PHYSICS

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

Choose the correct answer:

1. A car moving on a straight line travels in same direction half of the distance with uniform velocity v_{1} and other half of the distance with uniform velocity v_{2}. Average velocity of the car is equal to
(1) $\frac{2 v_{1} v_{2}}{v_{1}+v_{2}}$
(2) $\frac{v_{1}+v_{2}}{2}$
(3) $v_{1}+v_{2}$
(4) $\sqrt{v_{1} v_{2}}$

Answer (1)
Sol.

$t_{1}=\frac{x}{2 v_{1}}, t_{2}=\frac{x}{2 v_{2}}$
So $v_{\mathrm{av}}=\frac{\text { Total distance }}{\text { Total time }}$

$$
=\frac{x}{t_{1}+t_{2}}
$$

$$
=\frac{x}{\frac{x}{2 v_{1}}+\frac{x}{2 v_{2}}}
$$

$$
=\frac{2 v_{1} v_{2}}{v_{1}+v_{2}}
$$

2. A car is moving with a constant speed of $2 \mathrm{~m} / \mathrm{s}$ in circle having radius R. A pendulum is suspended from the ceiling of the car. Find the angle made by the pendulum with the vertical. Take $R=\frac{8}{15} \mathrm{~m}$ and $g=10 \mathrm{~m} / \mathrm{s}^{2}$
(1) 30°
(2) 53°
(3) 37°
(4) 60°

Answer (3)

Sol.

$T \cos \theta=m g$
$T \sin \theta=\frac{m v^{2}}{R}$
$\Rightarrow \tan \theta=\frac{v^{2}}{R g}$

$$
=\frac{4}{\frac{8}{15} \times 10}=\frac{3}{4}
$$

$\Rightarrow \theta=37^{\circ}$
3. A particle is droped inside tunnel of earth about any diameter. Particle starts oscillating, with time period T. ($R=$ radius of earth, $g=$ acceleration due to gravity on earth's surface). Then find T.
(1) $T=2 \pi \sqrt{\frac{R}{g}}$
(2) $T=\pi \sqrt{\frac{R}{g}}$
(3) $T=2 \pi \sqrt{\frac{2 R}{g}}$
(4) $T=2 \pi \sqrt{\frac{3 R}{g}}$

Answer (1)

Sol.

$F=m g$ (towards centre)
$\frac{m d v}{d t}=-\left(\frac{G M m}{R^{3}}\right) r$
$\frac{d v}{d t}=-\left(\frac{G M}{R^{3}}\right) r$
$g=\frac{G M}{R^{2}}$
$\frac{d v}{d t}=-\left(\frac{g}{R}\right) r$
$\omega^{2}=\left(\frac{g}{R}\right)$
$\omega=\sqrt{\frac{g}{R}}$
$T=\frac{2 \pi}{\omega}=2 \pi \sqrt{\frac{R}{g}}$
4. If T is the temperature of a gas then RMS velocity of the gas molecules is proportional to
(1) $T^{1 / 2}$
(2) $T^{-1 / 2}$
(3) T
(4) T^{2}

Answer (1)
Sol. $v_{\mathrm{rms}}=\sqrt{\frac{3 R T}{M_{0}}}$
So $v_{\text {rms }} \propto \sqrt{T}$
5. Time period of a pendulum at earth's surface is T. Find the time period of the pendulum at distance (from centre) which is twice the radius of earth.
(1) $\frac{T}{4}$
(2) $4 T$
(3) $\frac{T}{2}$
(4) $2 T$

Answer (4)

Sol. We know that $T=2 \pi \sqrt{\frac{1}{g}}$

$$
\Rightarrow \quad T=2 \pi \sqrt{\frac{1}{\frac{G M}{R^{2}}}} \cdots \text { (i) }
$$

$$
\text { Also, } T^{\prime}=2 \pi \sqrt{\frac{1}{\frac{G M}{(2 R)^{2}}}} \ldots \text { (ii) }
$$

$$
\Rightarrow \frac{T^{\prime}}{T}=\frac{2}{1}
$$

$$
\Rightarrow \quad T^{\prime}=2 T
$$

6. Let $I_{c m}$ be the moment of Inertia of disc passing through center and perpendicular to its plane. $I_{A B}$ be the moment of Inertia about axis $A B$ that is in the plane of disc and $\frac{2 r}{3}$ distance from centre, Find $\frac{I_{c m}}{I_{A B}} ?$
(1) $\frac{1}{4}$
(2) $\frac{18}{25}$
(3) $\frac{9}{17}$
(4) $\frac{1}{2}$

Answer (2)

Sol.

