MATHEMATICS (FINAL)

1. The system of equations
$$\begin{pmatrix} 1 & 3 & -2 \\ -3 & 0 & -5 \\ 2 & 5 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$

- A. has no solution
- B. has one and only one solution
- C. has infinite number of solutions
- D. None of the above
- 2. If a and b are real numbers, then $\sup\{a,b\}$ =

A.
$$\frac{a+b-|a-b|}{2}$$

$$B. \frac{a-b-|a-b|}{2}$$

$$C. \frac{a-b+|a+b|}{2}$$

D.
$$\frac{a+b+|a-b|}{2}$$

- 3. If, for $x \in \mathcal{F}$, $\varphi(x)$ denotes the integer closest to x (if there are two such integers take the larger one), then $\int_{10}^{12} \varphi(x) dx$ equals
 - A. 22
 - B. 11
 - C. 20
 - D. 12

4. The eigen values of the matrix
$$\begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}$$
 are

- A. 1,1,1
- B. 2,2,2
- C. -2, -2, -2
- D. -1, -1, -1

5. The value of
$$\sum_{n=1}^{\infty} \frac{(-1)^{(n+1)}}{n}$$
 is

- A. log 2
- B. e^2
- C. 0
- D. 1

6. The rank of the matrix
$$\begin{pmatrix} 0 & 0 & 0 & 0 & -2 \\ 1 & 0 & 0 & 0 & -4 \\ 0 & 1 & 0 & 0 & 5 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 13 \end{pmatrix}$$
 is

- A. 5
- B. 4
- C. 3
- D. 2

7.
$$\sum_{n=1}^{\infty} \frac{2^n}{(n-1)!}$$
 is

- A. *e*
- B. 2*e*
- C. $2e^2$
- D. $2e^{-2}$

- 8. If $A = \begin{bmatrix} \alpha & 2 \\ 2 & \alpha \end{bmatrix}$, and $|A^2| = 125$, then the value of α is
 - A. ±5
 - B. ±3
 - C. ±2
 - D. ±1
- 9. The algebraic equation $x^n + y^n = z^n$ has no integer solution when
 - A. n > 2
 - B. n = 2
 - C. n=0
 - D. n < 2
- 10. Which of the function $f: R \to R$ is one-one and onto?
 - A. $f(x) = x^3 + 2$
 - B. $f(x) = \sin x$
 - C. $f(x) = \cos x$
 - D. $f(x) = x^4 x^2$
- 11. Let P(x) be a non-constant polynomial such that P(n) = P(-n) for all $n \in N$. Then P'(0) is
 - A. -1
 - B. 1
 - C. 0
 - D. -2

- 12. If $A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$, then $A^2 5A + 7I$ is equal to
 - A. $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$
 - B. $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
 - C. $2\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
 - D. None of the above
- 13. If A is any non-identity 3×3 matrix such that $A^2 = A$, then A is
 - A. Singular
 - B. Non singular
 - C. Regular
 - D. None of the above
- 14. If every cross-section of a bounded surface in three dimensions is a circle, then the surface must be a
 - A. cylinder
 - B. sphere
 - C. cone
 - D. third-degree surface
- 15. For any complex number z, the minimum value of |z|+|z-1| is
 - A. 1
 - B. 0
 - C. 1/2
 - D. 3/2

- 16. The number having a recurring decimal representation 1.414141... is
 - A. real but irrational
 - B. not real
 - C. rational
 - D. neither rational nor real
- 17. The derivative with respect to x of the product $(1+x)(1+x^2)(1+x^4)(1+x^8)+....+(1+x^{56})$ at x=0 is
 - A. 0
 - B. 1
 - C. 8
 - D. 56
- 18. If α , β and γ are roots of the equation $x^3 + px^2 + qx + r = 0$, then $\alpha^2 + \beta^2 + \gamma^2$ is equal to
 - A. $p^2 2q$
 - B. $p^2 + 2q$
 - C. $2p+q^2$
 - D. $2p q^2$
- 19. Given that $2+i\sqrt{3}$ is one of $x^3-5x^2+11x-7=0$ then the other roots are
 - A. $2-i\sqrt{3},-1$
 - B. $2-i\sqrt{3},1$
 - C. $2 + i\sqrt{3}, 1$
 - D. None of the above

20. The quadratic function on a single variable attains its maximum value 5 at 3. The function is

A.
$$ax^2 - 6ax + 9a + 5$$
, $a < 0$

B.
$$ax^2 - 6ax + 9a + 5$$
, $a > 0$

C.
$$ax^2 + 6ax + 9a + 5$$
, $a < 0$

- D. None of the above
- 21. Let n be a two digit number. P(n) is the product of the digits of n and S(n) is the sum of the digits of n. If n = P(n) + S(n) then the unit digit of n is
 - A. 1
 - B. 5
 - C. 7
 - D. 9
- 22. The value of $\sqrt{20 + \sqrt{20 + \sqrt{20 + ...}}}$ is
 - A. -4
 - B. 5
 - C. 4
 - D. 5
- 23. If A, B, C are three sets with cardinality m, p, q respectively such that B I $C = \phi$, then the cardinality of $(A \times B) \cup (A \times C)$ equals
 - A. mpq
 - B. m(p+q)
 - C. m(p+q-pq)
 - D. m + pq

24.	Which among th	e following	is not a group	n under usual	multiplication?
<i>4</i> 4.	willen among u	ie ionowing	is not a grou	unu c i usuai	illulupiicatioii!

