STA

2019

1. (a) Let $\left\{x_{n}\right\}_{n \geq 1}$ be a sequence of real numbers converging to a finite real number a, as $n \rightarrow \infty$. Define

$$
y_{n}= \begin{cases}x_{n}-\frac{1}{n} & \text { if } n=3 k \\ 2 x_{n} & \text { if } n=3 k-1 \\ \frac{3 x_{n}+1}{3\left|x_{n}\right|+1} & \text { if } n=3 k-2\end{cases}
$$

for $k=1,2, \ldots$ Find the values of a for which the sequence has three distinct limit points.
(b) Let $a_{n}=\int_{0}^{1}\left(1-x^{2}\right)^{n} d x$ for $n \geq 1$. Find $\lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}$. Also show that $\sum_{n=1}^{\infty} a_{n}$ diverges.

$$
[6+6]=12
$$

2. Let f be a real-valued, continuous, strictly increasing function defined on $[0,1]$ with $f(0)=0$ and $f(1)=1$. Let g be the inverse function of f. Prove that

$$
\begin{equation*}
\int_{0}^{1} f(x) d x+\int_{0}^{1} g(y) d y=1 \tag{12}
\end{equation*}
$$

3. (a) Let \boldsymbol{x} be the $n \times 1$ vector with $x_{i}=i$ for $i=1, \ldots, n$. Find the determinant of $I+\boldsymbol{x} \boldsymbol{x}^{T}$, where I is the identity matrix of order n.
(b) Let A and G be matrices of order $m \times n$ and $n \times m$, respectively, such that $A G A=A$. Show that the determinant of $I+A G$ is non-zero.

$$
[6+6]=12
$$

4. Suppose that two distinct positive integers are chosen randomly from 1 to 50 . What is the probability that their difference is divisible by 3 ?
5. Consider a bivariate random vector $\left(X_{1}, X_{2}\right)$ having joint density given by

$$
f\left(x_{1}, x_{2}\right)= \begin{cases}4 x_{1} x_{2}, & \text { if } 0 \leq x_{1} \leq 1,0 \leq x_{2} \leq 1 \\ 0, & \text { otherwise }\end{cases}
$$

Define two new random variables as $Y_{1}=X_{1} / X_{2}$ and $Y_{2}=X_{1} X_{2}$.
a) Find the support of the joint distribution of $\left(Y_{1}, Y_{2}\right)$ and represent it graphically.
b) Derive the joint distribution of $\left(Y_{1}, Y_{2}\right)$.
c) Using (b), or otherwise, calculate $P\left(Y_{1}>2, Y_{2}>1 / 4\right)$.

$$
[4+3+5]=12
$$

6. Suppose X_{1}, X_{2}, \ldots are independent and identically distributed random variables with $P\left(X_{i}=1\right)=\frac{1}{4}=P\left(X_{i}=-1\right)$ and $P\left(X_{i}=0\right)=\frac{1}{2}$ for all $i=1,2, \ldots$ Define $S_{n}=\sum_{i=1}^{n} X_{i}$ and $U_{n}=\operatorname{sgn}\left(S_{n}\right)$, for $n \geq 1$, where the sgn function is given by

$$
\operatorname{sgn}(x)= \begin{cases}1, & \text { if } x \geq 0 \\ -1, & \text { if } x<0\end{cases}
$$

Find $\lim _{n \rightarrow \infty} P\left(U_{n} \leq u\right)$ for $u \in \mathbb{R}$, and hence identify the limiting distribution of U_{n}.
7. Let $X_{1}, X_{2}, \ldots, X_{n}$ be independent and identically distributed having a common density f_{θ} where $\theta \in \Theta \subseteq \mathbb{R}$. Let $\widehat{\theta}$ be the unique maximum likelihood estimator (MLE) of θ; note that $\widehat{\theta}$ solves the likelihood equation. Let $T\left(X_{1}, \ldots, X_{n}\right)$ be an efficient estimator of $\tau(\theta)$, a one-to-one function of the parameter θ, in the sense that T is unbiased for $\tau(\theta)$ and its variance attains the corresponding Cramer-Rao lower bound. Prove that T must be an MLE of $\tau(\theta)$.
8. Suppose that a n-variate random vector $X=\left(X_{1}, X_{2}, \ldots, X_{n}\right)^{T} \sim$ $N_{n}\left(\mu, I_{n}-\frac{1}{n} J_{n}\right)$, where J_{n} is $n \times n$ matrix with each entry 1 . Define the multivariate log-normal random vector $Y=\left(Y_{1}, Y_{2}, \ldots, Y_{n}\right)^{T}$ through the relations $X_{k}=\log Y_{k}$ for $k=1, \ldots, n$. Prove that the covariance matrix of Y can be expressed as $D B D$ for some $n \times n$ matrix B and some diagonal matrix D. Find these matrices.
9. It is believed that the number of daily hospital admissions on the average depends on whether it is in weekdays or in weekends. Based on records of daily admission counts from a hospital over 52 weeks, suggest a suitable model and corresponding analysis to test this belief. Write your notation and all the assumptions clearly, including limitation(s), if any.

$$
[10+2]=12
$$

10. Consider a randomized block design with v treatments and b blocks with $v<b$. But, suppose that observations under treatment i in block i are missing for $i=1,2, \ldots, v$, and the resulting design is denoted by \mathcal{D}.
a) What are block sizes in \mathcal{D} ? Are the treatments equi-replicated in \mathcal{D} ?
b) Is the design \mathcal{D} connected? Justify your answer.
c) Using (b), or otherwise, prove that the design \mathcal{D} is not orthogonal.

$$
[2+4+6]=12
$$

