}{4}(x-1)$.
 - (B) $y = \frac{\sqrt{3}\pi}{4}x + \frac{1-\sqrt{3}\pi}{4}$.
 - (C) $y = \frac{\sqrt{3}\pi}{4}x \frac{1-\sqrt{3}\pi}{4}$.
 - (D) $y = \frac{1}{4} \frac{\sqrt{3}\pi}{4}(x-1)$.

7. Let f be a function defined from $(0, \infty)$ to \mathbb{R} such that

$$\lim_{x \to \infty} f(x) = 1 \text{ and } f(x+1) = f(x) \text{ for all } x.$$

Then f is

- (A) continuous and bounded.
- (B) continuous but not necessarily bounded.
- (C) bounded but not necessarily continuous.
- (D) neither necessarily continuous nor necessarily bounded.

- 8. The value of $\lim_{x \to \infty} (\log x)^{1/x}$
 - (A) is e.
- (B) is 0.
- (C) is 1.
- (D) does not exist.

9. The number of real solutions of the equation,

$$x^7 + 5x^5 + x^3 - 3x^2 + 3x - 7 = 0$$

is

- (A) 5.
- (B) 7.
- (C) 3.
- (D) 1.

10. Let x be a real number. Then

$$\lim_{m \to \infty} \left(\lim_{n \to \infty} \cos^{2n} \left(m! \pi x \right) \right)$$

- (A) does not exist for any x.
- (B) exists for all x.
- (C) exists if and only if x is irrational.
- (D) exists if and only if x is rational.
- 11. Let $\{a_n\}_{n\geq 1}$ be a sequence such that $a_1\leq a_2\leq \cdots \leq a_n\leq \cdots$. Suppose the subsequence $\{a_{2n}\}_{n\geq 1}$ is bounded. Then
 - (A) $\{a_{2n}\}_{n\geq 1}$ is always convergent but $\{a_{2n+1}\}_{n\geq 1}$ need not be convergent.
 - (B) both $\{a_{2n}\}_{n\geq 1}$ and $\{a_{2n+1}\}_{n\geq 1}$ are always convergent and have the same limit.
 - (C) $\{a_{3n}\}_{n>1}$ is not necessarily convergent.
 - (D) both $\{a_{2n}\}_{n\geq 1}$ and $\{a_{2n+1}\}_{n\geq 1}$ are always convergent but may have different limits.
- 12. Let $\{a_n\}_{n\geq 1}$ be a sequence of positive numbers such that $a_{n+1}\leq a_n$ for all n, and $\lim_{n\to\infty}a_n=a$. Let $p_n(x)$ be the polynomial

$$p_n(x) = x^2 + a_n x + 1,$$

and suppose $p_n(x)$ has no real roots for every n. Let α and β be the roots of the polynomial $p(x) = x^2 + ax + 1$. Then

- (A) $\alpha = \beta$, α and β are not real.
- (B) $\alpha = \beta$, α and β are real.
- (C) $\alpha \neq \beta$, α and β are real.
- (D) $\alpha \neq \beta$, α and β are not real.

- 13. Consider the set of all functions from $\{1, 2, ..., m\}$ to $\{1, 2, ..., n\}$, where n > m. If a function is chosen from this set at random, what is the probability that it will be strictly increasing?
 - (A) $\binom{n}{m}/m^n$. (B) $\binom{n}{m}/n^m$. (C) $\binom{m+n-1}{m}/m^n$. (D) $\binom{m+n-1}{m-1}/n^m$.

- 14. A flag is to be designed with 5 vertical stripes using some or all of the four colours: green, maroon, red and yellow. In how many ways can this be done so that no two adjacent stripes have the same colour?
 - (A) 576. (B) 120. (C) 324. (D) 432.

15. Suppose x_1, \ldots, x_6 are real numbers which satisfy

$$x_i = \prod_{j \neq i} x_j$$
, for all $i = 1, \dots, 6$.

How many choices of (x_1, \ldots, x_6) are possible?

(A) Infinitely many. (B) 2. (C) 3. (D) 1.

- 16. Suppose X is a random variable with $P(X > x) = 1/x^2$, for all x > 1. The variance of $Y = 1/X^2$ is
 - (A) 1/4.
- (B) 1/12.
- (C) 1. (D) 1/2.

17. Let $X \sim N(0, \sigma^2)$, where $\sigma > 0$, and

$$Y = \begin{cases} -1 & \text{if } X \le -1, \\ X & \text{if } X \in (-1, 1), \\ 1 & \text{if } X \ge 1. \end{cases}$$

Which of the following statements is correct?

- (A) Var(Y) = Var(X).
- (B) Var(Y) < Var(X).
- (C) Var(Y) > Var(X).
- (D) $Var(Y) \ge Var(X)$ if $\sigma \ge 1$, and Var(Y) < Var(X) if $\sigma < 1$.

- 18. If a fair coin is tossed 5 times, what is the probability of obtaining at least 3 consecutive heads?
 - (A) 1/8.
- (B) 5/16.
- (C) 1/4.
- (D) 3/16.

19. Let X and Y be random variables with mean λ . Define

$$Z = \begin{cases} \min(X, Y) & \text{with probability } \frac{1}{2}, \\ \max(X, Y) & \text{with probability } \frac{1}{2}. \end{cases}$$

What is E(Z)?

- (A) λ .
- (B) $4\lambda/3$.
- (C) λ^2 .
- (D) $\sqrt{3}\lambda/2$.

