

Marking scheme – 2020

CHEMISTRY (043) / CLASS XII

56/C/3

Q.No	Expected Answer / Value Points	Marks
	SECTION A	
1	PHBV / Nylon-2-nylon-6 / any natural polymer (or any other suitable example).	1
2	Homoploymer	1
3	Starch/ cellulose/ proteins / nucleic acids / natural rubber (or any other suitable example).	1

1		1
4		
	- CH ₂ -C=CH-CH ₂ -	
	Neoprene	
		1
5	Teflon / PTFE	1
6	Molar conductivity increases.	1
0	Nucleoside Vroft Tomporature	1
8	Kraft Temperature	1
9 10	Alitame Chaosa (Iallias (or any other suitable example)	1
11	Cheese/Jellies (or any other suitable example) (C) or (D)	1
12	(C) OF (D)	1
13	(D)	1
14	(A)	1
15	(B)	1
16	/ i\	1
17	(iii)	1
18	(i)	1
19	(i)	1
20	(iii)	1
20	SECTION B	
21	Vitamins are certain organic compounds, required in small amounts in our diet but their deficiency	1
	causes specific diseases / organic compounds required in the diet in small amounts to perform specific biological	_
	functions for normal maintenance of optimum growth and health of the organism.	
	Vitamins are classified into two groups depending upon their solubility in water or fat.	1/2+1/2
	(i) Fat soluble vitamins (ii) Water soluble vitamins.	
	OR Stude	
	Proteins are polymers of α -amino acids. (or any other correct answer)	1
	They are classified as Fibrous and Globular proteins on the basis of their shape.	1/2+1/2
22	India.	1 . 1
22.	-3	1+1
	C1 C1	
	ox Cr	
	$\int_{\mathbf{ox}} \mathbf{ox} $	
	OX	
	Cis	
23	It is the rate of reaction when concentration of each reactant is taken as unity. / It is the proportionality	1
	constant in the rate law expression or in differential rate equation or in the rate of reaction.	_
	$K = 0.693 / t_{1/2}$	1
24.	a) At Anode: $2H_2O_{(1)} \longrightarrow 4H^+_{(aq)} + 4e^- + O_2$	1/2 +1/2
	At Cathode: $Cu^{2+}_{(aq)} + 2e^- \longrightarrow Cu_{(s)}$. / Copper is deposited at cathode and Oxygen gas is	
	liberated at anode.	
	b) At Anode: $2H_2O_{(I)} \longrightarrow 4H^+_{(aq)} + 4e^- + O_2$	1/2 +1/2
	At Cathode: $Ag^{+}_{(aq)} + e^{-} \longrightarrow Ag_{(s)}$. / Silver is deposited at cathode and oxygen gas is	
	liberated at anode.	
	OR	
	$Fe^{3+} + e^{-} \longrightarrow Fe^{2+}$, so 1 mol of Fe^{3+} requires 1 F	1/2
	3 moles of Fe ³⁺ require 3 F	
	$Q = I \times t$	1/2
	t = 3 x 96500 / 2	1/2
	t = 144750 sec	1/2

