Mrc Chemistry

Set No. 1

15P/206/2

Question Booklet No..

4059

	Question Booklet No
(To be filled up by the candidate by blue/	
- g siac,	orack ball-point pen)
Roll No.	
D. II .	
Roll No.	
(Write the digits in words)	
2	
Serial No. of OMR Answer Sheet	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
E	
Day and Date	***************************************
	(Signature of Invigilator)

INSTRUCTIONS TO CANDIDATES

(Use only blue/black ball-point pen in the space above and on both sides of the Answer Sheet)

- Within 10 minutes of the issue of the Question Booklet, check the Question Booklet to ensure that
 it contains all the pages in correct sequence and that no page/question is missing. In case of faulty
 Question Booklet bring it to the notice of the Superintendent/Invigilators immediately to obtain a
 fresh Question Booklet.
- Do not bring any loose paper, written or blank, inside the Examination Hall except the Admit Card
 without its envelope.
- A separate Answer Sheet is given. It should not be folded or mutilated. A second Answer Sheet shall
 not be provided. Only the Answer Sheet will be evaluated.
- 4. Write your Roll Number and Serial Number of the Answer Sheet by pen in the space provided above.
- 5. On the front page of the Answer Sheet, write by pen your Roll Number in the space provided at the top, and by darkening the circles at the bottom. Also, wherever applicable, write the Question Booklet Number and the Set Number in appropriate places.
- No overwriting is allowed in the entries of Roll No., Question Booklet No. and Set No. (if any) on OMR sheet and also Roll No. and OMR Sheet No. on the Question Booklet.
- Any change in the aforesaid entries is to be verified by the invigilator, otherwise it will be taken as unfair means.
- 8. Each question in this Booklet is followed by four alternative answers. For each question, you are to record the correct option on the Answer Sheet by darkening the appropriate circle in the corresponding row of the Answer Sheet, by ball-point pen as mentioned in the guidelines given on the first page of the Answer Sheet.
- For each question, darken only one circle on the Answer Sheet. If you darken more than one circle or darken a circle partially, the answer will be treated as incorrect.
- 10. Note that the answer once filled in ink cannot be changed. If you do not wish to attempt a question, leave all the circles in the corresponding row blank (such question will be awarded zero mark).
- For rough work, use the inner back page of the title cover and the blank page at the end of this Booklet.
- Deposit only the OMR Answer Sheet at the end of the Test.
- 13. You are not permitted to leave the Examination Hall until the end of the Test.
- 14. If a candidate attempts to use any form of unfair means, he/she shall be liable to such punishment as the University may determine and impose on him/her.

उपर्युक्त निर्देश हिन्दी में अन्तिम आकरण-पृष्ठ पर दिये गए हैं।

[No. of Printed Pages: 36+2

+

No. of Questions/प्रश्नों की संख्या : 150

Time/समय : 21/2 Hours/इण्टे

Full Marks/पूर्णांक : 450

- Note: (1) Attempt a
 - (1) Attempt as many questions as you can. Each question carries 3 marks.
 One mark will be deducted for each incorrect answer. Zero mark will be awarded for each unattempted question.

अधिकाधिक प्रश्नों को हल करने का प्रयत्न करें। प्रत्येक प्रश्न 3 अंक का है। प्रत्येक गलत उत्तर के लिए एक अंक काटा जाएगा। प्रत्येक अनुत्तरित प्रश्न का प्राप्तांक शून्य होगा।

- (2) If more than one alternative answers seem to be approximate to the correct answer, choose the closest one.
 - यदि एकाधिक वैकल्पिक उत्तर सही उत्तर के निकट प्रतीत हों, तो निकटतम सही उत्तर
- The plots of gaseous densities vs temperature and of liquid densities vs temperature for a substance converge at a temperature. The temperature is called
 - (1) boiling point

- (2) Boyle temperature
- (3) critical temperature
- (4) inversion temperature

(339)

.

2.	The RMS speed of He(g) at 0 °C is 130	00 m-s-1. The most probable speed of the	C
	gas will be		

(1) 1300 m-s⁻¹

(2) 866·6 m-s⁻¹

(3) 1592·2 m-s⁻¹

(4) 1061·4 m-s⁻¹

3. The pseudo first order rate constants for the cobalt-catalysed auto-oxidation of toluene in acetic acid at 87 °C at different concentrations of Co(III) are

[Co(III)]/ M

0.053

0.084

0.118 0.172

 $k/10^{-5}s^{-1}$

1.47

2.93

5.68

11.58

for [toluene] $_0 = 0.5 M$.

The order with respect to [Co(III)] is

(1) 2

(2) 1.5

(3) 1

(4) 0.8

4. For the reaction

$$2AB_2 \stackrel{k_1}{\rightleftharpoons} A_2B_4$$

the reaction rate for A2B4 formation is

(1) $2k_1[AB_2]-k_{-1}[A_2B_4]$

 $(2) (2k_1 - k_{-1})[AB_2]$

(3) $\frac{2k_1}{k_{-1}}[AB_2]$

(4) $2k_1[AB_2]^2 - k_{-1}[A_2B_4]$

5. The enzymolysis of a substrate has a Michaelis constant of 0.035 mol-L⁻¹ at 25 °C. The maximum rate of the reaction is 1.50×10⁻³ mol-L⁻¹-s⁻¹. What should be the concentration of the substrate for which the reaction rate would be reduced to 0.75×10⁻³ mol-L⁻¹-s⁻¹?