- $A. \hspace{0.2cm} \textbf{\textit{i}} \hspace{0.2cm} \big\{0\big\}$
- $B. \ \mathtt{p} \ \big\{ 0 \big\}$
- $C.\ {\tt \tiny D}^{\,\scriptscriptstyle +}$
- D. ¥

25. If $\log_{27} x = \log_3 27$, then x is

- A. 27
- B. 3
- C. 3^{27}
- D. 27³

26. If ϕ is a homomorphism of a group G onto a group \overline{G} with kernel K, then G/K is isomorphic to

- A. *G*
- B. \overline{G}
- C. $\overline{G}/\overline{K}$
- D. None of the above

27. If G is a group and for $a \in G$ no positive integer m exists such that $a^m = e$, then the order of a is

- A. finite
- B. *m*
- C. m + 1
- D. infinite

- 28. The derivative of e^t with respect to \sqrt{t} is
 - A. $\frac{e^t}{2\sqrt{t}}$
 - B. $\frac{2\sqrt{t}}{e^t}$
 - C. $2\sqrt{t}e^{t}$
 - D. $2\sqrt{te^t}$
- 29. $\int_0^1 \int_0^1 \frac{1}{\sqrt{(1-x^2)}} \frac{1}{\sqrt{(1-y^2)}} dx dy$, is equal to
 - A. $\frac{\pi^2}{2}$
 - B. $\frac{\pi^2}{3}$
 - C. $\frac{\pi^2}{4}$
 - D. None of the above
- 30. $\int_0^{\frac{\pi}{2}} \sin^2 x \cos^2 x dx$ is equal to
 - A. $\frac{\pi}{8}$
 - B. $\frac{\pi}{16}$
 - C. $\frac{\pi}{32}$
 - D. 1

- 31. $\int_0^\infty \frac{1}{\left(1+x^2\right)^4} dx$ is equal to
 - A. $\frac{-5\pi}{32}$
 - B. $\frac{5\pi}{16}$
 - C. $\frac{5\pi}{32}$
 - D. $\frac{-5\pi}{16}$
- 32. $\int_0^{\frac{\pi}{6}} \cos^2 \frac{\pi}{2}$ is equal to
 - A. $\frac{\pi}{12} \frac{1}{4}$
 - B. $\frac{\pi}{12} + \frac{1}{4}$
 - C. $\frac{1}{4} \frac{\pi}{2}$
 - D. $\frac{1}{4} + \frac{\pi}{2}$
- 33. The series $\sum \frac{1}{n(\log n)^p}$ is divergent if
 - A. p > 1
 - B. *p* ≤1
 - C. *p* < 1
 - D. p = 1

- 34. A non-decreasing sequence which is bounded above is
 - A. divergent
 - B. convergent
 - C. oscillating
 - D. unbounded
- 35. Let $f: \rightarrow i$ be defined by

$$f(x) = \begin{cases} \frac{1 - \cos 4x}{x^2} & \text{if } x < 0\\ a, & \text{if } x = 0\\ \frac{\sqrt{x}}{\sqrt{16 + \sqrt{x} - 4}} & \text{if } x > 0 \end{cases}$$

If f is continuous for all x, then the value of a is

- A. 0
- B. 4
- C. 8
- D. 5
- 36. The cardinal number of the empty set is
 - A. 1
 - B. 0
 - C. ∞
 - D. -1
- 37. Every closed and bounded set in \mathbb{R}^n is
 - A. empty
 - B. open
 - C. compact
 - D. convex

- 38. In which subspace the sequence $\left\{\frac{1}{n}\right\}$ is Cauchy but not convergent
 - A. [0,1]
 - B. [0,1)
 - C. (0,1]
 - D. (0,1)
- 39. The collection of open intervals $\left(\frac{1}{n}, \frac{2}{n}\right)$, n = 1, 2, 3, ... is an open covering of the interval
 - A. (0,1)
 - B. (1,2)
 - C. $(0,\infty)$
 - D. $(1,\infty)$
- 40. The set of all rational numbers is a
 - A. empty set
 - B. finite set
 - C. countable set
 - D. uncountable set
- 41. $\int_0^{2\pi} \frac{dx}{(2+\cos x)}$ is equal to
 - A. $\frac{2\pi}{\sqrt{3}}$
 - B. $\frac{\pi}{\sqrt{3}}$
 - C. $\frac{2\pi}{-3}$

