CAT 2002 Answer Key

1.	2	41.	2	81.	4	121.	1
2.	2	42.	2	82.	4	122.	4
3.	2	43.	4	83.	4	123.	1
4.	4	44.	4	84.	3	124.	3
5.	3	45.	2	85.	2	125.	1
6.	2	46.	3	86.	4	126.	3
7.	2	47.	2	87.	4	127.	2
8.	4	48.	1	88.	2	128.	3
9.	3	49.	4	89.	1	129.	4
10.	1	50.	2	90.	1	130.	1
11.	3	51.	4	91.	4	131.	1
12.	3	52.	4	92.	2	132.	4
13.	1	53.	3	93.	4	133.	4
14.	1	54.	2	94.	4	134.	4
15.	3	55.	2	95.	1	135.	2
16.	1	56.	3	96.	3	136.	4
17.	3	57.	2	97.	3	137.	2
18.	4	58.	3	98.	3	138.	2
19.	1	59.	4	99.	1	139.	4
20.	1	60.	4	100.	3	140.	2
21.	3	61.	3	101.	3	141.	4
22.	4	62.	2	102.	2	142.	1
23.	3	63.	2	103.	4	143.	1
24.	3	64.	3	104.	2	144.	2
25.	3	65.	2	105.	4	145.	1
26.	3	66.	4	106.	3	146.	3
27.	4	67.	2	107.	1	147.	4
28.	1	68.	3	108.	3	148.	3
29.	3	69.	4	109.	4	149.	1
30.	2	70.	4	110.	2	150.	3
31.	4	71.	1	111.	3		
32.	1	72.	2	112.	1		
33.	3	73.	1	113.	4		
34.	4	74.	2	114.	3		
35.	1	75.	3	115.	1		
36.	4	76.	2	116.	4		
37.	3	77.	1	117.	3		
38.	2	78.	4	118.	2		
39.	2	79.	3	119.	3		
40.	2	80.	2	120.	2		

CAT 2002 Solutions

1. The price per kg for the 4 options will be prop to $17 / 15,20 / 11,16 / 15$ and 20/26. It is the highest for the second option
2. $=0.16 * 5760 / 0.15 * 1055=5.6$
3. R9 is the crop that is common
4. Option (4) is correct. Eg R2,R6,R1,R4 etc.
5. R9, R10 and R11 are the crops
6. In this set, first write down the ranks on the paper itself. Then have a look at the questions WB, TN, MA, KA, and AP are such states. Hence answer is 5.
7. UP has changed 2 times.
8. A closer scrutiny makes it clear that only in the case of AP, the revenue has more than doubled where as others have increased at a rate which is lower than that of AP. So AP's share has definitely increased.
9. Check from figures given - it is between $98-99$ and 99-00.
10. It was for KA between 00 and 99 and 01 and 00 increase of 574 cr
11. Check from data collated for first question of the set.
12. Check using the options. The age of the husband and wife come to be 24 and 21 . So younger boy is 2 years old. There are two possible age of the two brothers. Either (2 and 4) or (3 and 9). Only 2 and 4 satisfies the case. Option (3)
13. There are a total of 180 people in the hall. Total capacity is 240 . After flight A people embark, 80 people remain. Capcity of flight A is 120 , so that of B is also 120 . No of seats vacant in B is 40 . No of airhostesses in A is $80 / 20=4$. So ratio of vacancies to hostesses is $10: 1$
14. The foll table will help:

Signal Speed Distance Direction
02010 km N
14010 km W
24020 km N
310040 km E
44010 km N
Total distance $=10+10+20+40+10=90 \mathrm{~km}$
Table not visible in site.
15. The distance will be $\left(30^{2}+40^{2}\right)^{0.5}=50 \mathrm{~km}$ - approx to the NE
Square sign is coming as $302+402$
16. It starts with 1 Green and then in the $1^{\text {st }}$ signal it becomes 1 red and 2 green. The new distances become $10 \mathrm{~N}, 10 \mathrm{E}, 20 \mathrm{~S}, 40 \mathrm{~W}$ and 10 S . So final position of 30 W and 20 S
17. Can be done on similar lines to above questions.
18. Using both the statements the score before the last 5 min started could be either 2-0 or 3-1. In the first case there is a draw, in the second case india wins. So option is (4).