(1) 0.070 mol-L-1

(2) 0·494 mol-L-1

(3) 0·035 mol-L-1

(4) 0·017 mol-L⁻¹

(339)

2

•	Arrhenius equ	activation fo	r a reactio	on is related t	o the frequency fa	ictor (A) of
	(1) A	(2) In A	į.	(3) exp (A)	(4) exp (-	A}
7.	. The mechanis	m of the read	tión			
		H ₂ O ₂ (aq) → H ₂ C	$O(1) + \frac{1}{2}O_2(g)$		
	catalysed by I	Br ions is	25.			
*	H ₂ O ₂ (aq)+Br (aq)→	H ₂ O(l)+)	BrO (aq)(slo	w)	
)+H ₂ O ₂ (aq)-				
•	The overall or	der of the rea	ction is			
	(1) 0	(2) 1	*1	(3) 2	(4) 3	,
8.	Consider the f	ollowing mech	anism		Ē	¥
			$A_2 \Rightarrow 2A$	fast)		
			$A+B\to P$	(slow)		
41	The overall ord	er of the read	ction is		9	
61	(1) 0.5	(2) 1		(3) 1.5	(4) 2	
9.	The plot of the CO on charcos adsorption follo	d at 273 K l	orr)/V(/ nas been	cm³) against found linear.	p(/Torr) for adso What isotherm	orption of does the
	(1) Langmuir is	otherm	. (2) Freundlich	isotherm	
	(3) BET isother	m .	ŧ	4) Temkin iso	otherm	
(339)			3			(DTO)
	8					(P.T.O.)

LO.	A crystal system	characterised by a	≠ b	$\neq c$ and $\alpha = \gamma =$.90°, β≠90° is
	(1) triclinic	(2) monoclinic		rhombic	(4) trigonal
11.	The Miller indices	of the planes with i	inter	cepts 4a, 6b an	d ∞ whereas b and c are
	(1) (3, 2, 0)	(2) (2, 3, 0)	(3)	(0, 2, 3)	(4) (4, 6, ∞)
12.	A powder diffrac (110), (200), (211) cell is	tion photograph fr), (220), (310), (222	om), (32	tungsten show 21), (400), T	's lines which index as 'he symmetry of the unit
	(1) simple cubic		(2) body-centred	cubic
	(3) face-centred	cubic	(4) edge-centred	cubic
13.	At the critical s	solution temperatu	ire o	f phenol-water	system, the degree of
	(1) 0	(2) 1	(3	3) 2	(4) 3
14.	The SI unit of re	adiation energy is a	grey	whereas the c.	g.s. unit is rad. 1 grey is
	(1) 1 rad.	(2) 10 rad	. (3) 100 rad	(4) 1000 rad
(339	1)	3	4		

15.	The molar conductance of potassium chloride (10" M) increases substantially
	with increase in frequency of the applied potential. This is due to minimisation of

- (1) frictional forces
- (2) electrophoretic effect
- (3) relation effect
- (4) electrophoretic and asymmetry effects

16. Which of the following cases for a perfect gas has q = 0?

- (1) Isothermal isobaric expansion
- (2) Reversible isothermal expansion
- (3) Isobaric adiabatic expansion
- (4) Isothermal isobaric irreversible compression

17. For the process $H_2O(s) \rightarrow H_2O(l)$ in an ice-water bath at 0 °C, which of the following statements is true?

(1)
$$T\Delta S > \Delta H$$

(2)
$$\Delta H > T\Delta S^1$$
 (3) $\Delta H = T\Delta S^1$

(3)
$$\Delta H = T\Delta S$$

18. One of the Gibbs equations

$$dG = -S dT + V dP + \Sigma \mu_i dn_i$$

does not apply when the system

- (1) is in thermal equilibrium
- (2) is in mechanical equilibrium
- (3) involves P-V work only
- (4) consists of any number of phases

19. A real solution is one which

(1) obeys Raoult's law

	(3) does not obey	Henry's law	(4) does not obey	Raoult's law
20.	The molar conductions when c is sufficient		lectrolyte decreases	with concentration (c)
	(1) linearly with a	2	(2) linearly with a	1/2
	(3) linearly with I	og c	(4) exponentially	with c
21.	Under what condindependent of te	CONTRACTOR OF THE PROPERTY OF	rium constant (K) o	of a reaction becomes
	(1) $\Delta G^{\circ} < 0$	(2) $\Delta H^0 < 0$	(3) $\Delta H^{\circ} > 0$	$(4) \Delta H^{\circ} = 0$
		*		
22.			is +0.76 V and the he cell $M \mid M^{2+} \mid \mid A^{+}$	reduction potential of
	(1) I O1 V	(2) 0·51 V	(3) 0.51 V	(4) -1·01 V
23.		-		ule in a 100 cm ³ vessel der the same condition
	(1) 5 · 54 × 10 ²⁶	(2) $3 \cdot 29 \times 10^{26}$	(3) 21.25×10^{26}	(4) 7.83×10^{26}
	-		20	•
339)			6	

(2) obeys Henry's law

24.	The rotational partition function (q^R) of an AB molecule at 27	°C is 19·6.	What
	would be its a ^R at 327 °C?	3	

- (1) 19-6
- (2) 27.7
- (3) 39-2
- (4) 55.3

(1) HCl

(2) trans-CH2Cl2

(3) as-CH₂Cl₂

(4) CHCl₃

26.
1
H ($g_{I} = 5.5857$) resonates at 500 MHz in an NMR spectrometer operating at 11.7 tesla. What magnetic field would be necessary to observe the resonance of 13 C ($g_{I} = 1.4046$) at 500 MHz?

(1) 11.7 tesla

(2) 2.9 tesla

(3) 23·4 tesla

(4) 46.8 tesla

(1) $\sum_{i} \mu_{i} dn_{i} = 0$ (3) $\sum_{i} n_{i} d\mu_{i} = 0$

(2) $\sum_{i} \mu_{i} dn_{i} \neq 0$ (4) $\sum_{i} n_{i} d\mu_{i} \neq 0$

- (1) Water $(K_f = 1.86/\text{K (mol-kg}^{-1})^{-1})$
- (2) Phenol $\{K_f = 7 \cdot 27/\text{K } (\text{mol-kg}^{-1})^{-1}\}$
- (3) Benzene $(K_f = 5 \cdot 12/\text{K (mol-kg}^{-1})^{-1})$
- (4) Camphor $(K_f = 40/\text{K (mol-kg}^{-1})^{-1})$

(P.T.O.)

