INSTRUCTIONS FOR CANDIDATES

- Please answer FOUR questions from EACH group.
- Each question carries 10 marks. Total marks : 80.
- ℝ, ℂ, ℤ and ℕ denote respectively the set of real numbers, set of complex numbers, set of all integers and set of all positive integers.

Group A

- 1. Let $a_n \in \mathbb{R}$, such that $\sum_{n=1}^{\infty} |a_n| = \infty$ and $\sum_{n=1}^{m} a_n \to a \in \mathbb{R}$ as $m \to \infty$. Let $a_n^+ = \max\{a_n, 0\}$. Show that $\sum_{n=1}^{\infty} a_n^+ = \infty$.
- 2. Let $E = \{(x, y, z) \in \mathbb{R}^3 \mid x, y, z > 0, xy + yz + zx = 1\}$. Prove that there exists $(a, b, c) \in E$ such that $abc \ge xyz$, for all $(x, y, z) \in E$.
- 3. Let $f : \mathbb{R} \to \mathbb{R}$ be an increasing function. Suppose there are sequences (x_n) and (y_n) such that $x_n < 0 < y_n$ for all $n \ge 1$ and $f(y_n) f(x_n) \to 0$ as $n \to \infty$. Prove that f is continuous at 0.
- 4. Do there exist continuous functions P and Q on [0, 1] such that $y(t) = \sin(t^2)$ is a solution to y'' + Py' + Qy = 0 on $[\frac{1}{n}, 1]$ for all $n \ge 1$? Justify your answer.
- 5. Let $f : \mathbb{R} \to \mathbb{R}$ be defined by

$$f(x) = \int_{e^{x^3 + x}}^{1 + e^{x^3 + x}} e^{r^2} dr$$

for all $x \in \mathbb{R}$. Prove that f is monotone.

6. Let $w = \{w(i, j)\}_{1 \le i,j \le m}$ be an $m \times m$ symmetric matrix with nonnegative real entries such that w(i, j) = 0 if and only if i = j. Show that $d(i, j) = \min\{\sum_{j=0}^{k-1} w(i_j, i_{j+1}) \mid k \ge 1, i_0 = i, i_k = j, i_j \in \{1, ..., m\}\}$ is a metric on $\{1, ..., m\}$.

Group B

- 7. Factory A produces 1 bad watch in 100 and factory B produces 1 bad watch in 200. You are given two watches from one of the factories and you don't know which one.
 - (a) What is the probability that the second watch works?
 - (b) Given that the first watch works, what is the probability that the second watch works?
- 8. Let *R* be a commutative ring containing a field *k* as a sub-ring. Assume that *R* is a finite dimensional *k*-vector space. Show that every prime ideal of *R* is maximal.
- 9. Let p, q be prime numbers and $n \in \mathbb{N}$ such that $p \nmid n 1$. If $p \mid n^q 1$ then show that $q \mid p 1$.
- 10. Determine all finite groups which have exactly 3 conjugacy classes.
- 11. Let *F* be a field, $a \in F$, *p* a prime integer. Suppose the polynomial $x^p a$ is reducible in F[x]. Prove that this polynomial has a root in *F*.
- 12. Let *V* be a finite-dimensional vector space over a field *F* and let *T* : $V \rightarrow V$ be a linear transformation. Let $W \subseteq V$ be a subspace such that $T(W) \subseteq W$. Suppose *T* is diagonalizable. Is *T* restricted to *W* also diagonalizable?