19. If it is divisible by adding 12 , then it will be divisible by adding 4 ($12-4=8$)
20. In first option we get $x / y+y / x=2$, which is only possible if $x=y$.
21. Only after combining both the statements the question can be answered. First will give cost relation with SP . Second will give SP .
22. There is no exact relationship between the median and the average.
23. From Stmt B we get 2 ranges $(-1<x<3)$ and from statement A we get ($x<-1$ or $x>1$). Individually both cannot answer, but when we combine we get ($1<x<3$) which is sufficient to answer the questions.
24. No of people speaking French only is $300-(196+$ 58) - so 3 is the answer.
25. From the 2 equations we can find the value of J and P in terms of G . So we can find out who received the lowest (although not the exact values)
26. The doctor got the most no. of admission offers i.e. 3
Ashish isn't engg.
Sameer is an economist.
Dhanraj isn't engg.
Hence Felix is an engg..
Ashish can't be a doctor, since he didn't got the maximum no. of offers.
Hence Dhanraj is a doctor, while Ashish is a C.A. The person getting 2 offers is neither Dhanraj nor C.A. i.e. Ashish. Felix also didn't get 2 offers ,since he got less offers than Ashish. Hence Sameer got offers from 2 IIMs Hence,

No of offers:	0	1	2	3	
Student	$:$	Felix	Ashish	Sameer	Dhanraj

Degree : Engg C.A. Econ. Doctor.
27. $4^{\text {th }}$ option.
28. $1^{\text {st }}$ option
29. $3^{\text {rd }}$ option
30. 1 out of 5 countries located within in 10E \& 40E line lie in the southern Hemisphere. Hence 20%.
31. $4^{\text {th }}$ option as there are 10 cities which begin with a consonant and lie in the northern hemisphere and 13 of the other kind.
32. Argentina, Australia, Equador and Ottawa, Accra. $3: 2,1^{\text {st }}$ option.
33. Following are the worker nos. Who have earned more than 50 rupees per day in difficult operation. $2001151,2001158,2001164,2001172,2001173$ i.e. 5 hence $3^{\text {rd }}$ option.
34. There are 7 workers who satisfy the given condition whose no. are given below.
2001147,2001151,2001172,2001173,2001174,2001 179,2001180 . Hence $4^{\text {th }}$ option.
35. Among the options given 2001180 satisfies the given condition. Hence $1^{\text {st }}$ option.
36. There are 7 such workers whose no. are given below. 2001148, 2001149, 2001150,
2001151,2001158, 2001171,2001172
37.
$3374 * 5 / 100=168.7$.There are 4 such operation on Spain ,Latin America, North sea, Rest of world. Hence (3).
38. There are 2 such operation, Namely Spain ,Rest of Latin America. Hence (2).
39. There are 4 such operations, namely, North Africa, Argentina, Rest of Latin America \& Far East. Hence (2).
40. \quad Average $\%$ increase $=(1375-248) / 248 * 100=$ 454.43%. There are only one operation Argentina which shows more than average \% increase in net income before taxes \& charges from 1998-1999 (838-94) /94* $100=791.48 \%$.Hence (2).
41. Profitability of North Sea in $1998=21 / 51=.41$. Profitability of North Sea In $1999=55 / 64=.85$. Hence (2).
42. Spain shows the best Profitability in 2000 as income after tax and charges is greater than expenditure. For all other countries expenditure is greater than income after tax \& charges . Hence (2).
43. Rest of world operation in Rest of the world is least efficient. All other values are more than 1. Hence (4).
44. In year 1998, The operation has least efficiency as its value is significantly less than one, followed by Rest of Latin America. Hence,(4).
45. Least cost of sending one unit from factory to any district is zero, this is done through BC-AC-AAC. Hence (2).
46. Least cost of sending one unit from any factory to the district AAB is 95.2 which is possible through AAB-AE-BD. Hence (3).
47. Least cost of sending one unit from factory $B B$ to any district is a 311.1 which is possible through BB-AB-AAG. Hence (2).
