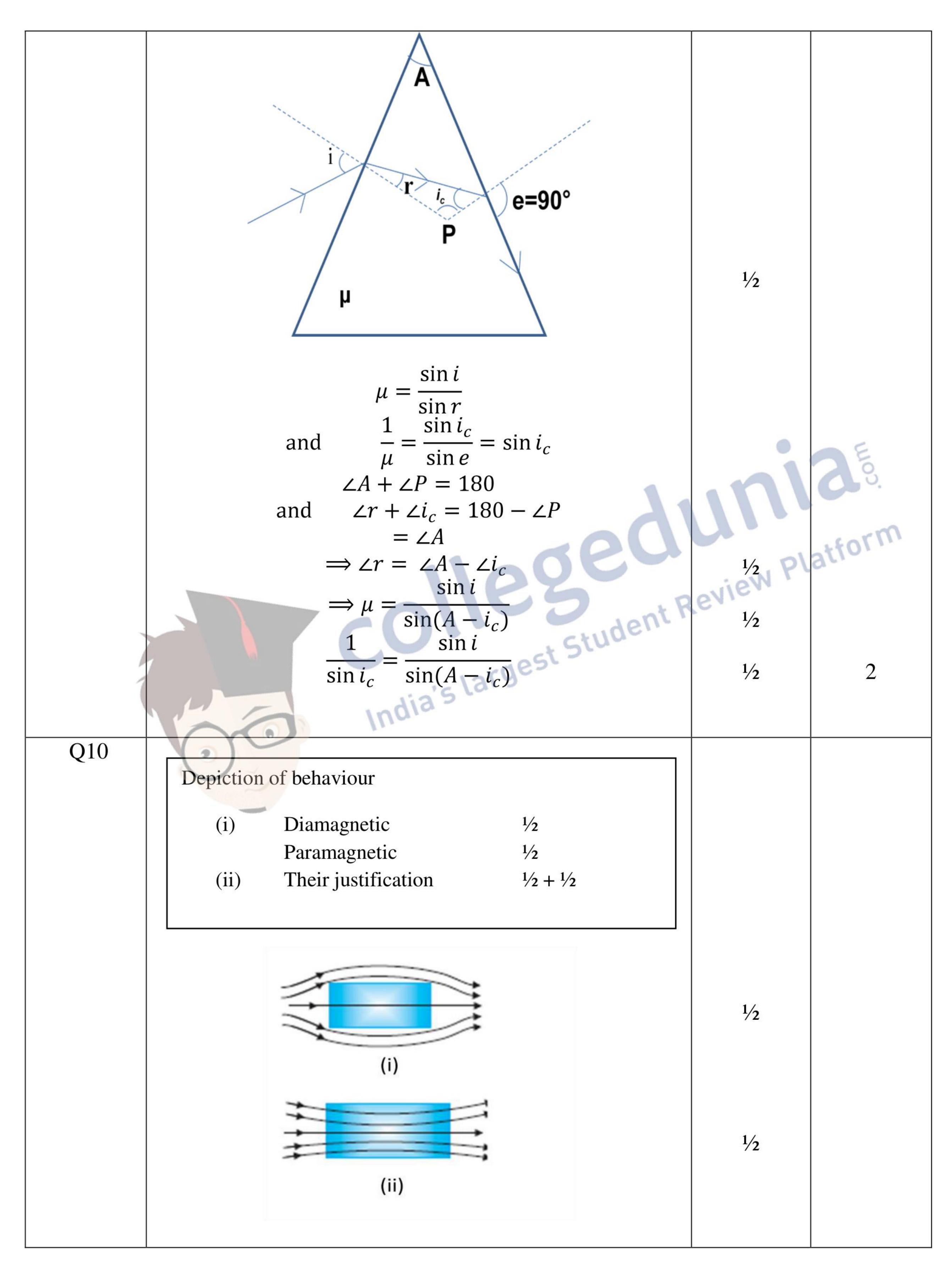
SET 55/1/1

MARKING SCHEME

Q. No.	Expected Answer/ Value Points	Marks	Total Marks
	SECTION A		
Q1	<u>SECTION</u> ↑		
	E $r > R$	1	1 3.5
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	PI iow Pi	atform
Q2	Number of photons emitted per second.	evil	1
Q3	Relative permeability $\mu_r = \frac{L}{L_0} = \frac{2.8}{2.0 \times 10^{-3}}$	1/2	
	= 1400	1/2	1
Q4	Virtual/ erect/ diminished	1/2+1/2	1
Q5	No	1	1
;	SECTION B		
Q6	Production of e m waves 1 Diagram depicting the oscillating electric and magnetic fields. 1		
	Electromagnetic waves are produced due to oscillating/accelerating charged particles.	1	