25.	a) Electrolytic refining -The more basic metal remains in the solution and the less basic ones go to the anode	1
	mud. / Anode is impure metal and pure metal strip is cathode while aqueous solution of the metal salt acts	
	as the electrolyte. b) Zone refining - Impurities are more soluble in the melt than in the solid state of the metal.	
26		1
26.	$Cr^{3+} = 3$ unpaired electrons $V^{3+} = 2$ unpaired electrons	1/ ₂ 1/ ₂
	Cr^{3+} is more stable due to half filled t_{2g}^{3} configuration	1/2+1/2
27.	Antiseptics the chemicals which either kill or prevent the growth of microorganisms but are applied to	1
	the living tissues such as wounds, cuts, ulcers and diseased skin surfaces. Examples are furacine,	
	soframicine, etc. Disinfectants are also the chemicals which either kill or prevent the growth of microorganisms but	1
	applied to inanimate objects such as floors, drainage system, instruments, etc. e.g. Concentrated acids,	1
	Phenol (above 1% conc.)	
	(OR any other suitable point of difference and example)	
	SECTION C	
28	$K = \frac{2.303}{t} log \frac{[Ro]}{[R]}$	1/2
	$4.9 \times 10^{-3} = \frac{2.303}{t} log \frac{4}{2}$	1
	$t = \frac{2.303}{4.9 \times 10^{-3}} \log (0.6020 - 0.4771)$	1
	= 58.7 sec	1/2
	OR	
	g) Molecularity = 2 or bimolecular.	1
	h) Order =1 or pseudo first order. i) Rate = $\frac{-\Delta[C_{12}H_{22}O_{11}]}{\Delta t}$ = $+\frac{\Delta[C_6H_{12}O_6]}{\Delta t}$ = $+\frac{\Delta[C_6H_{12}O_6]}{\Delta t}$	1 1
	I) Rate = Δt Δt Δt Δt	
29	 g) Tyndall effect / scattering of light / path of the light gets illuminated. h) Coagulation / precipitation / artificial rain. 	1
	i) Demulsification / separation of fat from the milk / coagulation.	1 1
30	$\Lambda_{\rm m} = \frac{k}{a} \times 1000$	1/2
	C - 10-5	
	$=\frac{1}{0.002} \times 1000$	
	$= 40 \text{ Scm}^2 \text{mol}^{-1}$ Λ_m^c	1 1/2
	$\alpha = \frac{1}{\Lambda_m^o}$	1
	= 40/390.5 =0.102	
31	OH CH3	
	$CH_2-C_1-C_1-C_1$	1 x3
	a) O b) CH ₃ CH ₂ OH c)	
	OR	
	H ₂ O, H ⁺	1
	a) i) H_3C — CH = CH_2 $\frac{H_2O, H^+}{-}$ H_3C — CH — CH_3	_
	OH	
	CH ₂ ·CI CH ₂ ·OH	
	KOH aq.	1
		1
	b) 4-Methylphenol < phenol < 4-Nitrophenol / 4-Methylphenol , phenol , 4-Nitrophenol	1
		1

32	$2MnO_2 + 4KOH + O_2 \rightarrow 2K_2MnO_4 + 2H_2O \\ 3MnO_4^2 + 4H^+ \rightarrow 2MnO_4^- + MnO_2 + 2H_2O \\ Commercially it is prepared by the alkaline oxidative fusion of MnO_2 \\ followed by the electrolytic oxidation of manganate (V1).$	1
	$\begin{array}{c} \text{Fused with KOH, oxidised} \\ \text{MnO}_2 & \xrightarrow{\text{with air or KNO}_3} & \text{MnO}_4^{2^-} \\ \text{manganate ion} & \text{manganate} \end{array} ; \qquad \begin{array}{c} \text{Electrolytic oxidation in} \\ \text{MnO}_4^{2^-} & \xrightarrow{\text{alkaline solution}} & \text{MnO}_4^{-} \\ \text{manganate ion} & \text{manganate} \end{array} ;$	1
	(ignore balancing)	
33	 a) By products of the reaction, SO₂ and HCl being gases escape easily leaving behind pure alkyl chloride./ It is a good chlorinating agent. b) Due to higher molecular mass of alkyl halide than hydrocarbons / Due to polar nature of alkyl halides while hydrocarbons are non-polar / strong dipole-dipole forces / stronger van der Waal 	1
	forces of attraction. c) Saytzeff's rule / more alkylated or substituted alkene, is more stable.	1
34	Hinsberg Test: 1° amine reacts with Hinsberg's reagent or Benzene Sulphonyl Chloride to give a product which is soluble in alkali,	1/2
	2° amine reacts with Hinsberg's reagent or Benzene Sulphonyl Chloride to give a product which is insoluble in alkali while 3° amine doesn't react with Hinsberg's reagent or Benzene Sulphonyl Chloride.	1/2
	R-NH ₂ This compound is soluble in alkali	1/2
	R2 NH + SO ₂ N R2 This compound is insoluble in alkali	1/2
	R ₃ N + No reaction (OR Any other suitable method for the separation of primary, secondary and tertiary amines).	1/2
	SECTION D	
35	e) Henry's law: The law states that at a constant temperature, the solubility (mole fraction) of a gas in a liquid is directly proportional to the partial pressure of the gas present above the surface of liquid or solution. Applications: To avoid bends, in the condition of anoxia and to fill CO ₂ in cold drink bottles	1/2+1/2
	(any of the two applications) $\frac{Po-P}{Po} = X_2$	1