29.	The IR spects	rum of H ₂ O shows	3 bands. How ma	ny bands do you predic	t for
	(1) 1	(2) 2	(3) 3	(4) 4	
30.	The minimum	n energy for which	of the following	systems is zero?	
٠	(1) H-atom			•	
	(2) A vibratir	g diatomic molecu	le		
•	(3) A rotating	diatomic molecule	e .		
	(4) A molecu	le confined to a 3E)-box		
31.	T _{1/2} of ³ H is 1 during an acc	2·3 years. If 48·0 mident, what mass of	g of ³ H is released this nuclide would	i from a nuclear power p d remain after 49-2 years	lant P
	(1) 6-0 mg	(2) 3·0 mg	(3) 12·0 mg	(4) 24·0 mg	
32.	excited from n	l=1 to $n=2$ state by	a light of frequer	sional box of length L car icy v. If the length of the he $n = 1$ to $n = 2$ transit	how
	(1) v/4	(2) v/2	(3) 2v	(4) 4v	
33.	nequency car	made to undergo the using the transitional the transitional the transitional threat to in the transition of the transiti	on for HI coual	from $J = 0 \rightarrow J = 1$. The list v. Approximately where rangition in DI?	ght iich
	(1) 2v	(2) √2 v	(3) v/2·	(4) v/√2	
339)			8		
		*			
		€			

.

. *

34.	The radial	distribution	function	for 1	s state.	$4\pi r^2 \psi_{1-}^2$	indicates	that
-----	------------	--------------	----------	-------	----------	------------------------	-----------	------

- (1) the most probable value of the distance from the nucleus is zero
- (2) the average value of r is zero
- (3) the average value of r is greater than the most probable value
- (4) the average value of r is less than the most probable value

35. Which one of the following statements about H₂ is false?

- (I) The non-degenerate LCAO-MOs (without spin) must be either symmetric or antisymmetric
- (2) The lowest MO (without spin) of the molecule is antisymmetric for inversion
- (3) The MOs transform into AOs of the helium ion as the two nuclei are fused together
- (4) The ground state has a multiplicity of two

36. Which of the following functions are 'well behaved' quantum mechanically?

- (1) $\exp(-\alpha x^2)$
- $(2) \exp(-\alpha x)$
- (3) x^2
- (4) x

37. Which of the following is not an eigenfunction of $\frac{d^2}{dx^2}$ operator?

(1) exp (ax)

(2) exp (ax2)

(3) ax + b

(4) cos x

139

C

36. The operator $-\frac{\hbar^2}{2m} \frac{d^2}{dx^2}$ represents

- (1) linear momentum
- (2) angular momentum

(3) total energy

(4) kinetic energy

39. The electrophilic aromatic substitution proceeds through an intermediate

(1) phenyl cation

(2) σ complex

(3) benzene anion

(4) benzyne

40. Optically active 2-octanol rapidly loses its optical activity when exposed to the following

(1) Dilute acid

(2) Dilute base

(3) Light

(4) Humidity

41. The relative rates of nitration of R-C₆H₅, where R=CH₃, NO₂, OH and Cl, is

- (1) CH₃ > OH > NO₂ > Cl
- (2) CH₃ > OH > Cl > NO₂
- (3) OH > CH₃ > NO₂ > Cl
- (4) OH > CH₂ > Cl > NO₂

42. Which of the following statements is not true for the E2 reactions?

- (1) Bimolecular reaction
- (2) Reactivity order is RI > RBr > RC1
- (3) rearrangement occurs
- (4) reactivity order of RX is 3° > 2° > 1°

43. List the following compounds in the correct order of decreasing acidity

CH2=CH2 CH3CH3 CH3CH=O HC=CH

- (A)
- (B)
- (C)
- (D)

(1) D>C>A>B

(2) C > D > A > B

(3) D>A>C>B

- (4) C > A > D > B
- 44. Which of the following carbocations is the most stable?
 - (1)
- (2) CH
- (3) CH₃
- (4) CH

- 45. Ziegler-Natta catalyst is
 - (1) Et₂O ·BF₃

(2) Et₃Al-TiCl₄

(3) Na-naphthalene

- (4) Pd/CaCO₃/quinoline
- 46. Pyridine undergoes electrophilic substitution with fuming H₂SO₄ at elevated temperature to give
 - (1) pyridine-3-sulphonic acid
- (2) pyridine-2-sulphonic acid
- (3) pyridine-4-sulphonic acid
- (4) All of the above

(339)

11

47. Which of the following elimination reactions will give 1-butene as the major product?

- 48. Aldehydes and ketones can be converted into 1,2-dicarbonyl compounds by reaction with
 - (1) periodic acid

(2) lead tetracetate

(3) peracetic acid

- (4) selenium dioxide
- 49. Which of the following haloalkanes will undergo hydrolysis most readily?
 - (1) (CH₃)₃CBr

(2) (CH₃)₃CCI

(3) (CH₃)₃CF

- (4) (CH₃)₃Ct
- 50. The reactant, M in the reaction below

can be

(1) o-bromoanisole

- (2) m-bromoanisole
- (3) either of o- or m-bromoanisole
 - (4) None of the above

(339)

12

51. The product formed in the following electrophilic aromatic substitution reaction is

- (1)
- (2)
- (3)
- (4) None of the above
- 52. Which of the following compounds absorbs UV radiation?
 - (1) Ethanol

(2) Butylamine

(3) Acetone

- (4) Chlorohexane
- 63. Benzaldehyde may be prepared by any of the following methods. Which one of these is called Stephen's method?

