Series : HMJ/5

SET – 1

CBSE Physics Class 12 Question Paper 2020

Candidates must write the Code on the title page of the answer-book.

NOTE

- (I) Please check that this question paper contains 23 printed pages.
- (II) Code number given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.
- (III) Please check that this question paper contains 37 questions.
- (IV) Please write down the Serial Number of the question in the answer-book before attempting it.
- (V) 15 minute time has been allotted to read this question paper. The question paper will be distributed at 10.15 a.m. From 10.15 a.m. to 10.30 a.m., the students will read the question paper only and will not write any answer on the answer-book during this period.

PHYSICS (Theory)

Time allowed : 3 hours

.55/5/1.

Maximum Marks : 70

General Instructions :

Read the following instructions very carefully and strictly follow them :

- (i) This question paper comprises four sections A, B, C and D.
- (ii) There are 37 questions in the question paper. All questions are compulsory.
- (iii) Section A : Q. no. 1 to 20 are very short-answer type questions carrying 1 mark each.
- (iv) Section B : Q. no. 21 to 27 are short-answer type questions carrying 2 marks each.
- (v) Section C: Q. no. 28 to 34 are long-answer type questions carrying 3 marks each.
- (vi) Section D : Q. no. 35 to 37 are also long answer type questions carrying 5 marks each.
- (vii) There is no overall choice in the question paper. However, an internal choice has been provided in two questions of one mark, two questions of two marks, one question of three marks and all the three questions of five marks. You have to attempt only one of the choices in such questions.
- (viii) However, separate instructions are given with each section and question, wherever necessary.
- (ix) Use of calculators and log tables is not permitted.
- (x) You may use the following values of physical constants wherever necessary.

c = 3
$$10^{8}$$
 m/s
h = 6.63 10^{-34} Js
e = 1.6 10^{-19} C
 $_{0} = 4$ 10^{-7} T m A ⁻¹
 $_{0} = 8.854 \times 10^{-12}$ C ² N ⁻¹ m ⁻²
 $\frac{1}{4}_{0} = 9$ 10^{9} N m ² C ⁻²
Mass of electron (m $_{e}$) = 9.1 10^{-31} kg
Mass of neutron = 1.675×10^{-27} kg
Mass of proton = 1.673×10^{-27} kg
Avogadro's number = 6.023×10^{-23} JK ⁻¹

.55/5/1.

SECTION : A

Note :		Select the most appropriate option from those given below each question.						
1.	The i	e relationship between Brewester angle ' e denser medium is –		,	and the	e speed of light '	v' in	
	(a)	v tan	= c	(b)	c tan	= v		
	(c)	v sin	= c	(d)	c sin	= v		1
2.	Phot	to diode	s are used to detect					
	(a)	radio w	aves	(b)	g <mark>a</mark> mma	a rays		
	(c)	IR rays	7	(d)	<mark>op</mark> tical	signals		1
3.	The s	selectivit	ty of a series LCR a.c. circuit is larg	ge, whe	en			
	(a)	L is larg	e and R is large	(b)	L is sm	all and R is small		
	(c)	L is larg	je and R is small	(d)	L = R			1
4.	The	graph s	howing the correct variation o	of linea	ar mom	entum (p) of a		
	char	ge parti	cle with its de-Broglie wavelengt	:h () is –			
	p	\backslash	\rightarrow^{p}	_	p •λ	λ		

(c)

- The wavelength and intensity of light emitted by a LED depend upon 5.
 - forward bias and energy gap of the semiconductor (a)

(b)

- energy gap of the semiconductor and reverse bias (b)
- (c) energy gap only

(a)

forward bias only (d)

.55/5/1.

P.T.O.