$I_{c m}=\frac{1}{2} M R^{2}$ (Perpendicular to plane)
$I_{c m}($ in plane $)=\frac{1}{4} M R^{2}$
$I_{A B}=\frac{1}{4} M R^{2}+M\left(\frac{2}{3} R\right)^{2}$
$=\frac{1}{4} M R^{2}+\frac{4}{9} M R^{2}$
$=\frac{(9+16) M R^{2}}{36}=\frac{25}{36} M R^{2}$
$\frac{I_{c m}(\text { Perpendiular })}{I_{A B}}=\frac{\frac{1}{2} M R^{2}}{\frac{25}{36} M R^{2}}=\left(\frac{18}{25}\right)$
7. A massless rod is arranged as shown:

Find the tension in the string
(1) 320 N
(2) 640 N
(3) 160 N
(4) 480 N

Answer (1)
Sol. Balancing the torque on the rod about the point of contact with the wall:
$\left(T \sin 30^{\circ}\right) \times 40=(m g) \times(40+40)$
$\Rightarrow T=320 \mathrm{~N}$
8. A carnot engine working between a source and sink at 200 K has efficiency of 50%. Another carnot engine working between the same source and another sink with unknown temperature T has efficiency of 75%. The value of T is equal to
(1) 400 K
(2) 300 K
(3) 200 K
(4) 100 K

Answer (4)
Sol. $\frac{50}{100}=1-\frac{200}{T}$
$\Rightarrow \quad T=400 \mathrm{~K}$
$T^{\prime}=100 \mathrm{~K}$
9. Mark the option correctly matching the following columns with appropriate dimensions

Column-I

(A) Surface tension
(B) Pressure
(C) Viscosity
(D) Impulse
(1) $A(Q), B(P), C(R), D(S)$
(2) $A(Q), B(P), C(S), D(R)$
(3) $A(S), B(Q), C(P), D(R)$
(4) $A(R), B(P), C(Q), D(S)$

Answer (2)
Sol. For surface tension
$F=S L$
$[S]=\frac{[F]}{[L]}=\left[\mathrm{MT}^{-2}\right]$
For pressure
$P=\frac{F}{A}$
$[P]=\frac{[F]}{[A]}=\left[\mathrm{ML}^{-1} \mathrm{~T}^{-2}\right]$
For viscosity coefficient
$F=A\left(\frac{\Delta v}{\Delta z}\right) \eta$
$[\eta]=\frac{[F]}{[A]\left[\frac{\Delta v}{\Delta z}\right]}=\left[\mathrm{ML}^{-1} \mathrm{~T}^{-1}\right]$
For Impulse

$$
\begin{aligned}
& I=\Delta p \\
& {[I]=[\Delta p]=\left[\mathrm{MLT}^{-1}\right]}
\end{aligned}
$$

Column-II

(P) $\left[\mathrm{ML}^{-1} \mathrm{~T}^{-2}\right]$
(Q) $\left[\mathrm{MT}^{-2}\right]$
(R) $\left[\mathrm{MLT}^{-1}\right]$
(S) $\mathrm{ML}-1 \mathrm{~T}^{-1}$
10. Assertion (A): Reverse biased diode is used in photodiode.

Reason (R): Forward biased current is more than reverse bias current.
(1) A \& R are correct and R is correct explanation of A
(2) $\mathrm{A} \& \mathrm{R}$ are correct, R is not correct explanation of A
(3) A is incorrect and R is correct
(4) A is correct and R is incorrect

Answer (??)