- D. None of the above
- 42. The whole length of the asteroid $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$ is
 - A. 6*a*
 - B. 8a
 - C. 4a
 - D. None of the above
- 43. The condition for the point (x, y) to lie on the straight line joining the points (0,b) and (a,0) is
 - A. $\frac{x}{a} + \frac{y}{b} = 1$
 - B. $\frac{x}{a} \frac{y}{b} = 1$
 - C. $\frac{x}{a^2} + \frac{y}{b^2} = 1$
 - D. None of the above
- 44. The centroid of the triangle whose vertices are (2,4,-3), (-3,3,-5) and (-5,2,-1) is
 - A. (-2, -3, -3)
 - B. (-3,3,-2)
 - C. (3,-2,-3)
 - D. (-2,3,-3)
- 45. The triangle whose vertices are (-1,1,0), (3,2,1) and (1,3,2) is
 - A. isosceles triangle
 - B. right-angle triangle
 - C. equilateral triangle
 - D. None of the above

- 46. The coordinates of the point at which the line joining the points (4,3,1) and (1,-2,6) meets the plane 3x-2y-z+3=0 is
 - A. (-2, -7, 11)
 - B. (-2.7,11)
 - C. (-2, -7, -11)
 - D. (2,7,11)
- 47. The center of the sphere $x^2 + y^2 + z^2 6x + 8y 10z + 1 = 0$ is
 - A. (5,-4,3)
 - B. (3,4,-5)
 - C. (-5, -4, -3)
 - D. (3,-4,5)
- 48. The equation of the right circular cone with its vertex at the origin, axis along z-axis and semi-vertical angle α is
 - A. $x^2 + y^2 = z^2 \tan^2 \alpha$
 - B. $x^2 y^2 = z^2 \tan^2 \alpha$
 - C. $x^2 + y^2 = z \tan^2 \alpha$
 - D. $x^2 y^2 = z \tan^2 \alpha$
- 49. $\nabla \times (\nabla \times A)$ is equal to
 - A. 0
 - B. $-\nabla^2 A + \nabla (\nabla A)$
 - C. $\nabla^2 A + \nabla (\nabla A)$
 - D. $(\nabla \times \nabla) \times A$

- 50. The curl of $\vec{F} = x^2 \vec{i} + y^2 \vec{j} + z^2 \vec{k}$ at (1, 2, -3) is
 - A. i + 2j 3k
 - B. $\vec{i} 2\vec{j} + 3\vec{k}$
 - C. $2\vec{i} 4\vec{j} + 6\vec{k}$
 - D. $2i^{1} + 4j^{1} 6k^{1}$
- 51. Let $F = \frac{-yi + xj}{x^2 + y^2}$. Then $\nabla \times F$ is
 - A. 0
 - B. 1
 - C. 1
 - D. None of the above
- 52. The probability mass function or probability density function for which the mean in units and the variance in square units are same is
 - A. Binomial
 - B. Poisson
 - C. Standard Normal
 - D. Geometric
- 53. The chance of getting at least 9, in a single throw with two dice is
 - A. $\frac{4}{36}$
 - B. $\frac{3}{36}$
 - C. $\frac{5}{18}$
 - D. $\frac{1}{18}$

- 54. A random variable *X* has a probability density function $f(x) = \frac{C}{1+x^2}$, $-\infty < x < \infty$. Then the value of *C* is
 - Α. π
 - B. 1
 - C. $\frac{1}{\pi}$
 - D. $\frac{2}{\pi}$
- 55. If f(z) and $f(\overline{z})$ are analytic in a region D, then
 - A. f(z) is constant in D
 - B. f(z) is continuous in D
 - C. f(z) is not differentiable everywhere in D
 - D. f(z) = |z|
- 56. The value of $\int_C \frac{z^2+1}{z^2-1} dz$, where C is a circle of unit radius with center at z=1 is
 - A. 0
 - B. $2\pi i$
 - C. –2*πi*
 - D. 1

- 57. If $(x+iy)^{\frac{1}{3}} = a+ib$, then the value of $\frac{x}{a} + \frac{y}{b}$ is
 - A. $4(a^2-b^2)$
 - B. 4*ab*
 - C. $4(a^2+b^2)$
 - D. 5ab
- 58. The value of $(1+i)(1+i^2)(1+i^3)(1+i^4)....(1+i^{50})$ is
 - A. 50
 - B. 1
 - C. 0
 - D. i
- 59. If $\omega = \frac{z}{z-i}$ and $|\omega| = 1$, then z lies on
 - A. a circle
 - B. an ellipse
 - C. a parabola
 - D. a straight line
- 60. The residue of $\frac{z^2}{(z-1)(z-2)(z-3)}$ at z=1 is
 - A. -8
 - B. 1/2
 - C. -6
 - D. 0