(3)
$$C_6H_5CHCl_2 + H_2O \longrightarrow$$

(4)
$$C_6H_5CH_2Cl + (CH_2)_6N_4 \xrightarrow{H_2O/EtOH} \xrightarrow{H^+}$$

(339)

13

54. The reagent used in the transformation

is

(1) LiAlH₄

(2) NaBH₄

(3) Zn(Hg)/HCl

- (4) H₂NNH₂, OH⁶
- Which of the following secondary alcohols can he prepared from the reaction of methyl formate with excess Grignard reagent?
 - (1) CH₃CH₂CHCH₃

- (2) CH₃CHCH₃ OH
- (3) CH₃CHCH₂CH₂CH₃

OH

- Consider the following statements about conformational isomers : 56.
 - (A) They are interconverted by rotation about single bond
 - (B) The energy barrier separating them is less than 15 kcal/mole
 - (C) They are best represented by means of Fischer projection formulae Of these statements:

 - (1) All (A), (B) and (C) are correct (2) Only (B) and (C) are correct
 - (3) Only (A) and (C) are correct (4) Only (A) and (B) are correct

57.	Which of the following is not the	product of ozonolysi	s of citral?
	(1) Glyoxal	(2) Acetone	
	(3) Acetaldehyde	(4) Laevulaldehy	de
58.	Arrange the following three chlorid CH ₃ CH ₂ CH ₂ Cl H ₂ C:	=CHCHCH ₃ CH ₃ Cl	der of S_N 1 reactivity CH_2CHCH_3 Cl C
	. A	В	C
	(1) $A > B > C$ (2) $B > C > A$	(3) B > A > C	(4) C > B > A
59.	Arrange the following carbanions	in order of their de	creasing stability
ė,	(C ₆ H ₅)	₃ Ĉ: (CH ₃) ₃ Ĉ:	;ĈH₃
	B	· c	D
	A		
	Answer codes :		
	(1) A>B>C>D	(2) B > C > D > 1	
	(3) $A > B > D > C$	(4) B > A > C > I	
60.	The α- and β-forms of D-glucopy	ranose are called	

(2) enantiomers (3) epimers

15

(1) anomers

(339)

(P.T.O.)

(4) diastereomers

61.	The methyl D-glucoside is mad	de by treating D-glucose with the following
	(1) CH ₃ OH, HCl	(2) aqueous CH ₃ OH
	(3) (CH ₃) ₂ SO ₄ , NaOH	(4) CH ₃ OCH ₃ , LiAJH ₄
62.	Select among the following carb glucose as the only product	ohydrates whose complete hydrolysis give D(+)
	(A) Dextrin (B) Starch	(C) Sucrose (D) Cellulose
	The correct answer code is	
	(1) (A), (B), (C)	(2) (B), (C), (D)
	(3) (A), (C), (D)	(4) (A), (B), (D)
63.	How many stereocentres are proglycylalanylalanine?	esent in the small, naturally occurring protein
	(1) One (2) Two	(3) Three (4) Zero
64.	The reagent used in Edman me	thod of N-terminal analysis of peptides is
	(1) phenyl isothiocyanate	(2) 2,4-dichlorofluorobenzene
	(3) 2,4-dinitrofluorobenzene	(4) benzyl chloroformate
65.	Select the reagent required to b	ring about the following transformation
	(CH ₃) ₂ C=CH—C—CH ₃	$(CH_3)_2C=CH-COOH$
	(1) KMnO ₄ , NaOH	(2) K ₂ Cr ₂ O ₇ /H ₂ SO ₄
	(3) Cl ₂ / OH ^e , then H ⁺	(4) m-chloroperbenzoic acid
(339)		16

6 6 .	Which one of the following would clear	y prove the configuration of cis-3-hexene
	from trans-3-hexene?	

(1) Boiling point

(2) Rate of hydrogenation

(3) Dipole moment

(4) Infrared spectrum

67. Naphthalene undergoes nitration with a mixture of conc. HNO₃ and H₂SO₄ at 50 °C to give mainly

- (1) 1-nitronaphthalene
- (2) 2-nitronaphthalene
- (3) 1,3-dinitronaphthalene
- (4) 1,4-dinitronaphthalene

68. The most convenient spectroscopic technique to establish the presence of inter-molecular hydrogen bonding in hydroxy compounds is

(1) UV

(2) IR

(3) NMR

(4) None of the above

69. The following reaction proceeds through

- (1) Nucleophilic substitution
- (2) Electrophilic substitution
- (3) Free radical substitution
- (4) Rearrangement

(339)

17

70. Which one of the following aromatic substitution reactions is reversible?

(1) Nitration

(2) Sulphonation

(3) Halogenation

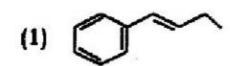
(4) Friedel-Crafts acylation

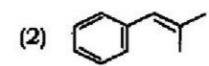
71. Allylic bromination is carried out by

- (1) HBr, H₂O₂ (2) HOBr
- (3) Br₂, CS₂ (4) NBS

Which one of the following is the final product Z in the reaction sequence given below?

$$Me_2C=O + HCN \longrightarrow X \xrightarrow{H_3O^+} Y \xrightarrow{Conc. H_2SO_4} Z$$


- (1) CH₂=C(CH₃)COOH
- (2) (CH₃)₂C(OH)COOH
- (3) HOCH₂CH(CH₃)COOH (4) CH₃CH=CHCOOH


73. Which one of the following reactions is correctly shown?

- (1) ROH + NaOH ---- RONa + H2O
- (2) ROH + NaHCO₃ ----- RONa + H₂CO₃
- (3) 2ROH + Na₂CO₃ → 2RONa + H₂CO₃
- (4) PhOH + NaOH ---- PhONa + H2O

74. Identify the chiral compound that is oxidized with alkaline KMnO₄ to benzoic acid

75. Natural rubber is a polymer made up of the following monomer units

(1) Butadiene

(2) Neoprene

(3) Isoprene

(4) Chloroprene

76. Which of the following compounds can be used as a solvent in Friedel-Crafts reaction?

(1) Acetic anhydride

(2) Nitrobenzene

(3) Anisole

(4) Toluene

77. Oxygen may be prepared by heating potassium chlorate. What is the other product?

(1) Potassium oxide .