20. A finite population has $N(\geq 10)$ units marked $\{U_1,\ldots,U_N\}$. The following sampling scheme was used to obtain a sample s. One unit is selected at random: if this is the *i*-th unit, then the sample is s = $\{U_{i-1}, U_i, U_{i+1}\}$, provided $i \notin \{1, N\}$. If i = 1 then $s = \{U_1, U_2\}$ and if i = N then $s = \{U_{N-1}, U_N\}$. The probability of selecting U_2 in s is

- (A) $\frac{2}{N}$. (B) $\frac{3}{N}$. (C) $\frac{1}{(N-2)} + \frac{2}{N}$. (D) $\frac{3}{(N-2)}$.

21. Suppose X_1, \ldots, X_n are i.i.d. observations from a distribution assuming values -1, 1 and 0 with probabilities p, p and 1 - 2p, respectively, where $0 . Define <math>Z_n = \prod_{i=1}^n X_i$ and $a_n = P(Z_n = 1)$, $b_n = P(Z_n = -1), \ c_n = P(Z_n = 0).$ Then as $n \to \infty$,

- (A) $a_n \to \frac{1}{4}, b_n \to \frac{1}{2}, c_n \to \frac{1}{4}$
- (B) $a_n \to \frac{1}{3}, b_n \to \frac{1}{3}, c_n \to \frac{1}{3}$
- (C) $a_n \to 0$, $b_n \to 0$, $c_n \to 1$.
- (D) $a_n \to p$, $b_n \to p$, $c_n \to 1 2p$.

- 22. Suppose X_1, X_2 and X_3 are i.i.d. positive valued random variables. Define $Y_i = \frac{X_i}{X_1 + X_2 + X_3}$, i = 1, 2, 3. The correlation between Y_1 and Y_3 is
 - (A) 0. (B) -1/6. (C) -1/3. (D) -1/2.

23. Assume (y_i, x_i) satisfies the linear regression model,

$$y_i = \beta x_i + \epsilon_i$$
, for $i = 1, \dots, n$,

where, $\beta \in \mathbb{R}$ is unknown, $\{x_i : 1 \leq i \leq n\}$ are fixed constants and $\{\epsilon_i : 1 \leq i \leq n\}$ are i.i.d. errors with mean zero and variance $\sigma^2 \in (0, \infty)$. Let $\widehat{\beta}$ be the least squares estimate of β and $\widehat{y}_i = \widehat{\beta}x_i$ be the predicted value of y_i . For each $n \geq 1$, define

$$a_n = \frac{1}{\sigma^2} \sum_{i=1}^n \text{Cov}(y_i, \widehat{y}_i).$$

Then,

(A) $a_n = 1$. (B) $a_n \in (0,1)$. (C) $a_n = n$. (D) $a_n = 0$.

- 24. Let X and Y be two random variables with $E(X|Y=y)=y^2$, where Y follows $N(\theta, \theta^2)$, with $\theta \in \mathbb{R}$. Then E(X) equals
 - (A) θ . (B) θ^2 . (C) $2\theta^2$. (D) $\theta + \theta^2$.

- 25. Suppose X is a random variable with finite variance. Define $X_1 = X$, $X_2 = \alpha X_1, \ X_3 = \alpha X_2, \dots, X_n = \alpha X_{n-1}$, for $0 < \alpha < 1$. Then $\operatorname{Corr}(X_1, X_n)$ is
 - (A) α^n . (B) 1. (C) 0. (D) α^{n-1} .

- 26. Let X be a random variable with P(X=2)=P(X=-2)=1/6 and P(X=1)=P(X=-1)=1/3. Define $Y=6X^2+3$. Then
 - (A) Var(X Y) < Var(X).
 - (B) Var(X Y) < Var(X + Y).
 - (C) Var(X + Y) < Var(X).
 - (D) Var(X Y) = Var(X + Y).

- 27. Suppose X is a random variable on $\{0,1,2,\ldots\}$ with unknown p.m.f. p(x). To test the hypothesis $H_0: X \sim \text{Poisson}(1/2)$ against $H_1: p(x) = 2^{-(x+1)}$ for all $x \in \{0,1,2,\ldots\}$, we reject H_0 if x > 2. The probability of type-II error for this test is
 - (A) $\frac{1}{4}$. (B) $1 \frac{13}{8}e^{-1/2}$. (C) $1 \frac{3}{2}e^{-1/2}$. (D) $\frac{7}{8}$.

28. Let X be a random variable with

$$P_{\theta}(X = -1) = \frac{(1 - \theta)}{2}, \ P_{\theta}(X = 0) = \frac{1}{2}, \text{ and } P_{\theta}(X = 1) = \frac{\theta}{2}$$

for $0 < \theta < 1$. In a random sample of size 20, the observed frequencies of -1,0 and 1 are 6,4 and 10, respectively. The maximum likelihood estimate of θ is

(A) 1/5. (B) 4/5. (C) 5/8. (D) 1/4.

- 29. Two judges evaluate n individuals, with (R_i, S_i) the ranks assigned to the i-th individual by the two judges. Suppose there are no ties and $S_i = R_i + 1$, for i = 1, ..., (n-1), and $S_i = 1$ if $R_i = n$. If the Spearman's rank correlation between the two evaluations is 0, what is the value of n?
 - (A) 7. (B) 11. (C) 4. (D) 5.

30. Let X_1, X_2, \ldots be a sequence of i.i.d. random variables with variance 2. Then for all x,

$$\lim_{n \to \infty} P\left(\frac{1}{\sqrt{n}} \sum_{i=1}^{n} (-1)^{i} X_{i} \le x\right)$$

equals

(A)
$$\Phi(x\sqrt{2})$$
. (B) $\Phi(x/\sqrt{2})$. (C) $\Phi(x)$. (D) $\Phi(2x)$.