- 61. If u(x, y) = xy is a harmonic function, a harmonic conjugate of u is
 - A. $\frac{x^2}{2}$
 - B. $x^2 + y^2$
 - C. $\frac{x^2}{2} + \frac{y^2}{2}$
 - D. $\frac{y^2}{2} \frac{x^2}{2}$
- 62. The solution of a homogeneous initial value problem with constant coefficient is $y = 3xe^{2x} + 6\cos 4x$. Then the least possible order of the differential equation is
 - A. 4
 - B. 5
 - C. 6
 - D. 3
- 63. The differential equation of the curve $y = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$ is
 - A. $\frac{dy}{dx} = x$
 - B. $\frac{dy}{dx} = -x$
 - C. $\frac{dy}{dx} = y$
 - D. $\frac{dx}{dy} = y$

64. The differential equation of all circles which pass through the origin and whose centers are on the x-axis is

$$A. y^2 + x^2 - 2xy \frac{dy}{dx} = 0$$

B.
$$x^2 - y^2 + 2x \frac{dy}{dx} = 0$$

$$C. y^2 - x^2 - 2xy \frac{dy}{dx} = 0$$

D.
$$y^2 + 2x \frac{dy}{dx} = 0$$

- 65. The correlation coefficient lies between
 - A. 0 and 1
 - $B_{\cdot}-1$ and 0
 - C. -1 and 1
 - D. None of the above
- 66. The average monthly production of a factory for the first 8 months is 2500 units, the next 4 months is 1200 units. The average monthly production of the year will be
 - A. 2066.55
 - B. 5031.10
 - C. 4021.10
 - D. 3012.11
- 67. The equation of the curve that passes through the point (1,1) and has at every point the slope $\frac{-y}{x}$ is
 - A. xy = 1
 - B. xy = -1
 - C. xy = 2
 - D. xy = -2

- 68. The solution of the differential equation $\frac{d^2y}{dx^2} + -3\frac{dy}{dx} + 2y = 0$, subject to initial conditions y(0) = 0, y'(0) = 1 is
 - A. $e^{x} + e^{2x}$
 - B. $e^{x} e^{2x}$
 - $C. -e^x + e^{2x}$
 - D. None of the above
- 69. The general solution of the differential equation $\frac{d^2y}{dx^2} + y = x$ is
 - A. $\sin x + \cos x + x$
 - B. $\sin x + \cos x + 1$
 - C. $\sin x \cos x + x$
 - D. $\sin x \cos x 1$
- 70. The partial differential equation $u_t = ku_{xx}$ is
 - A. one dimension wave equation
 - B. elliptic
 - C. one dimension heat equation
 - D. not parabolic
- 71. The partial differential equation $(u_{xx})^2 + u_{yy} + a(x,y)u_x + b(x,y)u 4e^x = 0$ is
 - A. linear
 - B. quasilinear
 - C. nonlinear
 - D. homogeneous

- 72. The solution of the IVP $\frac{dy}{dx} = x^2y 3x^2$, y(0) = 1 is y =
 - A. $3+ce^{x^3/3}$, c is a constant
 - B. $3-2e^{x^3/3}$
 - C. $3+3e^{x^3/3}$
 - D. $3-2e^{x^3}$
- 73. If $q(x) \le 0$, then any nontrivial solution of y'' + q(x)y = 0
 - A. can have more than one zero
 - B. can have at most one zero
 - C. cannot have any zero
 - D. has exactly one zero
- 74. A solution of the partial differential equation $u_t + cu_x = 0$ is u(x,t) =
 - A. $\sin(x-t)$
 - B. $\cos(x-ct)$
 - C. $\cos(cx-t)$
 - D. $\cos xt$
- 75. The general solution of the partial differential equation $\frac{\partial x \, \partial x}{\partial x \, \partial y} = xy$ is
 - A. $z = a \frac{x^2}{2} \frac{y^2}{2a} + b$
 - B. $z = a\frac{x^2}{2} + \frac{y^2}{2a} b$
 - C. $z = a\frac{x^2}{2} + \frac{y^2}{2a} + b$