1

1

(d)

A charge particle after being accelerated through a potential difference 'V' 6. enters in a uniform magnetic field and moves in a circle of radius r. If V is doubled, the radius of the circle will become $\sqrt{2}$ r (b) (a) 2r (d) $r/\sqrt{2}$ (c) 4r 1 7. The electric flux through a closed Gaussian surface depends upon (a) Net charge enclosed and permittivity of the medium (b) Net charge enclosed, permittivity of the medium and the size of the Gaussian surface Net charge enclosed only (c) (d) Permittivity of the medium only 1 If photons of frequency v are incident on the surfaces of metals. A & B of 8. threshold frequencies v/2 and v/3 respectively, the ratio of the maximum kinetic energy of electrons emitted from A to that from B is (a) 2:3 (b)3:4 $\sqrt{3}:\sqrt{2}$ (d) 1 (c) 1:3 9. The power factor of a series LCR circuit at resonance will be (a) 1 (b) 0 (d) 1/√2 1/2 1 (c) 10. A biconcave lens of power P vertically splits into two identical plano concave parts. The power of each part will be (a) 2P P/2 (b) (d) P/ $\sqrt{2}$ (c) Ρ 1 Note : Fill in the blanks with appropriate answer. ⁻¹ m is . 11. The physical quantity having SI unit NC 1 A copper wire of non-uniform area of cross-section is connected to a d.c. 12. battery. The physical quantity which remains constant along the wire is 1

.55/5/1.

P.T.O.

👼 collegedunia

13.	A point charge is placed at the centre of a hollow conducting sphere of	
	internal radius 'r' and outer radius '2r'. The ratio of the surface charge	
	density of the inner surface to that of the outer surface will be	1
14.	The, a property of materials C, Si and Ge depends upon the	
	energy gap between their conduction and valence bands.	1
15.	The ability of a junction diode to an alternating voltage, is based	
	on the fact that it allows current to pass only when it is forward biased.	1
Note	e: Answer the following :	
16	Define the term 'current sensitivity' of a moving coil galvanometer	1
10.	benne the term current sensitivity of a moving congarvation etch.	
17	Denist the folds discourse of an all the state of the sta	
17.	Depict the fields diagram of an electromagnetic wave propagating along	1
	positive X-axis with its electric field along Y-axis.	I
18.	Write the conditions on path difference under which (i) constructive	
	(ii) destructive interference occur in Young's double slit experiment.	1
19.	Plot a graph showing variation of induced e.m.f. with the rate of change of	
	current flowing through a coil.	1
	OR	
	A series combination of an inductor (L), capacitor (C) and a resistor (R) is	
	connected across an ac source of emf of peak value E 0 and angula	ır
	frequency (). Plot a graph to show variation of impedance of the circuit	
	with angular frequency ().	1
.55/5	/1.	P.T.O.
Anno 1997 1997 1997 1997		

1

2

2

20. An electron moves along + x direction. It enters into a region of uniform magnetic field B directed along –z direction as shown in fig. Draw the shape of trajectory followed by the electron after entering the field.

A square shaped current carrying loop MNOP is placed near a straight long current carrying wire AB as shown in the fig. The wire and the loop lie in the same plane. If the loop experiences a net force F towards the wire, find the magnitude of the force on the side 'NO' of the loop.

SECTION : B

21. Derive the expression for the torque acting on an electric dipole, when it is held in a uniform electric field. Identify the orientation of the dipole in the electric field, in which it attains a stable equilibrium.

OR

Obtain the expression for the energy stored in a capacitor connected across a dc battery. Hence define energy density of the capacitor.

.55/5/1.

2

- 22. Gamma rays and radio waves travel with the same velocity in free space. Distinguish between them in terms of their origin and the main application.
- 23. Light from a sodium lamp (S) passes through two polaroid sheets P $_1$ and P₂ as shown in fig. What will be the effect on the intensity of the light transmitted (i) by P $_1$ and (ii) by P $_2$ on rotating polaroid P $_1$ about the direction of propagation of light ? Justify your answer in both cases.

Define the term 'wave front of light'. A plane wave front AB propagating from denser medium (1) into a rarer medium (2) is incident on the surface P_1P_2 separating the two media as shown in fig.

Using Huygen's principle, draw the secondary wavelets and obtain the refracted wave front in the diagram.

24. A heavy nucleus P of mass number 240 and binding energy 7.6 MeV per nucleon splits in to two nuclei Q and R of mass numbers 110, 130 and binding energy per nucleon 8.5 MeV and 8.4 MeV, respectively. Calculate the energy released in the fission.

