
BIOLOGY

/ 81)	In w	which field application of biotechnology occurs?						
	(A)	Bio-medicine -						
	(B)	Agriculture						
	(C)	Environmental field.						
	(D)	All of the above						
82)		shows anti-allergic and anti-i	กปิลกา	matory effect.				
	JAJ	Glucecorticoids						
	(B)	Mineralocorticoids		*				
	(C)	Sexcorticoids *						
	(D)	Noradrenaline						
/ 83)		ng the process of decomposition in ert into inorganic ions and salts b						
	(\(\)	Mineralization	(B)	Catabolism				
	(C)	Fragmentation	(D)	All of the above				
-84)) How much amount of volume of air is in lungs FRC?							
	JA)	2100 ml to 2500 ml <	(B)	1500 ml to 1600 ml				
	(C)	2500 ml to 3000 ml	(D)	1600 ml to 2100 ml				

85) What indicated "A" in given figure?

(A) Glycocidic bond

(B) Peptide bond +

(C) Disulfide hond

- (D) Hydrophobic bond 1
- 86) What is total diastolic time of ventricle in cardine cycle?
 - (A) 0.40 second

(B) 0.30 second

(C) 0.50 second

- (D) 0.10 second
- 87% Which amino acid determines by four genetic codes?
 - (A) Proline (Pro)

(B) Leucine (Leu)

(C) Serine (Ser)

(D) Tyrosine (Tyr)

- Which is the inhibitory homone of GH?
 - (A) Parathormone >
 - (B) Insulin
 - (C) Somatostatin /
 - (D) Testosterone

Complete and balanced the following reaction.

Na_HPO₄ +
$$\frac{X}{11,005}$$
 $\rightarrow \frac{Y}{11,005}$ + NaH₂PO₄

(A)
$$X = H_2CO_3$$
, $Y = NaH_2CO_3$

(B)
$$X = NaHCO_3$$
, $Y = NaCl$

(C)
$$X = NaHCO_3$$
, $Y = H_2CO_3$

$$(D)'X = H_2CO_3$$
, $Y = NaHCO_3$

- How many molecules of ATP and NADPH are require in formation of two molecules of glucose? How many Calvin cycles are required?
 - (A) 18 ATP, 12 NADPH 6 Calvin cycles
 - (B) 36 ATP, 24 NADPH, 12 Calvin cycles
 - 36 ATP, 24 NADPH, 6 Calvin cycles
 - (D) 24 ATP, 36 NADPH, 12 Calvin cycles

91) ⁄	Α-	The DNA singerprint is the same for every cell, tissue and organ of a person.					
	R-	DNA fingerprint is used for treatment of inherited disorders like Huntigton's disease, Alzheimer's and Sickle cell anemia.					
	(A)	A and R both are correct but R	is no	explanation of A			
	(B)	A and R both are correct. R is e	expla:	nation of A			
	(C)	A is correct and R is wrong					
	(D)	A is wrong and R is correct					
92)	Whi	ch part is not included in Coehle	ar du	ct?			
	(A)	Macula of Utricle	(B)	Reissner's membrane			
	(C)	Scala Media	(D)	Tectorial membrane			
93)	Whi	ch is Gynandromorph type of an	imal?				
1	(A)	Drossophilla	(B)	Beetles			
	(C)	Silk worms	(D)	All of the above			
94)	DNA	polymerase enzyme is isolated	from	which bacteria?			
	(A)	Thermus aquaticus	(B)	E.Coli			
	(C)	Bacillus thrunegenesis	(D)	Agro bacterium			
				10 Z			

Column I

Column II

Column III

- P) Trichomoniasis
- i) Herpes Simplex
- x) Pain in lower abdomen

- Q) Syphilis
- ii) Neisseria gonorrhocae
- y) Inflammation and itching in and around vagina

- R) Gonorrhoca
- iii) Treponema Pallidium
- z) Patchy hair loss

- S) Genital herpe's
- iv) Trichomonas Vaginalis
- w) Feeling of uncasiness

(A)
$$(P - iv - y) (Q - i - z) (R - ii - x) (S - iii - w)$$

(C)
$$(P-iv-x)(Q-i-w)(R-ii-y)(S-iii-z)$$

(D)
$$(P-i-z)(Q-ii-y)(R-iv-w)(S-iii-x)$$

- 96) What is the height and weight of twelve weeks old human embryo?
 - (A) 7.5 cm, 14 gram

(B) 7.5 cm, 650 gram

(C) 42 cm, 1800 gram

(D) 32 cm, 650 gram

(78مر

Assertion A: Restriction endonuclease recognize short palindromic sequence and cut at specific sites.