	$\frac{Po-P}{Po} = \frac{n2}{n1+n2} \approx \frac{n2}{n1}$	1
	$\frac{760-745}{760} = \frac{w^2}{M^2} x \frac{M^1}{w^1} = \frac{15}{760} = \frac{5}{M^2} x \frac{18}{95}$	
	$M_2 = \frac{760 \times 5 \times 18}{95 \times 15} = 48g \text{mol}^{-1} \text{ or u}$	1
	95 x 15	
	a)	
35	Ideal Solution Non-Ideal solution	7
	It obeys Raoult's law over the entire range of	-
	concentration. range of concentration.	½ x 4
	$\Delta V mixing = 0 \text{ and } \Delta H_{mixing} = 0$ $\Delta V_{mixing} \neq 0 \text{ and } \Delta H_{mixing} \neq 0.$	
	(Any other two points of difference between the two).]
	b) $\Delta T_f = iK_f m$,	
	for NaCl, $i=2$,	1/2
	$2 = 2x K_f \frac{Wb x 1000}{Mb x Wa}$ $1 - 1.86 x \frac{w x 1000}{Mb x Wa}$	1/ ₂ 1/ ₂
	$\frac{1 = 1.80 \text{ X}}{58.5 \times 100}$	½ 1
	w = 3.147 g (1/2 mark to be deducted for incorrect or no units)	
36	(or by any other correct method)	
	raest Star	
	India's lal S	
	но	
	Sulphurous acid (H ₂ SO ₃)	1
	e) i) There are two -O-H bonds or groups / ii) Due to lower bond dissociation enthalpy of Te-H than H-O/ due to large size of Te /	1
	longer bond length of Te-H than H-O.	
	iii) Due to highest electronegativity / due to absence of vacant d-orbitals / It can show only one oxidation state / it can't show higher positive oxidation state.	1
36		1
	f) i) 2XeF ₆ + 2H ₂ O → XeO ₂ F ₂ + 4HF (ignore balancing) ii) I ₂ + 3Cl ₂ → 2ICl ₃ (ignore balancing)	1
	OR	
	e) i) $I_2 < F_2 < Br_2 < Cl_2$	1
	vi) $HF < HCl < HBr < HI$ vii) $H_2O > H_2S > H_2Se > H_2Te$	1
	F P	
	Xe S	
	F O HO	1+1
	f) i)	

37	a) i)	
	H ₃ C	
	$c_{\rm H}=N-NH$	1+1
	$\frac{1}{1}$ $\frac{NO_2}{1}$	
	H_3C	
	N/O	
37	NO ₂	
	b) i) COO K [†]	
		1+1
	c) Carboxylate ion is more stablised than phenoxide ion / conjugate base of carboxylic acid is more	1
	stable than that of phenol / carboxylate ion has two equivalent resonating structures while the structures are non equivalent in phenoxide ion/ negative charge in carboxylate ion is delocalised	
	over more electronegative two Oxygen atoms while in phenoxide ion negative charge is	
	delocalised over one Oxygen atom and less electronegative Phenyl ring (or C atoms). /Carboxylic	
	acid reacts with NaHCO ₃ to give brisk effervescence of CO ₂ while phenol doesn't or reaction given by the student.	
	OR OR ON PLO	½ x 3
	a) CH₃COOCH₂CH₃ → CH₃COOH + CH₃CH₂OH	
	CH ₃ CH ₂ OH	
	dehydration	
	CH ₃ CH ₂ OH → CH ₂ =CH ₂	½ x 3
	A = Ethyl acetate (CH ₃ COOCH ₂ CH ₃), B = Acetic or Ethanoic acid (CH ₃ COOH), C = Ethanol	
	(CH ₃ CH ₂ OH)	1
	LiAlH _{4, dry ether}	_
	b) i) CH ₃ CHO — CH ₃ CH ₂ OH	1
	ii) CH₃CHO — Zn/Hg in HCl ► CH₃CH₃	
	Or NH ₂ NH ₂	
	(or any other suitable reagent for the above reactions or any other correct method for conversion)	