2

2

.55/5/1.

2

2

3

3

3

25. Figure shows the stopping potential (V 0) for the photo electron versus (1/) graph, for two metals A and B, light.

- (a) How is the value of Planck's constant determined from the graph?
- (b) If the distance between the light source and the surface of metal A is increased, how will the stopping potential for the electrons emitted from it be effected ? Justify your answer.
- 26. Use Bohr's model of hydrogen atom to obtain the relationship between the angular momentum and the magnetic moment of the revolving electron.
- 27. In a single slit diffraction experiment, the width of the slit is increased. How will the (i) size and (ii) intensity of central bright band be affected ? Justify your answer.

SECTION : C

- 28. (a) Differentiate between electrical resistance and resistivity of a conductor.
 - (b) Two metallic rods, each of length L, area of cross A 1 and A 2, having resistivities 1 and 2 are connected in parallel across a d.c. battery. Obtain the expression for the effective resistivity of this combination.
- 29. Calculate the de-Broglie wavelength associated with the electron revolving in the first excited state of hydrogen atom. The ground state energy of the hydrogen atom is –13.6 eV.
- 30. (a) Define the term decay constant of a radioactive substance.
 - (b) The half life of $\frac{238}{92}$ U undergoing decay is 4.5 10⁹ years. Calculate the activity of 10 g sample of $\frac{238}{92}$ U.

.55/5/1.

31.	What is a solar cell ? Draw its V-I characteristics. Explain the three processes involved in its working. OR	3
	Draw the circuit diagram of a full wave rectifier. Explain its working	
	showing its input and output waveforms.	3
32.	An optical instrument uses a lens of power 100 D for objective lens and 50	
	D for its eyepiece. When the tube length is kept at 25 cm. the final image	
	is formed at infinity.	
	(a) Identify the optical instrument	
	(b) Calculate the magnification produced by the instrument.	3
33.	(a) Two point charges q $_1$ and q $_2$ are kept at a distance of r $_{12}$ in air.	
	Deduce the expression for the electrostatic potential energy of this system.	
	(b) If an external electric field (E) is applied on the system, write the	
	expression for the total energy of this system.	3
34.	When a conducting loop of resistance 10 and area 10 cm ² is removed from an external magnetic field acting normally, the variation of induced	

current in the loop with time is shown in the figure.

Find the

- (i) total charge passed through the loop.
- (ii) change in magnetic flux through the loop.
- (iii) magnitude of the magnetic field applied.

3

SECTION : D

- 35. (a) Define the term 'focal length of a mirror'. With the help of a ray diagram, obtain the relation between its focal length and radius of curvature.
 - (b) Calculate the angle of emergence (e) of the ray of light incident normally on the face AC of a glass prism ABC of refractive index $\sqrt{3}$. How will the angle of emergence change qualitatively, if the ray of light emerges from the prism into a liquid of refractive index 1.3 instead of air ?

- (a) Define the term 'resolving power of a telescople'. How will the resolving power be effected with the increase in
 - (i) Wavelength of light used.
 - (ii) Diameter of the objective lens.

Justify your answers.

(b) A screen is placed 80 cm from an object. The image of the object on the screen is formed by a convex lens placed between them at two different locations separated by a distance 20 cm. Determine the focal length of the lens.

.55/5/1.

P.T.O.

5

5

- 36. (a) Show that an ideal inductor does not dissipate power in an ac circuit.
 - (b) The variation of inductive reactance (X L) of an inductor with the frequency (f) of the ac source of 100 V and variable frequency is shown in the fig.

- (i) Calculate the self-inductance of the inductor.
- (ii) When this inductor is used in series with a capacitor of unknown value and a resistor of 10 at 300 s⁻¹, maximum power dissipation occurs in the circuit. Calculate the capacitance of the capacitor.