Reason - R: When a restriction endonuclease acts on Palindrome, it cleaves both the strands of DNA molecule.

- (A) A and R are both correct but R is not explanation of A
- (B) A and R are both correct. R is explanation of A
 - (C) A is correct and R is wrong
 - (D) A is wrong and R is correct

198)

Write proper option by matching column I, II and III.

	Column I	Column II	Column III
	(Name)	(Enzyme)	(Function)
i)	Gastric Juice	P) Chymo- trypsinogen	A) Dipeptide convert into amino acid
ii)	Intestinal Juice	Q) Ptylin	B) Proteoses convert into small polypeptides
iii)	Saliva	R) Renin	C) Casein convert into paracasein
iv)	Pancreatic juice	S) Erepsin	D) Conversion of starch

(Space for Rough Work)

into maltose

99)	Write the correct sequ	sence of genetic diversity.
-----	------------------------	-----------------------------

- (A) Population → Species → Chromosomes → Genes → Nucleotides
- (B) Kingdom → Population → Species → Genes → Chromosome
 → Nucleotides ×
- (C) Species → Genes → Population → Chromosomes → Nucleotides +
- (D) Kingdom → Species → Chromosomes → Genes → Nucleotides

100) Match the column I and II and select the correct option.

P

R

S

T

T

P

S

S

Q

(B)

(C)·

(D)

Column II (concentration of DDT in ppm) Column I Zooto Plankton 0.003 ppm P) A) 1 Small fishes 2 ppm B) Q) Water 25 ppm C). R) Fish cating birds 0.04 ppm S) D) Big fishes 0.5 ppm E) T) B C D E A S P R (A). Q

R

Q

T

(Space for Rough Work)

Q·

P

R

101)) Which of the following disease shows the blockage of kidney tubules a causes severe back pain?			
	(A)	Kidney failure		
	(B)	Renal calculi		
	(C)	Uremia		
	(D)	Nephritis		
102)		ng photorespiration which compounds are formed having 2C and 3C ectively in Peroxisome?		
	(A)	Glycine, Glycerate		
	(B)	Glycolate, Glycine		
	(C)	Serine, Glycine		
_	(D)	Phosphoglycerate, Glycolate		
103)	Duri Why	ng rainy season wooden doors and windows are not properly closed.		
	(A)	Diffusion		
	(B)	Plasmolysis		
	(C)	Osmosis		

(D), Imbibition

Column I

Column II

Column III

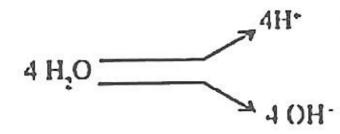
- A) Sickle Cell Anaemia
- Due to recessive PP genes
- P) Arrangement of Valine in place of Glutamic acid

- B) Phenyl Ketonuria
- ii) Due to absence of homogentisic oxidase enzyme
- O) Inborn error ofmetabolism

- C) Alkaptonuria
- iii) Follows Mendelian R) Urine turns black Principles when exposed to air
- D) Thalassaemia
- iv) Characters caused S) The required by homozygous recessive genes
- haemoglobin is not generated in the blood

105) Which of the following is the symptom of Ulcerative colitis?

- (A) Difficulty in swallowing
- Watery stools containing blood and mucus
- Loss of appetite
- (D) Eyes turn yellow


(K) Zygometic

(B) Frontal

(C) Temporal

(D) Splienoid

107)

In this process which of the following play important role?

(A) Chlorophyll

(B) Light energy

(C) Ca**, Mn**, Cl

(1) All of the above

108) Which of the following is correct trend of succession in Hydroseric succession?