D.
$$z = a \frac{x^2}{2} - \frac{y^2}{2a} - b$$

- 76. The function $f:(-1,1) \to i$ defined by $f(x) = \frac{x}{1-|x|}$ is
 - A. one-one but not onto
 - B. not onto
 - C. one-one and onto
 - D. neither one-one nor onto
- 77. For each $n \in \mathbb{Y}$, let $a_n = \sum_{k=1}^n \frac{\left(-1\right)^{k-1}}{k}$. Then the sequence (a_n) is
 - A. not a Cauchy sequence
 - B. a convergent sequence
 - C. not a bounded sequence
 - D. convergent to 0
- 78. If a function f is continuous in [a,b] and differentiable (a,b), then there exists at least one number $\theta \in (a,b)$ such that $f(a+h) = f(a) + hf'(a+\theta h)$. It is the statement of the
 - A. Roll's Theorem
 - B. Lagrange's Mean Value Theorem
 - C. Cauchy's Mean Value Theorem
 - D. Taylor's Mean Value Theorem
- 79. The set of all polynomials with rational coefficients
 - A. is not countable
 - B. is finite
 - C. does not contain Q
 - D. countable

80. The function
$$f: \to f$$
 defined by $f(x) = \begin{cases} x \sin\left(\frac{1}{x}\right) & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$.

Then at the point 0

- A. f is continuous
- B. f is not continuous
- C. f is differentiable
- D. None of the above

81.
$$\lim_{n \to \infty} \frac{2^{n+1} + 3^{n+1}}{2^n + 3^n}$$
 is equal to

- A. 3
- B. 2
- C. 1
- D. 0

82. The function
$$f: \rightarrow i$$
 defined by $f(x) = \begin{cases} x-1 & \text{if } x \ge 1 \\ 1-x & \text{if } x < 1 \end{cases}$

Then at the point 1

- A. f is continuous
- B. f is not continuous
- C. *f* is differentiable
- D. None of the above

83. The smallest number with 18 divisors is

- A. 360
- B. 175
- C. 185
- D. 180

- 84. The value of the $\int_{|z|=2} \frac{\sin z}{\left(z \frac{\pi}{2}\right)^2} dz$
 - A. -1
 - B. 1
 - C. 0
 - D. π
- 85. $\left(\frac{1+i}{\sqrt{2}}\right)^4$ is equal to
 - A. 1
 - B. 0
 - C. $\sqrt{2}$
 - D. -1
- 86. The set $\{z \in \pounds : |z 3i| = 3\}$ geometrically represents a
 - A. Parabola
 - B. Circle
 - C. Ellipse
 - D. Hyperbola

- 87. The bilinear transformation which maps the points $z_1 = 0$, $z_2 = -i$ and $z_3 = -1$ into $w_1 = i$, $w_2 = 1$ and $w_3 = 0$ respectively is
 - A. $\frac{-i(z+1)}{z-1}$
 - B. $\frac{-i(z-1)}{z+1}$
 - C. $\frac{-1(z+i)}{z-i}$
 - D. $\frac{(z+i)}{z-i}$
- 88. The first two terms of the Laurent's series of $f(z) = \frac{z}{(z-1)(2-z)}$, valid for |z| > 2, is
 - A. $\frac{1}{z} \frac{3}{z^2}$
 - B. $-\frac{1}{z} \frac{3}{z^2}$
 - C. $\frac{1}{z} + \frac{3}{z^2}$
 - D. None of the above
- 89. Z_6 is
 - A. a ring
 - B. an integral domain
 - C. a field
 - D. None of the above

- 90. The set of all square matrices of order 2 over the set of real number is
 - A. Ring
 - B. Integral Domain
 - C. Field
 - D. None of the above
- 91. Let S be the set of functions $f: \rightarrow i$ which are solutions to the differential equation f''' + f' 2f = 0. Then S is
 - A. not a vector space
 - B. a vector space of dimension greater than 3
 - C. a vector space of dimension 3
 - D. a vector space of dimension less than 3
- 92. The dimension of the subspace $W = \{(x_1, x_2, x_3, x_4) \in i^4 : x_1 + x_2 + x_3 + x_4 = 0\}$
 - A. 1
 - B. 2
 - C. 3
 - D. 4
- 93. Let W be the subspace spanned by

$$S = \{(1,0,0,0),(0,1,0,0),(1,1,0,0),(1,1,1,0),(2,0,3,0)\}.$$

Then the dimension of W is

- A. 4
- B. 5
- C. 2
- D. 3

- 94. The number of subsets (including the empty subset and the whole set) for a set of n elements is
 - A. *n*
 - B. n^2
 - $C. n^n$
 - D. 2ⁿ
- 95. Let G be the complete graph on n vertices. Then the number of edges in G is
 - A. *n*
 - B. n^2
 - C. 2n
 - D. $\frac{n(n-1)}{2}$
- 96. For $n \ge 4$, let G be a graph with n vertices and n edges. Then
 - A. G is a star
 - B. G should contain a cycle
 - C. G is acyclic
 - D. G is a complete graph
- 97. If Z is the optimal solution of a LPP and Z' is the optimal solution of its dual, then
 - A. Z < Z'
 - B. Z > Z'
 - C. $Z \neq Z'$
 - D. Z = Z'