OR

- (a) A conductor of length ' l' is rotated about one of its ends at a constant angular speed ' ' in a plane perpendicular to a uniform magnetic field B. Plot graphs to show variations of the emf induced across the ends of the conductor with (i) angular speed and (ii) length of the conductor l.
- (b) Two concentric circular loops of radius 1 cm and 20 cm are placed coaxially.
 - (i) Find mutual inductance of the arrangement.
 - (ii) If the current passed through the outer loop is changed at a rate of 5 A/ms, find the emf induced in the inner loop. Assume the magnetic field on the inner loop to be uniform.

5

5

- 37. (a) Write two important characteristics of equipotential surfaces.
 - (b) A thin circular ring of radius r is charged uniformly so that its linear charge density becomes . Derive an expression for the electric field at a point P at a distance x from it along the axis of the ring. Hence, prove that at large distances (x >> r), the ring behaves as a point charge.

OR

- (a) State Gauss's law on electrostatics and derive an expression for the electric field due to a long straight thin uniformly charged wire (linear charge density) at a point lying at a distance r from the wire.
- (b) The magnitude of electric field (in NC ⁻¹) in a region varies with the distance r(in m) as

E = 10 r + 5

By how much does the electric potential increase in moving from point at r = 1 m to a point at r = 10 m.

	dW = V dq	1/2		
	where V is the potential difference and equals to $\frac{q}{C}$			collegedunia
	Total work done to charge the capacitor up to charge Q			
	$W = {\overset{Q}{V}} V dq$			
	$= \int_{0}^{0} \frac{q}{C} dq = \frac{Q^{2}}{2C} \frac{1}{2}CV^{2} = \frac{1}{2}QV$	1/2		
	Since <i>Energy stored</i> = work done			
	$U=\frac{Q^2}{2C}\frac{1}{2}CV^2=\frac{1}{2}QV$	1/2		
	Energy density: Electrical energy stored per unit volume is known as energy	1/2		
	Alternatively:	, 2		
	Energy density = $\frac{1}{E} \cdot E^2 = \frac{1}{E} \cdot \frac{2}{E}$		2	
				_
22.	Origin of gamma rays and radio waves $\frac{1}{2}+\frac{1}{2}$ Main application of each $\frac{1}{2}+\frac{1}{2}$			
	Gamma rays are emitted by radioactive nuclei/produced in nuclear reactions.			
	Radio waves are produced by accelerated /oscillating charges/LC circuit. Gamma rays are used for the treatment of cancer/in nuclear reactions.	$\frac{1}{2}$ $\frac{1}{2}$		
	Radio waves are used in communication systems/radio or television	1/2		
	communication systems/cellular phones. (or any other correct applications)	1/2	2	
		/2		
23.	Effect and justification $\frac{1}{2}+\frac{1}{2}$ Effect and justification $\frac{1}{2}+\frac{1}{2}$			
	(i) Intensity of light transmitted by P_1 remains unaffected when P_1 is rotated about the direction of propagation of light.	1/2		
	Justification: The intensity of unpolarized light transmitted by a Polaroid			
	does not depend on the orientation of the Polaroid with respect to the direction of propagation of light.	1/2		
	(ii) The intensity of light transmitted by P ₂ will vary from I ₁ to zero. Justification: As per Malus' Law $I = I_0 \cos^2$	1/2		
	Where θ is the angle between the pass axis of the polaroid P ₂ and the pass axis of polaroid P ₁ .			
	As varies from 0° to $_{2}$ will vary from I ₁ to zero.	1/2	2	