48. Least cost of sending one unit from factory BB to city AAA is $451.1+314.5=765.6$ which is possible through BB-AC-AAA. Hence (1).
49. Number of possible ways of sending one unit from any city is $6 * 7 * 9=378$. Hence,(4).
50. The largest cost of sending 1 unit from any factory to any city is $1035.3+1157.7=2193.0$ which is possible through BF-AE-AAH. Hence (2).
51. Putting $n=1$, we get $7^{6}-6^{6}$ which can be written as $\left(7^{3}\right)^{2}-\left(6^{3}\right)^{2} \Rightarrow\left(7^{3}+6^{3}\right)\left(7^{3}-6^{3}\right) \Rightarrow 559 \times 127$. Also $7^{6}-6^{6}$ is divisible by 13 . So it is divisible by 13 , 127 and 559. So answer is $4^{\text {th }}$ option.
52. The white square can be chosen in $64 / 2=32$ ways. The black square can be chosen in $32-8=24$. So total number of ways $=32 \times 24=768$.
53. This relationship is satisfied for $u=3, v=4, w=5$ \& $m=2$. So m is less than \min of u, v and w.
54. Now $\mathrm{AB}=25$. Now $1 / 2 \times 15 \times 20=1 / 2 \times 25 \times \mathrm{CD} \Rightarrow$ $\mathrm{CD}=12$. So $\mathrm{AD}=9$ and $\mathrm{BD}=16$. So inradius of $\Delta \mathrm{ACD}=(1 / 2 \times 9 \times 12) / 18=3$. Also inradius of Δ $\mathrm{CDB}=(1 / 2 \times 16 \times 12) / 24=4$. So horizontal distance $\mathrm{PQ}=3+4=7$. Vertical distance is $4-3=1$. $P Q=\sqrt{ }\left(7^{2}+1^{2}\right)=\sqrt{50}$. Hence answer is $2^{\text {nd }}$ option.
55. Each eats $(5+3) / 3=8 / 3$ loaves. Ratio of money that they should share is $(5-8 / 3):(3-8 / 3)=7 / 3$: $1 / 3$ or
7:1. So first should receive 7 .
56. Let the middle string be x. So $x+3 x+3 x-23=40$. Solving we get $x=9$. And shortest string is $27-23$ $=4$.
57. Let the speed of cat $=1 \mathrm{kmph}$ and let the total distance $=8 \mathrm{~km}$.
So cat is at 3 km from entrance and 5 km from exit. In the first case, when the train and the cat are meeting at the entrance, we say that cat is covering 3 kms in 3 hrs .
In the $2^{\text {nd }}$ case, cat is covering 5 kms in 5 hrs as it catches the train at the exit which further means that the train has covered $(3+5)$ i.e 8 kms in $(5-3)$ i.e 2 hrs . So speed of train is 4 kmph . Hence the ratio of their speeds is $4: 1$. So answer is $2^{\text {nd }}$ option.
58. The original arrangement is S-D-A-R-P-Y-S. Now make the substitutions and get the answer.
59. Total of 60 manhours are required. At $5 \mathrm{pm}, 6 \times 6=$ 36 manhours have already been put in. Balance $=$ $60-36=24$. In 3 hours, $7+8+9=24$ more manhours would have been added. So the work gets over at 8 pm .
60. If $\mathrm{KL}=1$, then $\mathrm{IG}=1$ and $\mathrm{FI}=2$

Hence, $\tan \theta=2 / 1=2$
Thus, θ is none of 30,45 and 60°.
61. Area of $\mathrm{ABCD}=1 / 2(2 x+4 x) 4 x=12 x^{2}$. Area of DEFG $=1 / 2(5 x+2 x) 2 x=7 x^{2}$. So the ratio of the areas is $12: 7$.
62. $M=1 / 2(60-M)$. So $M=20$. Similarly we get $Z=15$ and $L=12$. So $M+Z+L=47$. And $J=60-47=$ 13.
63. From options, check with 36 . To first guard he gives $18+2=20$ and balance $=16$. To the second he gives $8+2=10$ and is left with 6 . Finally he gives 5 to the last and is left with 1 .