(2) Potassium chloride

(3) Potassium hypochlorite

(4) Potassium chlorite

78. From each pair given below, identify the ion which is larger in size :

19

(1) Co2+, Zn2+, F-, S2-

(2) Co3+, Fe2+, Na+, S2-

(3) Co2+, Fe2+, F-, S2-

(4) Co3+, Zn2+, Na+, O2-

(339)

79.	How many unpair	ed electrons are the	re ir	an atom of silv	er ir	its ground state?
	(1) 0	(2) 1	(3)	2	(4)	4 .
80.	How many moles	of P ₄ O ₁₀ will react	wit	h one mole of	wate	:r?
	(1) 2 moles	(2) 6 moles	(3)	1/3 mole	(4)	1/6 mole
81.	If 22 g of N ₂ O ₅ res the percentage yie	acts with 10 g of we	ater	to produce 22 g	g of	nitric acid, what is
	(1) 32%	(2) 69%	(3)	87%	(4)	100%
82.	10 ml of 0-10 N so the resultant solu- the titre value at	dium hydroxide is tion is titrated again the end point?	addenst (ed to 20 ml 0:10 0:10 N sodium h	N i	sulphuric acid and oxide. What will be
	(1) 5 ml	(2) 10 ml	(3)	20 ml	(4)	30 ml
83.	or socium hydroxic	on of a substance gic are added. The pr d. The substance r	r c cij	pitate dissolves	itate whe	when a few drops n excess of sodium
	(1) aluminium su	phate	(2)	silver nitrate		· · · · · · · · · · · · · · · · · · ·
	(3) cadmium chlo	ride	(4)	mercuric chlor	ide	•
84.	Which reagent ma	y be used to preci	pita	te barium from	aqı	eous solutions?
	(1) Hydrochloric a	cid	(2)	Sulphuric acid		(40)
	(3) Silver nitrate	*	(4)	Ammonium ch	loric	le
(339)		20				

85.	A non-stoichiometric oxide of silver has composition Ag _{1.8} O. What percentage of Ag is present in the form Ag ²⁺ ?						
(6)	(1) 11%	(2) 14%	(3) 20%	(4) 25%			
86.	A sample of wat solution with re	ter contains 200 p.jespect to Ca?	o.m. of Ca ²⁺ in it. W	hat is the molality of the			
	(1) 0-2 m	(2) 2 m	(3) 5×10^{-3} m	(4) 0·05 m			
87.	Which of the fo	llowing is not a cr	ystalline substance?	•			
	(1) Glass	(2) Quartz	(3) Chalk	(4) Diamond			
88.	What is the che	arge (n) on the sili	cate ion Si ₂ O ₇ ⁿ ?				
•	(1) -2	(2) -4	(3) -6	(4) -7			
89.	Silver is extracted from the crude metal by leaching with a solution of NaCN in the presence of air. The role of NaCN is to						
	(1) oxidize Ag to	o Ag⁺	(2) form the con	nplex [Ag(CN) ₄] ³⁻			
3	(3) form the cor	nplex [Ag(CN) ₄] ²⁻	(4) form the con	plex [Ag(CN) ₂]			
90.	CoCl4- and Co(I	1 ₂ O) ₆ ²⁺ have differe	nt colours. This is	because			
	(1) they have Co	in different oxida	tion states				
	(2) they have di	fferent coordination	geometries	•			
	(3) they have di	fferent number of	unpaired electrons				
	(4) they have Co	in different oxida	tion states and bou	nd to different ligands			
(889)		2	1	(P.T.O.)			

1.	Cul ₂ is unstab	le, because it readil	y decomposes to		
	(1) Cu and I	(2) Cu and I2	(3) Cul and I2	(4) Cul and 1	
92.	Which one am	ong the chlorides, 2 at in aqueous soluti	inCl ₂ , HgCl ₂ , BaC ons?	l ₂ , AlCl ₃ is dissociated	l to
	(1) ZnCl ₂	(2) HgCl ₂	(3) BaCl ₂	(4) AlCl ₃	
93.	Which one an	nong the given lone,	has the highest	polarizing power?	
٠	(1) Na+	(2) Ca ²⁺	(3) Mg ²⁺	(4) Al ³⁺	
94.	Which compo	und can act as a L	ewis acid as well	as a Lewis base?	
	(1) H ₂ O	(2) SnCl ₂ .	(3) NH ₃	(4) BF ₃	
95 .	several oxides	as well as some flue	orides. Which one,	stal structure is adopte among the given formi e perovskite structure?	ulac,
	(1) CaTiF ₃	(2) KZnF ₃	(3) CaTiF ₅	(4) CaMgF ₃	
96.	In its reaction	n with aqueous solu	utions of Cu ²⁺ , th	e cyanide ion is simila	ar to
	(1) CO	(2) C1	(3) I ₂	(4) I	
(339)	-		22		

97.	Which	ligand	can	lead	to	linkage	isomers?

- (1) Azide
- (2) Cyanate
- (3) Oxalate
- (4) Nitrate

98. The boron mineral, borax contains the anion, [H₄B₄O₉]²⁻. What is the formal oxidation number of B in this anion?

- (1) 2.5
- (2) 3
- (3) 3.5
- (4) 4

99. Two isomers are obtained for Pt(NH₃)₂Cl₂, while only one isomer is obtained for Ni(NH₃)₂Cl₂. This is because

- (1) the two complexes differ in the oxidation state of the metal
- (2) the two complexes differ in the oxidation state of the metal as well as coordination number
- (3) the two complexes differ in their coordination number
- (4) the two complexes differ in their coordination geometry

100. Consider the following reaction:

$$[Co(NH_3)_4Cl_2]^+ + H_2O \rightarrow [Co(NH_3)_4(H_2O)Cl]^{2+} + Cl^-$$

The above reaction involves

(1) substitution

(2) substitution and reduction

(3) oxidation

(4) substitution and oxidation

(339)

23

101. Identify the acids in the following two reactions:

$$NOF + ClF_3 = NO + ClF_4$$

$$XeO_3 + OH^- = HXeO_4^-$$

- (1) CIF₃ and XeO₃
- (2) ClF₃ and OH⁻

(3) NOF and OH

(4) NOF and XeO₃

What are the formal oxidation states of the iron atoms labeled (A) and (B) in the compound Fe₄^(A) [Fe^(B)(CN)₆]₃ ?