Sol. (NCERT) It is easier to observe small changes in current due to intensity, when diode is in reverse bias.
11. Temperature of hot soup in a bowl goes from $98^{\circ} \mathrm{C}$ to $86^{\circ} \mathrm{C}$ in 2 minutes. The temperature of surroundings is $22^{\circ} \mathrm{C}$. Find the time taken for the temperature of soup to go from $75^{\circ} \mathrm{C}$ to $69^{\circ} \mathrm{C}$. [Assume Newton's law of cooling is valid]
(1) 1 minute
(2) 1.4 minute
(3) 2 minute
(4) 3.2 minute

Answer (2)

Sol. By Newton's law of cooling:
Rate of cooling $(R) \propto$ temperature difference
$\Rightarrow R_{1}=k x\left(92^{\circ} \mathrm{C}-22^{\circ} \mathrm{C}\right)$
and $R_{2}=k x\left(72^{\circ} \mathrm{C}-22^{\circ} \mathrm{C}\right)$
$\Rightarrow \frac{R_{1}}{R_{2}}=\frac{70}{50}=\frac{7}{5}$
$\Rightarrow \Delta t_{2}=1.4$ minute
12. Electric field is applied along $+y$ direction. A charged particle is travelling along $-\hat{k}$, undeflected. Then magnetic field in the region will be along?
(1) \hat{i}
(2) $-\hat{i}$
(3) \hat{j}
(4) $-\hat{k}$

Answer (1)

Sol.

$q(\vec{E}+\vec{V} \times \vec{B})=0$
$\vec{V} \times \vec{B}=-\vec{E}$
$\Rightarrow V_{0}(-\hat{k}) \times \vec{B}=-E_{0} \hat{j}$
\vec{B} should be in \hat{i} direction to balance the electrostatic force on the charge particle.
13. When an electron is accelerated by 20 kV , its deBroglie wavelength is λ_{0}. If the electron is accelerated by 40 kV , find its de-Broglie wavelength.
(1) $2 \lambda_{0}$
(2) $\frac{\lambda_{0}}{2}$
(3) $\sqrt{2} \lambda_{0}$
(4) $\frac{\lambda_{0}}{\sqrt{2}}$

Answer (4)

Sol. We know $\lambda_{0}=\frac{h}{p}$

$$
\begin{aligned}
\Rightarrow \lambda_{0} & =\frac{h}{\sqrt{2 m K}} \\
& =\frac{h}{\sqrt{2 m e V}}
\end{aligned}
$$

Since V doubles

$$
\begin{aligned}
& \Rightarrow \quad \frac{\lambda^{\prime}}{\lambda_{0}}=\sqrt{\frac{V}{2 V}}=\frac{1}{\sqrt{2}} \\
& \Rightarrow \quad \lambda^{\prime}=\frac{\lambda_{0}}{\sqrt{2}}
\end{aligned}
$$

14.

Find the equivalent resistance of the shown circuit across the terminals of ideal battery.
(1) $2 R$
(2) $3 R$
(3) $4 R$
(4) $5 R$

Answer (2)

Sol. In $2^{\text {nd }}$ part of diagram a connecting wire is nullifying the resistance of parallel resistance thus their net resistance is zero. So net resistance of circuit is $3 R$.

15. For an AM signal, it is given that
$f_{\text {carrier }}=10 \mathrm{MHz}$
$f_{\text {signal }}=5 \mathrm{kHz}$
Find the bandwidth of the transmitted signal.
(1) 5 kHz
(2) 10 kHz
(3) 2.5 kHz
(4) 20 MHz

Answer (2)

Sol. We know bandwidth $=2 \mathrm{fm}$

$$
\Rightarrow \text { bandwidth }=10 \mathrm{kHz}
$$

16. Let nuclear densities of ${ }_{2}^{4} \mathrm{He}$ and ${ }_{20}^{40} \mathrm{Ca}$ be ρ_{1} and ρ_{2} respectively. Find the ratio $\frac{\rho_{1}}{\rho_{2}}$.
(1) $1: 10$
(2) $10: 1$
(3) $1: 1$
(4) $1: 2$

Answer (3)
Sol. We know radius $R=R_{0} A^{\frac{1}{3}}$

$$
\begin{aligned}
\Rightarrow \text { Density }=\frac{\text { Mass }}{\text { Volume }} & =\frac{A}{\frac{4}{3} \pi\left(R_{0} A^{\frac{1}{3}}\right)^{3}} \\
& =\frac{1}{\frac{4}{3} \pi R_{0}^{3}}
\end{aligned}
$$

\Rightarrow Density is independent of A.
$\Rightarrow \quad \frac{\rho_{1}}{\rho_{2}}=1$
17. A particle is projected with 0.5 eV kinetic energy in an uniform electric field $\vec{E}=-10 N / C \hat{j}$, as shown in the figure. Find the angle made by the particle from the x-axis when it leaves \vec{E}.