64. Area covered in the first round is $10+19+39+18=$ 116. In subsequent round the area covered decreases by 8 . In three rounds $116+108+100=324$ area has been covered. Balance for covering half is $400-324=76$. So it will take $76 / 92=0.8$ rounds more approx
65. We know that $(x+y+z)^{2}=x^{2}+y^{2}+z^{2}+2 x y+2 y z$ $+2 z x$. So $25=x^{2}+y^{2}+z^{2}+6$. So $x^{2}+y^{2}+z^{2}=19$. If $y=z=0$, then $x^{2}=19$ or $x=\sqrt{19}$. For all other values, $x^{2}<19$. So maximum value for x is $\sqrt{19}$.
66. X_{0} is positive. $X_{1} \& X_{2}$ are negative, $X_{3} \& X_{4}$ are positive, $X_{5} \& X_{6}$ are negative and so on.
67. Check from options, the sum of 25 and 16 is 41. Difference of 54 and 41 is 13
68. The distance of the first gutter from A is 2.5 km (also that of gutter 3 from B). Using this we can find distance between gutters 1 and 3 as $20-(2.5+$ $2.5)=15 \mathrm{~km}$. Now time taken to reach gutter 1 is 5 min . To travel the balance $15+17.5=32.5 \mathrm{~km}$, it will take 32.5 minutes. It will take 1 min for loading. So total time is $5+32.5+1=38.5$. So 1.5 minutes is balance.
69. Now $1 / 2 \mathrm{BE} \times \mathrm{AB}=7$. Area $(\mathrm{ABCD})=\mathrm{AB} \times \mathrm{BC}$. Now $\mathrm{BC}=4 \mathrm{BE}$. So $\mathrm{AB} \times \mathrm{BC}=4 \times \mathrm{BE} \times \mathrm{AB}=56$
70. Total distance travelled is $(100+98)+(98+96)+$ $(96+94)+(94+92)+92=860 \mathrm{~m}$.
71. Area of square is $14 \times 14=196 \mathrm{sq} . \mathrm{m}$. Area of 4 quadrants at the edges $=1$ circle of radius $7=22 / 7$ $\times 49=154$. Ungrazed area is $196-154-20=22$ sq.m.
72. Substitute for each of the options - it fits for option 2.
73. We will get a right triangle joining the centres and half the common chord. The altitude is the common
chord $=15 \times 20 / 25=12$. So total length of common chord will be $12 \times 2=24$.
The bisector needs to have a value which lies between the lengths of its corresponding sides, which are $3 \& 4$. Thus the length of AD has to lie between $3 \& 4$. Options 2 and 4 are less than 3 and so cannot be the answers. Option 3 is more than 4 . Thus $1^{\text {st }}$ option is the answer.
75. We can have $8+7+\ldots . .1=36$ ways in which n_{1} is the first of the triplet. 28 ways with $\mathrm{n}_{2}, 21$ with n_{3}, 15 with $\mathrm{n}_{4}, 10$ with $\mathrm{n}_{5}, 6$ with $\mathrm{n}_{6}, 3$ with n_{7} and 1 with n_{8}. Total these values and we get 120 .
76. Let big pump have capacity $3 x \mathrm{lpm}$. (Big pump alone will take time proportional to $1 / 3 x$). Small pump will have capacity $2 x$. All together have capacity $=3 \times 2 x+3 x=9 x$. Time taken will be proportional to $1 / 9 \mathrm{x}$. So ratio of times will be 1:3.
77. Revenue for 240 is $1.8 \times 240=432$. For 300 it is $1.5 \times 300=450$. For 400 it is $1 \times 400=400$. So \max is at 300 .
78. Number of $2 \mathrm{~s}-$ Number of $4 \mathrm{~s}=$ Number of oranges $=6-4=2$.
79. Similarly $19-4 \times 2=11$.
80. Line joining $(a, a) \&(a+2, \mathrm{a})$ is parallel to x-axis . This distance between the two points $(a, a) \&(a+$ $2, a)$ is 2 . The distance of point $(a+1, a+1)$ from base (x-axis) is 1 . So area of the triangle is $1 / 2 \times 1 \times$ $2=1$.