			1	
	$V_{s} = \frac{hc}{d} - \frac{0}{d}$			50
				collegedunia
	$= \frac{nc}{e} + \frac{1}{e} + \frac{-0}{e}$			
	Comparing with the equation of straight line y=mx +c			
	(a) The slope of the line $m = \frac{hc}{d}$. Hence, Planck's constant $h = \frac{me}{d}$	1/2		
	(b) Stopping potential will remain same	/2		
	Justification	1/2		
	Variation of distance of light source from the metal surface will alter the intensity while the stopping potential however depends only on the frequency.			
	and not on the intensity of the incident light.	1⁄2	2	
26.	Expression for angular momentum ¹ / ₂			
	Expression for magnetic moment 1			
	Relation between the two 72			
	According to Bohr's model	1/2		
	$L = Angular momentum = mvr = \frac{mvr}{2}$			
	= agnetic moment = current area of the orbit	1/2		
	$= e $ $r^2 = \frac{ e vr}{v}$	1/2		
	$\frac{L}{l} = \frac{mvr}{lolvr} = \frac{2m}{lol}$			
		1 /		
	$=\frac{ e }{2m}L$	1/2	2	
27.				
	Effect and justification $\frac{1}{2}+\frac{1}{2}$			
	(i) On increasing the width of the slit, the size of the central bright hand will			
	decrease	1/2		
	(ii) Justification: Angular width $= \frac{2}{2}$, i.e. angular width is inversely			
	a a	1/2		
	(iii)The intensity of central bright band will increase	1/2		
	Justification: The amplitude/intensity of light passing through slit has	1/		
	increased.	1/2	2	-
28	SECTION C			-
20.	(a) Difference between electrical resistance and resistivity 2			
	(b) Obtaining the expression for effective resistivity 1			
1		1	1	1

	(a) Electrical resistance (R) of a conductor equals the ratio of the potential difference (V) applied across it, to the resulting current (I) flowing through			*
	it. (Alternatively: $R = \frac{V}{I}$)	1		collegedunia
	The resistivity of a conductor equals the resistance of a wire of unit length and unit area of cross section, drawn from the material of that conductor. (Alternatively: $R = \frac{l}{A}$ or $= \frac{RA}{l}$) (or any other one relevant difference)	1		
	(b) For the parallel combination equivalent resistance is given by $\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}$ $\frac{A_1 + A_2}{_{eq}L} = \frac{A_1}{_{1}L} + \frac{A_2}{_{2}L}$ Where $(A_1 + A_2)$ is the effective area of cross section	1/2		
	of combined rod in parallel combination of the rods.			
	$\frac{1}{\begin{pmatrix} 2 \\ 2A_1 + 1 \\ A_2 \end{pmatrix}} = \frac{eq}{(A_1 + A_2)}$ $eq^{=} \frac{1}{\begin{pmatrix} 2 \\ 2A_1 + 1 \\ A_2 \end{pmatrix}}$	1/2		
	(Note : If a student just writes the expression of equivalent resistance, award		3	
20	half mark of this part)			-
29.	Finding the energy in the first excited state1Finding the associated kinetic energy1Finding the associated de-Broglie wavelength1Energy of the electron in the first excited state			
	$E_1 = -\frac{13.6}{2^2}eV = -3.4eV$	1/2		
	$=-3.4 1.6 10^{-19} J$			
	$= -5.44 10^{-19} J$	1/2		
	Associated kinetic energy =Negative of total energy	1/2		
	$K = 5.44 10^{-19} J$	1/2		
	de-Broglie wavelength, $= h/p$			
	$=\frac{h}{\sqrt{2mK}}$	1/2		

	= <u>6.63</u> 10 ⁻³⁴ m			
	$(2 9.1 10^{-31} 5.44 10^{-19})^{1/2}$			collegedunia
	$=\frac{6.63 \ 10^{-34}}{10} m$			-
	$(99.008)^{1/2}$ 10 ⁻²⁵	17	2	
	$0.663 10^{-9} \text{ m} = 0.663 \text{ nm} = 6.63 \text{ A}^{\circ}$	1/2	3	
30.	(a) Definition of decay constant 1			
	(b) Calculation of the activity 2			
	(a) The decay constant () of a given radioactive sample is the constant of			
	proportionality between its instantaneous decay rate $-\frac{dN}{dN}$ and the total			
	dt	1		
	Alternatively			
	dn/dt			
	decay constant, $-\frac{N}{N}$			
	Alternatively			
	where $T_{\rm i}$ is the helf life of the radioactive substance			
	Alternatively			
	decay constant, $= 1/T_{\rm r}$			
	where T_{m} is the mean life of the radioactive substance			
	(b) Activity, $R =$	1/2		
		17		
	$ere = \frac{0.6931}{4.5 \cdot 10^9} \text{ years}^{-1}$	72		
	also N = number of atoms in the 10g sample of $^{238}_{92}$ U			
	$N = \frac{10}{6.022} + \frac{10^{23}}{10^{23}}$ stome	1/2		
	$N = \frac{1}{238}$ 0.023 10 <i>atoms</i>			
	$R = \frac{0.6931}{4.5 \cdot 10^9} \frac{10}{2.38} = \frac{10^{23}}{10^{23}} 10$			
	$R = 0.039 \ 10^{16} atoms / year$	17		
	$= 3.9 \ 10^{14} atoms / year$	72		
	=1.24 10^7 atoms/second			
	(Note: Do not deduct any mark if a student does not write answer in atoms		3	
21	per second.)			
51.	Solar cell 1			
	V-I characteristics ¹ / ₂			
	I hree processes involved $\frac{1}{2}+\frac{1}{2}+\frac{1}{2}$			