- 98. The differential equation obtained by eliminating f from $z = f(x^2 + y^2)$ when $p = \frac{\partial f}{\partial x}$ and $q = \frac{\partial f}{\partial y}$ is
 - A. py = qx
 - B. pq = xy
 - C. px = qy
 - D. x = y
- 99. The differential equation of the family of curves $y = e^{2x} (A \cos x + B \sin x)$ where A and B are constants is
 - $A. \frac{d^2y}{dx^2} 4\frac{dy}{dx} + 4y = 0$
 - B. $\frac{d^2y}{dx^2} 4\frac{dy}{dx} + 5y = 0$
 - C. $\frac{d^2y}{dx^2} 4y\frac{dy}{dx} + 5y = 0$
 - D. $\frac{d^2y}{dx^2} 4\frac{dy}{dx} + 4x = 0$
- 100. Let $(y-c)^2 = cx$ be the primitive of the differential equation $4x\left(\frac{dy}{dx}\right)^2 + 2x\left(\frac{dy}{dx}\right) y = 0$. Then number of integral curve(s) which will pass through (1,2) is
 - A. one
 - B. two
 - C. three
 - D. four

101. If y_1 and y_2 are two independent solutions of the differential equation $\frac{d^2y}{dx^2} + P(x)\frac{dy}{dx} + Q(x)y = 0$, where P(x) and Q(x) are continuous functions of x, then which of the following is true?

A.
$$y_1y_1' - y_2y_2' = Ce^{-\int Pdx}$$

B.
$$y_1y_2' - y_2y_1' = Ce^{-\int Pdx}$$

C.
$$y_1 y_1 + y_2 y_2 = Ce^{\int Pdx}$$

D.
$$y_1 y_2 + y_2 y_1 = Ce^{\int Pdx}$$

- 102. Let the chances of solving a problem given to three students are $\frac{1}{2}$, $\frac{1}{3}$, $\frac{2}{5}$. The probability that the problem will be solved is
 - A. $\frac{1}{15}$
 - B. $\frac{1}{5}$
 - C. $\frac{3}{5}$
 - D. $\frac{4}{5}$
- 103. To measure flatness or peakedness of a distribution we use
 - A. skewness
 - B. kurtosis
 - C. correlation
 - D. standard deviation

- 104. A method for solving linear programming problem without using artificial variables is
 - A. Two-phase method
 - B. Big-M method
 - C. Dual simplex method
 - D. Revised simplex method
- 105. In an assignment problem of order n, in the reduced cost matrix, the minimum number of lines needed to cover all zeros will be
 - A. *n*
 - B. n-1
 - C. n+1
 - D. (n-1)(n+1)
- 106. The angle between two forces of equal magnitude P when their resultant also has the same magnitude P is
 - A. 120°
 - B. 60°
 - C. 30°
 - D. 45°
- 107. The horizontal range of the projectile is maximum when the particle is projected at an angle of
 - A. 90° to the horizontal
 - B. 30° to the horizontal
 - C. 60° to the vertical
 - D. 45° to the vertical

- 108. The period of oscillation of a simple pendulum is
 - A. $2\pi\sqrt{\frac{g}{l}}$
 - B. $\frac{\sqrt{2\pi l}}{g}$
 - C. $\sqrt{\frac{2\pi l}{g}}$
 - D. $2\pi\sqrt{\frac{l}{g}}$
- 109. The series $x + x^3/3! + x^5/5! + ...$ represents the function
 - A. $\cos x$
 - B. $\cosh x$
 - C. $\sin x$
 - D. $\sinh x$
- 110. The value of $\frac{1}{2} (\log(1+x) \log(1-x))$ equals
 - A. tan x
 - B. tanh x
 - C. $tan^{-1} x$
 - D. $tanh^{-1} x$
- 111. The value of p(4), where p is the number of possible partitions of 4 is
 - A. 10
 - B. 5
 - C. 4
 - D. 1

- 112. Let $f(x) \in R[x] = \{a_0 + a_1x + ... + a_nx^n : a_i \in R \text{ a ring}\}$, where n is a non-negative integer. If f(a) = f'(a) = 0, then $(x a)^2$ divides
 - A. f(x)
 - B. f'(x)
 - C. f(x)-a
 - D. f'(x) a
- 113. Let G be a graph with n > 2 vertices. If all the n vertices in G form a cycle, then the degree of any vertex in G is
 - A. 1
 - B. 2
 - C. n-1
 - D. n
- 114. Consider the graph G with 6 vertices given by $v_1, v_2, v_3, v_4, v_5, v_6$ and edges a, b, c, d, e, f, g, h. Then which among the following is a possibility for a path?
 - A. $v_1 a v_2 b v_3 c v_3 d v_4 e v_2 f v_5$
 - B. $v_{2}bv_{3}dv_{4}ev_{2}av_{1}$
 - C. $v_1 a v_2 b v_3 d v_4$
 - D. $v_2 b v_3 d v_4 h v_5 f v_2$
- 115. The maximum possible number of edges in a simple graph with n vertices and 2 components is
 - A. (n-1)(n-2)/2
 - B. n(n-1)/2
 - C. n(n+1)/2
 - D. $n^2/2$