81. checking with standard triangle $3,4,5$. While travelling through sides one travels $3+4=7$ and the diagonal is 5 , so saving is half of longer side 4 . Hence option (4).
82. Let the normal speed of the train S be $x \mathrm{~km} / \mathrm{hr}$. \therefore the normal speed of train N is $4 x \mathrm{~km} / \mathrm{hr}$.
Let the train N leave station A at 1 pm . It is late so it leaves at 1.20 pm
By doubling its speed, it reaches B in time. When train N doubles its speed its new speed is $8 x \mathrm{~km} /$ hr.
So the distance AB in terms of x can be calculated as below: $\mathrm{D} / 4 x$ is initial time
D / $8 x$ is time taken when it starts late. The difference between the two is 20 minutes $=1 / 3$ hours
Equating we get $\mathrm{D} / 4 x-1 / 3=\mathrm{D} / 8 x$. So $\mathrm{D}=8 x / 3$
Meeting point of the trains - is important - since there is only a single line
To travel a distance of $8 x / 3$, the slow train requires to start $(8 x / 3) / x$ hours before 1 pm .
So it should start at $8 / 3$ hours before $1 \mathrm{pm}-$ Or at 11.20 am . At 1 pm , it will have covered $5 \underline{x} / 3 \mathrm{~km}$. So the distance it will require to cover to reach A will be $8 x / 3-5 x / 3=x$.
The relative speed at which the two trains move each other normally is $4 x+x=5 x$
So they will meet at a time $=x / 5 x=1 / 5$ hours after 1 pm . Or at 1.12 pm
At this time train S is $4 x / 5 \mathrm{~km}$ from A. Now the train S is delayed and starts at 1.20 pm . Travelling at a speed of $8 x$, it will take $4 x / 5 / 8 x=1 / 10$ hours to reach the meeting point.
So it will reach the meeting point at $1.20+6=1.26$ pm . The slow train has been waiting at the meeting point for the fast train to pass. It starts at 1.26 pm , but it has to cover the balance distance of $4 x / 5 \mathrm{~km}$ in $2.00-1.26=34$ minutes. So its new speed will
be $(4 x / 5) /(34 / 60) \mathrm{km} / \mathrm{h}$.
Ratio of its speed to superfast speed will be $(4 x / 5) /(34 / 60): 8 x$ or $(4 x * 60) /(5 * 34 * 8): 1$ $=1: 17 / 3=$ approximately $=1: 6$.
83. Let the unequal parts be x and y out of which $x>y$ So total number of coins $=x+y$. Now, as per the question, $48(x-y)=x^{2}-y^{2} \Rightarrow x+y=48$. So answer is $4^{\text {th }}$ option.
84. Let the number of days he stayed there be x. The number of days he go for yoga be c. The number of days he played tennis be d. So $c+d=22------(1)$, $(x-c)=24------(2) \&(x-d)=14------(3)$ adding (2) \& (3) we get $2 \times x-(c+d)=38.2 \times x$ $-22=38 \Rightarrow 2 \times x=60$, so $x=30$. Hence (3).
85. $(10 b+a)-(10 a+b)=1.8 \times 10$. So $b-a=2$.Hence (2).
86. Sushil either paid as per km tariff or as per hour tariff. If he had paid as per km tariff, the per km charge should be $350 / 30=$ Rs11.66 per km. But the per km tariff is either Rs 12 per km or Rs 7.50 per km . Hence he must have paid as per hour tariff. Upto 5 hrs., rent would be $5 \times 60=$ Rs. 300 . For rent more than 300 ,number of hours $=350 / 50=7$ hrs. So he rented the car for 6 hrs. Hence (4).
87. We need to find the sum of the natural numbers which is just greater than575. By hit \& trial method, we find that sum of $1^{\text {st }} 34$ natural numbers is $34 \times$ $35 / 2=595$. He found the sum as 575 . So he must have missed $595-575=20$. Hence (4).