- (1) Fe^(A), 2+ and Fe^(B), 3+
- (2) Fe(A), 2 + and Fe(B), 4 +
- (3) $Fe^{(A)}$, 3 + and $Fe^{(B)}$, 3 + (4) $Fe^{(A)}$, 3 + and $Fe^{(B)}$, 2 +

The magnetic moment of $Co(H_2O)_6^{3+}$ is zero and that of $Mn(CN)_6^{3-}$ is 2.9 BM. From this it may be concluded that

- (1) both ions are high spin
- (2) both ions are low spin
- (3) Co(H₂O)₆³⁺ is low spin, Mn(CN)₆³⁻ is high spin
- (4) Co(H₂O)₆³⁺ is diamagnetic, Mn(CN)₆³⁻ is high spin

104. Which among the following compounds/ions are diama	gnetic?
---	---------

CuCl2-; Cu(SCN); CoCl2-; Ni(CO)4; PdCl2-

- (1) CoCl4- and PdCl4-
- (2) CuCl₆⁴, Cu(SCN) and Ni(CO)₄
- (3) Cu(SCN) and Ni(CO)4
- (4) Cu(SCN), Ni(CO)4 and PdC14-

105. Which one is an example of a 'sandwich' compound?

(I) Cr(C6H6)2

(2) Cr(CO)6

(3) Cr₂(CH₃COO)₂

(4) [Pt(NH₃)₂] [PtCl₄]

Which one, among the listed ions, will have the highest magnetic moment?

- (1) Cu(H₂O)₆²⁺
- (2) Ni(NH₃)₆²⁺ (3) MnCl₄²⁻
- (4) Ru(NH₃)₆²⁺

107. Which of the following shows the correct relationship between the atomic radius (r) of Cu, Ag and Au?

(1) 'Cu < 'Ag < 'Au

(2) 'Cu << 'Ag < 'Au

(3) 'Cu < 'Ag << 'Au

(4) 'Cu > 'Ag > 'Au

108. Which of the following molecules/ions have planar structures?

- (i) NH₃
- (ii) SO₄²⁻
- (iii) CO₃-
- (iv) BF3

- (1) All four
- (2) (ii) and (iii) (3) (iii) and (iv)
- (4) Only (iv)

(339)

25

1 09 .	Which of the follo	wing are paramag	netic compounds?	19		
	(i) Oxygen	N.	(ii) Copper sulpha	ate		
	(iii) Carbon mono	xide	(iv) Nitric oxide	99		
	(v) Ozone					
	(1) (i), (ii), (iii)	(2) (i), (ii), (iv)	(3) (ii), (iii), (v)	(4) (i), (iv), (v)		
110.	Complete the sen	tence : An octahed	iral complex, MA ₄ B	2		
	(1) will have two constitutional isomers (2) will have two stereoisomers					
(3) cannot show isomerism						
	(4) will be optica	lly active	a 8			
111.	Which two of the	following molecule	es/ions have plana	r structures?		
	(i) XeF ₄	(ii) ClO.	(iii) PtCl 2-	(iv) MnO 4		
	(1) (i) and (iii)	(2) (i) and (ii)	(3) (ii) and (iii)	(4) (ii) and (iv)		
112.		lysis, Ag is detected cond groups. This		while Pb is detected in		
	(1) AgCl is much	more soluble that	n PbCl ₂			
	(2) AgCl is much	less soluble than	PbCl ₂			
	(3) the solubilities due to its bla		are same, but traces	s of PbS are easily seen		
	(4) AgS is solubl	e, but PbS is inso	tuble			
(339)		2	6			

		**	
113.	Three examples of molecules/ions	having linear geome	try may be given as
	(1) CO ₂ , NCS ² and NO ₂	(2) CO2, NCS a	nd NO ₂
	(3) NO ₂ , N ₃ and NCS	(4) ClO ₂ , CO ₂ and	i NO
		•	
114.	The average of 64 results is how maresults?	ny more times reliabl	e than the average of 4
	(1) 2 (2) 4	(3) 8	(4) 16
		·	
115.	Which of the following statements	is true?	
	(1) The variance is the square roo	t of the standard de	viation
	(2) Precise values are always accu	rate	
	(3) The numbers 0-02040 contains	only four significan	t figures
	(4) Two of the above are true		
116.	Titrator A obtains a mean value of I the purity of a sample. Titrator B of 0.08. The true percent purity is 13	otains corresponding	values of 13.12% and
	(1) less accurate but more precise		•
	(2) more accurate and more precis	e .	
	(3) less accurate and less precise		
	(4) more accurate but less precise		•
(339)	2	7	(P.T.O.)