116.	A Hamiltonian circuit is possessed by every graph with three or more vertices if it is			
	A. connected			
	B. a tree			
	C. simple			
	D. complete			
117.	The rank of incidence matrix $A(G)$ of a disconnected graph G with n vertices and k components is			
	A. <i>k</i>			
	B. <i>k</i> –1			
	C. $n-k$			
	D. $n - k + 1$			
118.	Let T be a tree with four vertices v_1, v_2, v_3, v_4 . Then the possible number of paths between the vertices v_1 and v_4 is			
	A. atleast two			
	B. atleast one			
	C. exactly one			
	D. exactly two			
119.	For a graph G , both the incidence matrix $A(G)$ and adjacency matrix $X(G)$ contain the entire information about G if,			
	A. G has no self-loops			
	B. G has no parallel edges			
	C. G has self-loops but no parallel edges			

D. G is simple

- 120. Which of the integrals does not have a definite value?
 - A. $\int_{a}^{\infty} \sin x \ dx, \ a > 0$
 - $B. \int_{1}^{\infty} \frac{1}{x^2} dx$
 - C. $\int_{-\infty}^{0} e^{x} dx$
 - D. $\int_0^1 \frac{1}{\sqrt{x}} dx$
- 121. If p is a prime number, then (p-1)!+1 is
 - A. an odd number
 - B. an even number
 - C. a prime number
 - D. divisible by p
- 122. The curvature of a circle or radius r is
 - A. $\frac{1}{r^2}$
 - B. $-\frac{1}{r^2}$
 - C. r^2
 - D. $\frac{1}{r}$
- 123. The area enclosed by the curve |x| + |y| = 1 is
 - A. 1
 - B. $\sqrt{2}$
 - C. 2
 - D. 4

- 124. If $(1+x)^n = C_0 + C_1x + C_2x^2 + ... + C_nx^n$, then the value of $C_0 + 2C_1 + 3C_2 + ... + (n+1)C_n$ is
 - A. $(n+2)2^{n-1}$
 - B. $(n+2)2^n$
 - C. $(n+1)2^{n-1}$
 - D. $(n+1)(n+2)2^n$
- 125. The value of $\varsigma(4)$ is
 - A. $\pi^2/12$
 - B. $\pi^4/20$
 - C. $\pi^4/90$
 - D. π
- 126. The area under one arc of the cycloid $x = a(\theta \sin \theta)$, $y = a(1 \cos \theta)$ is
 - A. $\frac{\pi a^2}{8}$
 - B. $\frac{3\pi a^2}{16}$
 - C. $3\pi a^2$
 - D. $\frac{3\pi a^2}{32}$

- 127. The area between the parabola $y^2 = 4ax$ and the line y = x is
 - A. $\frac{3a^2}{8}$
 - B. $\frac{8a^2}{3}$
 - C. $\frac{a^2}{8}$
 - D. $\frac{5a^2}{8}$
- 128. If $u = \tan^{-1} \left(\frac{y}{x} \right)$, then $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$ is equal to
 - $A. \frac{2xy}{x^2 + y^2}$
 - B. 1
 - C. 0
 - D. $\frac{x^2}{x^2 + y^2}$
- 129. The velocity of a particle moving in a straight line is given by $v^2 = se^8$, where s is the displacement in time t. The acceleration of the particle is given by
 - A. (1+s)v/2
 - B. $v^2 / 2(1+s)$
 - C. v/2(s-1)
 - D. v/2(1+1/s)

- 130. The directional derivative of $f(x,y) = 2x^2 + 3y^2 + z^2$ at point (2,1,3) in the direction i 2k is
 - A. $4/\sqrt{5}$
 - B. $-4/\sqrt{5}$
 - C. $\sqrt{5}/4$
 - D. $-\sqrt{5}/4$
- 131. The value of $\iiint xyz \ dx \ dy \ dz$ taken through the positive octant of the sphere $x^2 + y^2 + z^2 = a^2$ is
 - A. $\frac{a^3}{48}$
 - B. $\frac{a^6}{48}$
 - C. $\frac{a^6}{8}$
 - D. $\frac{a^5}{48}$
- 132. If Σ is the boundary surface of a three dimensional region V having ς as the unit vector along the exterior normal to the surface Σ and y is a vector function, then $\iiint_V \nabla y dV = \iint_{\Sigma} y \cdot \varsigma d\Sigma$ is called
 - A. Stokes theorem
 - B. Gauss theorem
 - C. Green's theorem
 - D. Cauchy's theorem