88. If x \& y are integers, then $\mathrm{R}(x, y)=\mathrm{L}(x, y)$. Taking $\mathrm{x}=1 \& \mathrm{y}=1 \mathrm{~L}(\mathrm{x}, \mathrm{y})=\mathrm{R}(\mathrm{x}, \mathrm{y})=4$. So option 1 is possible. Suppose $x=1.6 \& y=2.5$, then $\mathrm{L}(x, y)=$ $1+2+4=7$.
$\mathrm{R}(x, y)=3+5=8$. Again $\mathrm{L}(x, y)<\mathrm{R}(x, y)$.
We find that there are no real values of x, y for which $\mathrm{L}(x, y)>\mathrm{R}(x, y)$ Hence (2).
89. Two intersecting lines gives 4 such regions. 3 lines gives $4+3=7$ regions. 4 such lines gives, $7+4=11$ regions \& so on. We find that for n lines, number of regions $=(n)(n+1) / 2+1$. So 10 lines will give $10 \times$ $11 / 2+1=56$ regions. Hence (1).
90. $2^{4}=16$. So remainder when 2^{4} is divided by 17 is 16. So $\left(2^{4}\right)^{2}$ when divided by 17 leaves remainder as 1. So 2^{256} also leaves remainder as 1 .
91. If both $\mathrm{A} \& \mathrm{~B}$ are not zero, then a quadratic equation results \& we get 2 roots. For example, if A $=\mathrm{B}=1$,
$1 / x+1 /(x-1)=1 \Rightarrow 2 x-1=x^{2}-x \Rightarrow x^{2}-3 x+1=0$
$\Rightarrow x=3 \pm \operatorname{sqrt}(5 / 2)$. if any one of $\mathrm{A} \& \mathrm{~B}$ is zero, we get only one root of x. Hence (4).
92. Since the three words appeared for $5 / 2,17 / 4,41 / 8$ seconds, each word stay for next 1 seconds. The time after which a person can completely see all the letters is equal to the L.C.M. of $(5 / 2+1),(17 / 4+1)$, $(41 / 8+1)$; i.e. L.C.M. of $7 / 2,21 / 4,49 / 8=$ L.C.M. of $7,21,49 /$ H.C.F. of $2,4,8=147 / 2=73.5$ seconds. Hence (2).
93. We need to find H.C.F. of $4.5,6.75,7.2$. Now 450 $=3^{2} \times 5^{2} \times 2,675=3^{3} \times 5^{2}, 720=2^{4} \times 3^{2} \times 5$.
H.C.F. $=3^{2} \times 5=45$. Hence the parts will be of size 0.45 m . Hence number of guests is $10+15+16$ i.e. 41. Hence (4)
94. This problem is best solved by checking options. In option (4), $84+53=137$. This when divided by $3,4 \& 7$ leaves respectively $2,1 \& 4$ as remainder. No other option satisfies this. Hence (4).
95. There are 11 symmetric letters. Number of 4 letters words with all prime letters is $11 \mathrm{P} 4=11 \times 10 \times 9 \times$ $8=7920$. Hence (1).
96. 26 P 3 is the number of ways in which any 3 letters can be arranged without repetition. $(26-11) \mathrm{P} 3$ is the number of ways in which any 3 asymmetric letters can be arranged.
Hence the number of ways in which the letters can be arranged with at least one symmetric letter is $26 \mathrm{P} 3-(26-11) \mathrm{P} 3=12870$. Hence (3).
97. This can be best solved by substitution method. Try different combinations. For example put $p=1 ; q=r$ $=-1$, We get the value of the expression as equal to 1. Only option (3) satisfies this. Hence (3).
98. We can make upto 6 digit numbers, using digits 0 , 7, 8 .
So total number of six digit number so formed is 3^{5}
But one of these numbers is zero which is not
possible. $3^{5}-1$. Hence option (3).
99. $S=2+5 x+9 x^{2}+14 x^{3}+\ldots$
$x S=2 x+5 x^{2}+.$.
$S(1-x)=2+3 x+4 x^{2}+5 x^{3}+\ldots$
Let $S_{1=S}(1-x) \Rightarrow S_{1}=2+3 x+4 x^{2}+\ldots$
$x S=2 x+3 x^{2}+$.
S $1(1-x)=2+x+x^{2}+.$.