Page 1 of 18 July 20, 2017


	Y X	1	2
Q7	Derivation of the expression for radius 2		
	Force experienced by charged particle in magnetic field $\vec{F} = q \ (\vec{v} \times \vec{B})$ As v and B are perpendicular, $F = qvB$ This force is perpendicular to the direction of velocity and hence acts as centripetal force. $\frac{mv^2}{r} = qvB$ $r = \frac{mv}{qB}$	1/2 1/2 1/2	atform 2
Q8	Calculation of shortest wavelength 1½ Part of electromagnetic spectrum to which this wavelength belongs ½		
	$\lambda^{-1} = R_H(\frac{1}{n_f^2} - \frac{1}{n_i^2})$	1/2	
	For shortest wavelength $n_i = \infty, n_f = 3$	1/2	
		1/2	
	= 818 nm Infrared	1/2	2
Q9	Derivation of the expression of the diameter of opaque disc 2		

Page 2 of 18 July 20, 2017

$ \mathbf{r} \mathbf{R} = 90^{\circ}$ $ \mathbf{r} \mathbf{r} $	1/2	
It is only the light coming out from a cone of semi vertical angle i_c ($i_c = \sin^{-1}\frac{1}{\mu}$ = critical angle) that needs to be stopped by the opaque disc	1/2	
Now $\sin i_c = \frac{1}{\mu}$ $\therefore \cos i_c = \sqrt{1 - \frac{1}{\mu^2}}$ Also $\tan i_c = \frac{r}{H}$ $\Rightarrow r = H \tan i_c = H \frac{\sin i_c}{\cos i_c}$ $= H \cdot \frac{\frac{1}{\mu}}{\sqrt{1 - \frac{1}{\mu^2}}}$ $r = \frac{H}{\sqrt{\mu^2 - 1}}$ Diameter of the opaque disc = $2r$	eview Plants	atform
$=\frac{2\pi}{\sqrt{\mu^2-1}}$	1/2	2
Obtaining an expression relating angle of incidence, angle of prism and critical angle.		

Page 3 of 18 July 20, 2017

Page 4 of 18 July 20, 2017

1	Field lines are repelled or expelled and the field the material is reduced.	1/2	
dipole	presence of magnetic field, the individual atomic es can get aligned in the direction of the applied etic field. Therefore, field lines get concentrated the material and the field inside is enhanced.	1/2	2
	SECTION C		
Co	awing of Graph 1 Imparison and explanation of kinetic energy Iference 2	eview	atform
	We have $\lambda = \frac{h}{\sqrt{2mqV}} = \frac{h}{\sqrt{2mK}}$	1/2	
	$(K = qV = K.E.)$ Now $m_d > m_p$	1/2	
	non ma mop	1/2	
	For same λ , we must have $K_p > K_d$ e proton has more kinetic energy	1/2	3
Q12 Exp Calc It is a carried varied signal.	planation of amplitude modulation 1 culation of modulation index 2 process of superposition of a message signal over a arr wave in which amplitude of the carrier wave is d in accordance with the message/ information	1	

Page 5 of 18 July 20, 2017

	1	
$a_m + a_c = 10$ $a_c - a_m = 2$ $2a_c = 12 \implies a_c = 6V$ $a_m = 4V$ $\mu = \frac{a_m}{a_c} = \frac{4}{6} = \frac{2}{3}$	1/ ₂ 1/ ₂ 1/ ₂ 1/ ₂	3
Lorentz force ½ Expression in vector form ½ Identification of pair of vectors ½ Derivation of expression of force 1½		
Lorentz magnetic force is force experienced by a charged particle of charge $'q'$ moving in magnetic field \vec{B} with velocity \vec{v} . $\overrightarrow{F_m} = q(\vec{v} \times \vec{B})$ $\therefore \overrightarrow{F_m} \perp \vec{v}$ and $\overrightarrow{F_m} \perp \vec{B}$ [The student can write any one pair] Consider a conductor of uniform cross-sectional area A and length $'L'$ having number density of electrons as $'n'$	1/2	atform
Total force on charge carriers in the conductor $\vec{F} = (nAL)q \ \overrightarrow{v_d} \times \vec{B}$ But as $I\vec{L} = nqA\overrightarrow{v_d}L$ $\therefore \vec{F} = I\vec{L} \times \vec{B}$	1/ ₂ 1/ ₂ 1/ ₂	3
Naming the optical instrument 1 Calculation of Magnifying Power 2		
Compound microscope Focal Length of objective lens $(f = \frac{1}{p})$ $f_0 = \frac{100}{50} \text{ cm} = 2 \text{ cm}$	1/2	
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} \vdots & 2a_c = 12 \Rightarrow a_c = 6V \\ \vdots & a_m = 4V \\ \mu = \frac{a_m}{a_c} = \frac{4}{6} = \frac{2}{3} \end{array} $ $ \begin{array}{c} \frac{1}{2} \\ \frac{1}{2} \\$