	potential energy of the system = $\frac{1}{4} \frac{q_1 q_2}{r_{12}}$	1		collogodupia
	(b)Let the potentials, at two points, due to an external electric field (E) be $V_{\rm c}$ and $V_{\rm c}$ respectively.			conegedunia
	Now the total energy of the system is:			
	$q_1V_1 + q_2V_2 + \frac{1}{4} \frac{q_1q_2}{r_{12}}$	11/2	3	
34.				-
	Finding(i) The charge passed through the loop1(ii) Change in magnetic flux through the loop1(iii) Magnitude of the magnetic field applied1			
	(i) Total charge passed through the loop (Q)			
	Q = area under the I-t graph	1/2		
	$=\frac{1}{2}$ 0.4 1 coulomb = 0.2C	1/2		
	(ii) Change in magnetic flux			
	Total charge passing = $\frac{\text{change in magnetic flux}}{R}$	1/2		
	Change in magnetic flux = $R 0.2C$			
	 = 10 0.2 Wb = Wb (iii) Magnitude of magnetic field applied Let B be the magnitude of the magnetic field applied Initial magnetic flux = (10, 10⁻⁴) Wb 	1/2		
	Final magnetic flux = $zero$			
	Change in magnetic flux = $(^{-3} - 0) = 2$	1/2		
	$B= 2 \ 10^3 Wb / m^2$	1/2	3	
	(Note: Award two marks to a student who only calculates charge and not able to calculate correctly the remaining two parts of this question)			_
25	SECTION D			-
35.	(a)Definition of focal length1Obtaining the relation between focal length and radius of curvature1½(b)Calculation of angle of emergence2Qualitative change in the angle of emergence½			

			collegedunia
$V=V_{0} \sin t$			
$I = \int_{0}^{0} \sin(t - t)$			
The instantaneous power supplied to the inductor	1/2		
$P_{_L} = IV$	1/2		
$= I_0 \sin(t - t) (V_0 \sin t)$	72		
$= -I_0 V_0 \cos t \sin t$			
$= -\frac{I_0 V_0}{2} \sin 2 t$	1/2		
Now average power over a completer cycle,			
$\langle P_L \rangle = \left\langle -\frac{I_0 V_0}{2} \sin 2 t \right\rangle$			
$= -\frac{I_0 V_0}{2} \langle \sin 2 t \rangle = 0$	1/		
Average value of $\sin 2^{t}$ t over a complete cycle is zero.	72		
Thus average power dissipated over a complete cycle is zero.			
(b) $(i)X_L = 2$ fL			
V 10	1/2		
$L = \frac{A_L}{2 f} = \frac{40}{200} = 0.1/ henry = 0.032H$	1/2		
Maximum power dissipation takes place at resonance	1/2		
1			
$=\frac{1}{2\sqrt{LC}}$	1/2		
C = 1 E	1/2		
$C = \frac{1}{L - 300^2 + 4^{-2}} T$	1/2	5	
$C = \frac{1}{0.1 9 10^4 4^{-2}} F = 8.8 F$	72		
OR			
(a) Formula 1			
Plot of two graphs $\frac{1}{2}$ (b) (i) Finding the coefficient of mutual induction $\frac{1}{2}$			
(ii)Finding the induced emf 1 ¹ / ₂			