But $x+x^{2}+x^{3}+\ldots .=x /(1-x)$
So, $S_{1}(1-x)=2+x /(1-x)$
$S(1-x)^{2}=2+x /(1-x)$
$\Rightarrow S=2-x /(1-x)^{3}$
100. This can be done by checking options. Since (A) relates only two of the three variables, this alone can't be true. Taking (B) \& (C), we get $x=4 x$, so x $=z=0$. This is not true. Taking (A) \& (B), $x=2 \times$ $y \& z=y$. So L.H.S. $=4 \times y \times 2+5 \times y \times 2+y \times 2$ $=10 y \times 2$. And R.H.S. $=2 y(4 y+y)=10 y \times 2=$ L.H.S. Hence (3).
101. Note that size matches with cricket pitch and vessel matches with measuring oil.
102. A matches with E, B with G, and so on.
103. Note that capture matches with Husain capturing the spirit, grasp matches with I could not catch you, and soon.
104. A matches with H, B with G, and so on.
105. A matches with G, B matches F, and so on.
106. D matches with A and E matches with C.
107. The logical choice is A-C-E and note that F must follow C , which talks of unique value.
108. The matching sentences are B-E-A, and then C should follow D
109. C "between the two" must come after Centre and states in E , and B is linked to D , with A as conclusion.
110. B introduces the subject, while E supports it, followed by D-C-A.
111. The best option is "obviously" as it matches the sentence.
112. The best word to match is quantitatively as it goes with the sens of the sentence.
113. The sentence talks of alternatives, hence (4)
114. Note that 'firing' goes with using the sun
115. Arguments are resolved, hence (1)
116. The sentence is best completed if we say allowed such a process to take place.
117. C uses the sentence correctly and sums up the main idea.
118. The subjects as to what happens, should come together, which happens in B.
119. "create a difference" is the correct usage.
120. If risk goes down, gambling will be encouraged.
121. Opprobrium - harsh criticism
122. Portend - bode
123. Prevaricate - speak evasively
124. Restive - restless
125. Ostensible - apparent
126. The Indian historians started writing history from there perspective rather than that of British officials.
127. Evident from the line - break new ground means starting something new and deepen a furrow means establish a perspective.
128. "But when the raj was settled down, glamour departed from politics, and they turned to the less glorious..."
129. Can be inferred from the last few lines.
130. Orme is given in the first paragraph, Dodwell in the second and Dutt in the third.
131. "men have "given" women the right to contraceptive use and abortion access when their countries were perceived to have an overpopulation problem" - from this line we can infer that the author is referring to India and China as both have an over population problem.
132. The matriarchal approach is mentioned in a different context.
133. "They view the foetus as a human life rather than as an unformed complex of cells; therefore, they hold to the belief that abortion is essentially murder of an unborn child" - hence a pro-life person will never advocate abortion.
134. Can be inferred from the second last paragraph.
135. "These tragedies ...led a number of stales to pass abortion permitting legislation." Hence we infer that the abortion laws were changed.
136. The support came from Middle and Upper class Protestants.
137. Refer to the third paragraph - "...'No Man's Land' is philosophy" hence it is an area where things are not certain.
138. Philosophy is "is something intermediate between theology and science" hence it is complimentary
139. As the passage is a discussion about philosophy, the author is probably a philosopher.
140. The author does not discuss the nature of the universe. He only asks some questions.
141. First paragraph - "may also be helpful for treating diseases..."
142. Note that trams and vehicular traffic are used to explain cell biology.
143. The first three statements can be derived from the passage, but not the last two.
144. (a) and (c) can be directly inferred.
145. Only (a) and (b) are derived from the passage, (c) our muscles would not move without proteins and the Ronald is stated to be in University of California.
146. Can be derived from the first and third paragraphs.
147. Read the line, "The paying of attention to one's audience is called "rhetoric" - in the first three choices this is applicable, not in the last. The answer can also be inferred from the meaning of rhetoric as explained in the passage.
148. Economists use unfamiliar terms, hence we can infer (3).
149.

Arcane - something mysterious.
150. It is clear that rhetoric is used to persuade people (the example of elections etc make this clear).