117.	Which of the following titrations (0·10 M solution) will give the largest change in pH at the end point?
	(1) Benzoic acid with NaOH
	(2) Formic acid with NaOH
	(3) Pyridine with HCl
	(4) Monochloroacetic acid with NaOH
118.	Which is the strongest conjugate base?
	(1) OAc
119.	Which of these statements is true?
	(1) An aprotic solvent has acidic properties
	(2) The titration reaction is more complete the smaller the autoprotolysis constant
	(3) Dissociation into ions is necessary for successful acid-base titrations
	(4) A low dielectric constant is desirable for amphiprotic solvents
120.	A precipitate of Fe(OH) ₃ is contaminated with Mg(OH) ₂ . The best way to get rid of the impurity is
	(1) washing (2) digestion (3) ignition (4) reprecipitation
(339)	28

121.	Line	spectra	ате	emitted	h
		SPACE	40		

- (1) hot solids
- (2) excited polyatomic molecules
- (3) molecules in the ground electronic state
- (4) excited atoms and monoatomic ions

122. The hydrogen or deuterium discharge tube can be used as a source of continuous ultraviolet radiation for spectrophotometers because of

- (1) the characteristics of chopper-modulated radiation
- (2) pressure broadening of hydrogen or deuterium emission lines
- (3) the great sensitivity of photomultiplier tubes
- (4) the narrow band pass of modern grating monochromators

123. In chromatography, a substance for which the distribution coefficient, k is zero may be used to estimate

- (1) the volume within the column occupied by the packing material
- (2) the total volume of the column
- (3) the volume within the pores of the packing material
- (4) the volume within the column available in the mobile phase

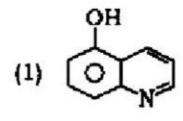
(339)

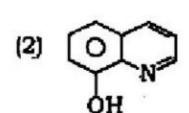
29

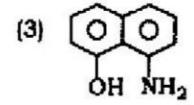
- 124. The separation factor, S, in chromatography depends upon
 - (1) the length of the column
 - (2) the square root of the length of the column
 - (3) the natures of the stationary liquid phase
 - (4) the number of theoretical plates in the column
- 125. A neutral molecule such as ethanol or sugar which has found its way into the pores of a typical anion-exchange resin can be eliminated
 - (1) only by replacement with a cation
 - (2) only by replacement with an anion
 - (3) only if replaced by another organic molecule on a one-for-one exchange basis
 - (4) by flushing out with water
- 126. Which of the following statements is false in normal phase adsorption?
 - The more polar a compound, the more strongly it will be adsorbed from a solution
 - (2) A high molecular weight favours adsorption, other factors being equal
 - (3) The more polar the solvent, the stronger the adsorption of the solute
 - (4) The adsorption isotherm is usually nonlinear

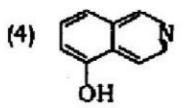
- 127. The best measure of the quantity of a solute in liquid chromatography is
 - (1) the height of the elution band
 - (2) the area of the elution band
 - (3) baseline width of the elution band
 - (4) the retention volume
- 128. Which of the following would be the fastest way to decide which adsorbent and what solvent system to use for a large-scale chromatographic separation of an organic reaction product from materials found in side reactions?
 - (1) Paper chromatography
 - (2) Affinity chromatography
 - (3) TLC
 - (4) Adsorption chromatography with gradient elution
- 129. To deionize tap water by ion exchange for laboratory use, the best approach employs
 - (1) a column containing a strong acid cation exchanger in the hydrogen form
 - (2) a column containing a strong-base anion exchanger in the hydroxyl form
 - (3) a mixed bed column containing a strong acid cation exchanger in the solution form and a strong-base anion exchanger in the chloride form
 - (4) A mixed bed column containing a strong acid cation exchanger in the hydrogen form and a strong-base anion exchanger in the hydroxyl form

130.	Which of the following is used in archaeological studies?					
	(1) Carbon	(2) Uranium	(3)	Radium	(4)	Phosphorus
131.	Radioactive iodine	is being used to	diag	nose the diseas	se of	f .
	(1) bones	(2) blood cancer	(3)	kidneys	(4)	thyroid
132.	The half-life period of a radioactive material can be determined with the help of					
	(1) Wilson Cloud	Chamber	(2)	Geiger-Muller	Cou	inter
	(3) Mass spectron	neter	(4)	All of the abo	ve	
	¥					
133.	Graphite is used in nuclear reactors					
	(1) as a lubricant		,			
	(2) as a fuel					
	(3) for lining the	inside of the react	or a	s an insulator		
	(4) for reducing ti	he velocity of neut	rons			
						2
134.	Pure water does r	ot conduct electric	city l	because of		
	(1) has low boiling	g point	(2)	is almost unio	nise	e d
	(3) is neutral		(4)	is readily deco	mpc	sed
			*			
(339)		32				




135.	The molar conductivity of a strong	elect	troly	rte				
	(1) increases on dilution					181		
	(2) does not change considerably (on di	lutic	n.				¥
	(3) decreases on dilution							
	(4) depends on density							
136.	Electrostatic precipitators are us separation of	sed a	18]	pollution	control	device	for	the
	(1) SO ₂	٠		•				
	(2) NO _X							
	(3) hydrocarbons					•		
	(4) suspended particulate matter							
137.	Which of the following is responsi-	ble fo	r oz	one layer	depletio	m?		
	(1) Ozone	(2)	Ac	rosol				
27	(3) Chlorofluorocarbons (CFC)	(4)) Sr	nog		112		•
138.	Which of the following is a non-bi	odegi	ada	ble organ	ic water	polluta	nt?	
	(1) Proteins	(2) Fa	ats				
	(3) Carbohydrates	(4) Pe	sticides				
(339)		33					(P.	T.O.)




- 139. Which of the following is very effective for isolating, separating and identifying small quantities of substances?
 - (1) Potentiometry

- (2) Chromatography
- (3) Solvent extraction
- (4) Conductometry
- 140. Greenhouse effect causes
 - (1) rise in temperature of the earth
 - (2) continuous rainfall
 - (3) lowering in temperature of the earth
 - (4) continuous snowing of the earth
- 141. Which of the following is the correct structure of oxine?