- (A) Phytoplankton → Reed swamp → Rooted submerged → Sedge medow
- (B)/ Phytoplankton → Rooted submerged → Reed swamp → Sedge medow
- (C) Phytoplankton → Sedge medow → Reed swamp → Root submerged
- (D) Rooted submerged → Phytoplankton → Reed swamp → Sedge medow

109) On which surface of cell Donnan equilibrium occur?								
2077		Tonoplast	(B)	Cell wall				
		Plasma membrane	(D)	Nuclear membrane				
	(0)							
110)	Whic	ch type of gene regulate sex-dete	rmina	tion in Spinach plant?				
		Heterozygous genes	(B)	Homozygous genes				
	1071 11	Single gene	(D)	Multiple genes				
		94						
111)	Who	n the respiratory substances are	more 1	han one then which respiratory				
	subs	trates are not used?	100 E 100 E	300 (State of the control of the con				
	(A)	Pure Protein	(B)	Lipid				
	(C)	Carbohydrate	(D)	(A) and (B) hoth				
	13 . 13							
112) State the condition of muscle contraction in following diagram.								
	9			The state of the s				
,								
	(A)	Resting potential	_(B)	Contraction				
	(C)	Maximally contracted	(D)	None				
(Space for Rough Work)								

113)	How many	years are considered	in one minute	in	Geological	clock?
------	----------	----------------------	---------------	----	------------	--------

- (A) 1,87,500,000 years
- (B) 52000 years

(C) 3,25,000 years

(D) 1,90,000 years

A14) Which structure is formed at the time of exchange of gamete nuclei in given animal during sexual reproduction.

- (A) Cytoplasmic filaments
- (B) Plasmodesmata

(C) Internal-tubule

(I) Cytoplasmic bridge

115) Name the plant shows adventive embryonic cells.

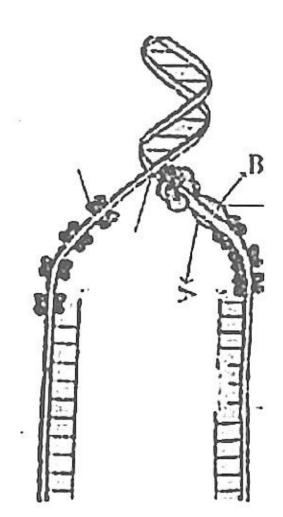
- (A) Citrus and Mango ..
- (B) Sunflower and Mango ×

(C) Lemon and Maize

(D) Lemon and Palms

116)	During respiration	
------	--------------------	--

- (A) 2 PGAL during glycolysis and 4 Pyruvic acid are produced in Kreb's cycle
- (B) 2 PGAL during glycolysis and none of the PGAL produced in Kreb's cycle
- (C) 2 PGAL during glycolysis and 2 Pyruvic acid are produced in Kreb's cycle
 - (D) PGAL is not produced during respiratory events
- 117) Which of the following function is performed by collecting tubule of kidney?
 - (A) In the maintenance of pH and ionic balance of blood by the secretion of H' and K' ions Y.
 - (B) Maintenance of pH of blood and removal of Na* and K* ions
 - (C)/ Absorption of glucose and ammonia from the blood
 - (D) None of above
- 118) A Nerve fibre can become excited through touch, smell, pressure and chemical changes and there is a change in polarity.
 - R It is called active potential.
 - A and R both are correct but A is not correct explanation of R.
 - (B) A and R both are correct and A is correct explanation of R.
 - (C) A is correct and R is wrong
 - (D) A is wrong and R is correct



119) Select proper option, by matching column I, II and III.

Column I (Common Name)	Column II (Roman Numerical Designation)	Column III (Activation product)		
P) Prothrombin	(x) I	i) Convertin		
Q) Proconvertin	· y) V	g ii) Fibrin		
R) Fibrinogen	2.) []	iii) Thrombin		
S) Proaccelerin -	w) VII	5 iv) Accelerin		
(A) (P-w-ii) (Q-	- x - i ii) - (R - y - iv) - (S	-x-i}^		
(B) (P-z-iii) (Q	- w - i) (R - y - ii) (S	- x - iv)		
(C) (!'-z-iii) (Q	- w - ii) -(R - x - iv) -(S	i-y-i)-x		
(D) (P-z-iii) (Q	- w - i) (R - x - ii) (S -	- y - iv)		

120) What is "A" and "B" in given diagram?

- (A) A = RNA Primer
 - B = DNA Helicase
- (B) A = RNA Primer
 - B = RNA Helicase
- (C) A = Single strand Binding Protein
 - B = DNA Helicase -
 - (D) $\Lambda = \text{Lagging strand}$
 - B = Movement of Helicase