133. The vector equation of a sphere one of whose diameters has the extremities with the position vectors a and b is

A.
$$(r-a)\times(r-b)=0$$

B.
$$(r+a)\times(r+b)=0$$

C.
$$(r+a).(r+b)=0$$

D.
$$(r-a).(r-b)=0$$

- 134. Consider a closed surface S surrounding a volume V. If \hat{r} is the position vector of a point inside S with \hat{n} the unit normal on S, the value of the integral $\iint 5^{r} . \hat{n} dS$ is
 - A. 3 V
 - B. 5 V
 - C. 10 V
 - D. 15 V
- 135. The dimension of the vector space V of all polynomials in [x] of degree ≤ 20 is given by
 - A. 21
 - B. 20
 - C. 10
 - D. 8
- 136. If $A = (a_{ij})$ is an $n \times n$ matrix defined over a field F, then trace of A is
 - A. 0
 - B. *I*
 - C. $\sum_{i=1}^{n} a_{ij}$
 - D. $\sum_{i,j=1}^{n} a_{i,j}$

137. If
$$F(x) = \begin{bmatrix} \cos x & -\sin x & 0 \\ \sin x & \cos x & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
, then $F(x)F(y) =$

A.
$$F(xy)$$

B.
$$F(x)+F(y)$$

C.
$$F(x+y)$$

D.
$$F(x-y)$$

138. If
$$A = \begin{bmatrix} 1 & 0 & 0 \\ i & \frac{-1+i\sqrt{3}}{2} & 0 \\ 0 & 1+2i & \frac{-1-i\sqrt{3}}{2} \end{bmatrix}$$
, then the trace of A^{102} is

139. If the matrix
$$A = \begin{bmatrix} 3 & -1 & 1 \\ -15 & 6 & -5 \\ x & -2 & 2 \end{bmatrix}$$
 is singular, then the value of x is

140.	If V and W are vector spaces of dimensions m and n respectively over a field F , then
	the dimension of the vector space of all homomorphisms of V into W is

- A. m+n
- B. m-n
- C. mn
- D. m/n

141. The eigen values of a real symmetric matrix are always

- A. positive
- B. imaginary
- C. real
- D. complex conjugate pairs

142. If A is an $n \times n$ matrix with diagonal entries a and other entries b, then one eigen value of A is a-b. Another eigen value of A is

- A. b-a
- B. nb+a-b
- C. nb-a+b
- D. 0

143. What is the degree of the first order forward difference of a polynomial of degree
$$n$$
?

- A. *n*
- B. n-1
- C. n-2
- D. n+1

144. The rate of convergence of bisection method is

- A. linear
- B. faster than linear but slower than quadratic
- C. quadratic

- D. cubic
- 145. The set \forall of natural numbers where $x * y = \max\{x, y\}$ is a
 - A. ring
 - B. complete lattice
 - C. semi group
 - D. field
- 146. In a three dimensional Euclidean space, the direction cosines of a line which is equally inclined to the axes are
 - A. 1, 1, 1
 - B. 1/3, 1/3, 1/3
 - C. $1/\sqrt{3}$, $1/\sqrt{3}$, $1/\sqrt{3}$
 - D. 1/2, 1/2, 1/2
- 147. In two dimensions, the distance between the origin and the centroid of the triangle joining the points (-1,0), (4,0) and (0,3) is
 - A. 0
 - B. 1
 - C. $\sqrt{2}$
 - D. $\sqrt{3}$
- 148. Let P be the point (1,0) and Q a point on the locus $y^2 = 4x$. Then the locus of mid point of PQ is
 - A. $y^2 + 2x + 1 = 0$
 - B. $y^2 2x + 1 = 0$
 - C. $x^2 2y + 1 = 0$
 - D. $x^2 + 2y + 1 = 0$

- 149. The Laplace transform of $\frac{\sin at}{at}$ is
 - A. $\tan\left(\frac{a}{s}\right)$
 - B. $\tan^{-1}\left(\frac{a}{s}\right)$
 - C. $\tan^{-1}\left(\frac{s}{a}\right)$
 - D. $\tan\left(\frac{s}{a}\right)$
- 150. The inverse Laplace transform of $\frac{s+2}{s^2-4s+13}$ is
 - A. $e^{2t}\cos 3t$
 - $B. \frac{4}{3}e^{2t}\sin 3t$
 - C. $e^{2t} \cos 3t + \frac{4}{3}e^{2t} \sin 3t$
 - D. $e^{2t} \cos 3t \frac{4}{3}e^{2t} \sin 3t$