- 142. One mole of potassium bromate in bromate-bromide reaction produces
 - (1) one mole Br₂

(2) two moles Br₂

(3) three moles Br₂

(4) four moles Br₂

143.	Phenolphthalein is	used as an indicat	or when transition p	H is in the range of
	(1) 1-4	(2) 4-6	(3) 8–10	(4) 10-12
144.	Gases responsible	for acid rains are		
	(1) hydrocarbon s	and CO	(2) NO_X and SO_X	
	(3). CO _X and NO _X		(4) CO and CO ₂	
145.	Which of the follo	wing is the most	toxic?	
	(1) CH ₃ Hg ⁺	(2) HgCl ₂	(3) Hg ₂ Cl ₂	(4) Hg metal
146.	How many moles benzoic acid?	of benzoic acid (12	2·1 g/mol) are cont	ained in 2-00 g of pure
ē	(1) 0·164 mol	(2) 0.008 mol	(3) 0·082 mol	(4) 0·0164 mol
147.	How many potent ion?	ial sites are there	in an EDTA molecu	ale for bonding a metal
٠	(1) Four	(2) Three	(3) Six	(4) Two
148.	Water hardness is pH	determined by ED	TA titration after th	ne sample is buffered to
	(1) 4	(2) 2	(3) 6	(4) 10
149.	What minimum d solute from 50-0	istribution coefficie mL of water with	ent is needed to per two 25.0 mL extrac	mit removal of 99% of a ctions with toluene?
	(1) 18.0	(2) 09.0	(3) 27.0	(4) 36-0
(339)		. з	5	(P.T.O.)
V1				•

150. The distribution coefficient for iodine between an organic solvent and H_2O is 85. The concentration of I_2 remaining in the aqueous layer of the extraction of 50.0 mL of 1.00×10^{-3} M I_2 with 50.0 mL of the organic solvent is

(1) 1·16×10⁻⁵

(2) 5.28×10^{-7}

(3) $5 \cdot 29 \times 10^{-10}$ (4) $1 \cdot 16 \times 10^{-7}$

अध्यर्थियों के लिए निर्देश

(इस पुस्तिका के प्रथम आवरण-पृष्ट पर तथा उत्तर-पत्र के दोनों पृष्ठों पर केवल नीली या काली बाल-प्वाइंट पेन से ही लिखें)

- ग्रिस्त प्रस्तिका मिलने के 10 मिनट के अन्दर ही देख लें कि प्रश्नपत्र में सभी पृष्ठ मौजूद हैं और कोई प्रश्न छूटा नहीं है। पुस्तिका दोषयुक्त पाये जाने पर इसकी सूचना तत्काल कक्ष-निरीक्षक को देकर सम्पूर्ण प्रश्नपत्र की दूसरी पुस्तिका प्राप्त कर लें।
- परीक्षा भवन में लिफाफा रहित प्रवेश-पत्र के अतिरिक्त, लिखा या सादा कोई भी खुला कागज साथ में न लायें.
- उत्तर-पत्र अलग से दिया गया है। इसे न तो मोड़ें और न ही विकृत करें। दूसरा उत्तर-पत्र नहीं दिया जायेगा, केवल उत्तर-पत्र का ही मूल्यांकन किया जायेगा।
- अपना अनुक्रमांक तथा उत्तर-पत्र का क्रमांक प्रथम आवरण-पृष्ठ पर पेन से निर्धारित स्थान पर लिखें।
- 5. उत्तर-पत्र के प्रथम पृष्ठ पर पेन से अपना अनुक्रमांक निर्धारित स्थान पर लिखें तथा नीचे दिये वृत्तों को गाढ़ा कर दें। जहाँ-जहाँ आवश्यक हो वहाँ प्रश्न-पुस्तिका का क्रमांक तथा सेट का नम्बर उचित स्थानों पर लिखें।
- 6. औ॰ एम॰ आर॰ पत्र पर अनुक्रमांक संख्या, प्रश्न-पुस्तिका संख्या व सेट संख्या (यदि कोई हो) तथा प्रश्न-पुस्तिका पर अनुक्रमांक सं॰ और ओ॰ एम॰ आर॰ पत्र सं॰ की प्रविष्टियों में उपरिलेखन की अनुमति नहीं है।
- उपर्युक्त प्रविष्टियों में कोई भी परिवर्तन कक्ष निरोक्षक द्वारा प्रमाणित होना चाहिये अन्यथा यह एक अनुचित साथन का प्रयोग माना जायेगा।
- 8. प्रश्न-पुस्तिका में प्रत्येक प्रश्न के चार वैकल्पिक उत्तर दिये गये हैं। प्रत्येक प्रश्न के वैकल्पिक उत्तर के लिये आपको उत्तर-पत्र की सम्बन्धित पंक्ति के सामने दिये गये वृत्त को उत्तर-पत्र के प्रथम यृष्ठ पर दिये गये निर्देशों के अनुसार पैन से गाड़ा करना है।
- 9. प्रत्येक प्रश्न के उत्तर के लिये केवल एक ही वृत्त को गाढ़ा करें। एक से अधिक वृत्तों को गाढ़ा करने पर अधवा एक वृत्त को अपूर्ण भरने पर वह उत्तर गलत माना जायेगा।
- 10. ध्यान दें कि एक बार स्थाही द्वारा अंकित उत्तर बदला नहीं जा सकता है। यदि आप किसी प्रश्न का अत्तर नहीं देना चाहते हैं, तो सम्बन्धित पंक्ति के सामने दिये गये सभी वृत्तों को खाली छोड़ दें। ऐसे प्रश्नों पर शून्य अंक दिये जायेंगे।
- 11. रफ़ कार्य के लिये प्रश्न-पुस्तिका के मुखपृष्ठ के अन्दर वाले पृष्ठ तथा अंतिम पृष्ठ का प्रयोग करें।
- परीक्षा के उपरान्त केवल ओ०एम०आर० उत्तर-पत्र परीक्षा भवन में जमा कर दें।
- 13. परीक्षा समाप्त होने से पहले परीक्षा भवन से बाहर जाने की अनुमति नहीं होगी।
- यदि कोई अभ्यर्थी परीक्षा में अनुचित साधनों का प्रयोग करता है, तो वह विश्वविद्यालय द्वारा निर्धारित दंड का/की, भागी होगा/होगी।