(1) $\theta=45^{\circ}$
(2) $\theta=60^{\circ}$
(3) $\theta=30^{\circ}$
(4) $\theta=37^{\circ}$

Answer (1)

Sol.

$v_{x}=v_{0}$
$a_{y}=\left(\frac{e E}{m_{e}}\right)$
$S_{y}=5 \times 10^{-2} \mathrm{~m}$
$v_{y}^{2}=2 a_{y} S_{y}$
$v_{y}=\sqrt{\frac{2 e E}{m_{e}} S_{y}}$
$\tan \theta=\left(\frac{v_{y}}{v_{x}}\right)$
$K_{i}=0.5 \mathrm{eV}=\frac{1}{2} \frac{m_{e} v_{x}^{2}}{e}$
$v_{X}=\sqrt{\frac{0.5 \times 2 e}{m_{e}}}=\sqrt{\frac{e}{m_{e}}}$
$\tan \theta=\frac{\sqrt{\frac{2 e E}{m_{e}} \times S_{y}}}{\sqrt{\frac{e}{m_{e}}}}=\sqrt{2 E S_{y}}=\sqrt{2 \times 10 \times 5 \times 10^{-2}}$
$=\sqrt{1}$
$\tan \theta=1$
$\theta=45^{\circ}$
18. ??
19. ??
20. ??

SECTION - B

Numerical Value Type Questions: This section contains 10 questions. In Section B, attempt any five questions out of 10. The answer to each question is a NUMERICAL VALUE. For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to the second decimal place; e.g. $06.25,07.00,-00.33,-00.30,30.27,-27.30)$ using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.
21. In the series sequence of two engines E_{1} and E_{2} as shown $T_{1}=600 \mathrm{~K}$ and $T_{2}=300 \mathrm{~K}$. It is given that both the engines working on carnot principle have same efficiency, then temperature T at which exhaust of E_{1} is fed into E_{2} is equal to $300 \sqrt{n} \mathrm{~K}$. Value of n is equal to

Answer (02.00)
Sol. $\eta_{1}=1-\frac{T}{600}$
$\eta_{2}=1-\frac{300}{T}$
As efficiency is same

$$
\begin{gathered}
\eta_{1}=\eta_{2} \\
\frac{T}{600}=\frac{300}{T} \\
\Rightarrow T=\sqrt{180000} \\
=300 \sqrt{2} \mathrm{~K} .
\end{gathered}
$$

So $n=2$
22. A solenoid of length 2 m , has 1200 turns. The magnetic field inside the solenoid when 2 A current is passed through it is $N \pi \times 10^{-5} \mathrm{~T}$. Find the value of N. (Diameter of solenoid is 0.5 m)

Answer (48.00)

Sol.

$B_{\text {inside }}=\mu_{0} \mathrm{ni}$
$N=$ Number of turns per unit length

$$
=\frac{1200}{2}=600
$$

$i=$ current in a turn $=2 \mathrm{~A}$
$B=4 \pi \times 10^{-7} \times 600 \times 2$
$=48 \pi \times 10^{-5} \mathrm{~T}$
23. Consider a network of resistors as shown:

Find the effective resistance (in Ω) across A and B.

Answer (05.00)

Sol. Effectively, the network is:

24. Find the ratio of density of oxygen $\left({ }_{8}^{16} \mathrm{O}\right)$ to the density of Helium $\left({ }_{2}^{4} \mathrm{He}\right)$ at STP.

Answer (08.00)

Sol. $\frac{P}{\rho}=\frac{R T}{M_{0}}$

$$
\Rightarrow \frac{\rho_{1}}{\rho_{2}}=\frac{M_{1}}{M_{2}}
$$

$\frac{\rho_{1}}{\rho_{2}}=\frac{32}{4}=8$
25. Consider the following two LC circuits.

(I)

(II)

Then find $\frac{\omega_{1}}{\omega_{11}}$, where ω_{1} and ω_{11} are resonance frequencies of the Circuit I and Circuit II respectively.
Answer (04.00)

Sol.

$$
\begin{aligned}
& \omega_{1}=\frac{1}{\sqrt{L C}}, \omega_{2}=\frac{1}{\sqrt{(8 L \times 2 C)}}=\frac{1}{4 \sqrt{L C}} \\
& \frac{\omega_{1}}{\omega_{2}}=\frac{4}{1}
\end{aligned}
$$

26. ??
27. ??
28. ??
29. ??
30. ??