Page 6 of 18 July 20, 2017

	Focal Length of eye lens $f_e = \frac{100}{16} \text{ cm} = 6.67 \text{ cm}$ Magnifying Power $m = \frac{L}{f_0} \times \frac{D}{f_e}$ $= \frac{16.25}{2.0} \times \frac{25}{6.67} = 30.45$	1/2 1/2	3
Q15	Explanation of two processes 1+1 Definition of barrier potential 1 Diffusion: It is the process of movement of majority charge carriers from their majority zone (.i.e., electrons from $n \to p$ and holes from $p \to n$) to the minority zone across the junction on account of different concentration gradient on the two sides of the junction. Drift: Process of movement of minority charge carriers (i.e., holes from $n \to p$ and electrons from $p \to n$) due to the electric field developed at the junction. Barrier potential: The loss of electrons from the n-region and gain of electrons by p-region causes a difference of potential across the junction, whose polarity is such as to oppose and then stop the further flow of charge carriers. This (stopping) potential is called Barrier potential.	eview Plants 1	atform 3
Q16	 a. Two properties b. Derivation of expression for potential energy 2 a. (i) Electric field is in the direction in which potential decreases at the maximum rate (ii) Magnitude of electric field is given by change in the magnitude of potential per unit displacement normal to a charged conducting surface. [Alternatively: award half mark of part 'a' if student writes only E = -\frac{dV}{dr}] b. Work done in bringing the charge q1 to a point 	1/2	

Page 7 of 18 July 20, 2017

against external electric field. $W_1 = q_1 V(\overline{r_1})$ Work done in bringing the charge q_2 against the external electric field and the Electric field produced due to charge q_1 $W_2 = q_2 V(\overline{r_2}) + \frac{1}{4\pi \varepsilon_0} \cdot \frac{q_1 q_2}{r_{12}}$ Therefore Total work done = Electrostatic potential energy $U = q_1 V(\overline{r_1}) + q_2 V(\overline{r_2}) + \frac{1}{4\pi \varepsilon_0} \cdot \frac{q_1 q_2}{r_{12}}$ OR Statement of Gauss's Law 1 Derivation of electric field due to an infinitely long straight uniformly charged wire. 2 The surface integral of electric field over a closed surface is equal to $\frac{1}{\varepsilon_0}$ times the charge enclosed by the surface. Alternatively. $\oint \vec{E} \cdot d\vec{s} = \frac{q}{\varepsilon_0}$ 1 Flux through the Gaussian surface = flux through the curved cylindrical part of the surface = $E \times 2\pi rl$ Charge enclosed by the surface = λl			
external electric field and the Electric field produced due to charge q_1 $W_2 = q_2V(\overline{r_2}) + \frac{1}{4\pi\varepsilon_0} \cdot \frac{q_1q_2}{r_{12}}$ Therefore Total work done = Electrostatic potential energy $U = q_1V(\overline{r_1}) + q_2V(\overline{r_2}) + \frac{1}{4\pi\varepsilon_0} \cdot \frac{q_1q_2}{r_{12}}$ OR Statement of Gauss's Law 1 Derivation of electric field due to an infinitely long straight uniformly charged wire. 2 The surface integral of electric field over a closed surface is equal to $\frac{1}{\varepsilon_0}$ times the charge enclosed by the surface. Alternatively, $\oint \vec{E}_1 \cdot ds = \frac{q}{\varepsilon_0}$ 1 Flux through the Gaussian surface = flux through the curved cylindrical part of the surface = $E \times 2\pi rl$ Charge analyzed by the surface = l		1/2	
produced due to charge q_1 $W_2 = q_2 V(\overline{r_2}) + \frac{1}{4\pi\epsilon_0} \cdot \frac{q_1 q_2}{r_{12}}$ Therefore Total work done = Electrostatic potential energy $U = q_1 V(\overline{r_1}) + q_2 V(\overline{r_2}) + \frac{1}{4\pi\epsilon_0} \cdot \frac{q_1 q_2}{r_{12}}$ OR Statement of Gauss's Law 1 Derivation of electric field due to an infinitely long straight uniformly charged wire. 2 The surface integral of electric field over a closed surface is equal to $\frac{1}{\epsilon_0}$ times the charge enclosed by the surface. Alternatively. $\oint \vec{E} \cdot d\vec{s} = \frac{q}{\epsilon_0}$ 1 Flux through the Gaussian surface = flux through the curved cylindrical part of the surface = $E \times 2\pi r l$ Charge and evold by the surface = l			
$W_2 = q_2 V(\overline{r_2}) + \frac{1}{4\pi\varepsilon_0} \frac{q_1 q_2}{r_{12}}$ Therefore Total work done = Electrostatic potential energy $U = q_1 V(\overline{r_1}) + q_2 V(\overline{r_2}) + \frac{1}{4\pi\varepsilon_0} \frac{q_1 q_2}{r_{12}}$ $U = q_1 V(\overline{r_1}) + q_2 V(\overline{r_2}) + \frac{1}{4\pi\varepsilon_0} \frac{q_1 q_2}{r_{12}}$ $\frac{OR}{\frac{1}{2}}$ Statement of Gauss's Law $\frac{1}{\frac{1}{2}}$ Derivation of electric field due to an infinitely long straight uniformly charged wire. $\frac{1}{2}$ The surface integral of electric field over a closed surface is equal to $\frac{1}{\varepsilon_0}$ times the charge enclosed by the surface. Alternatively, $\oint \vec{E} \cdot d\vec{s} = \frac{q}{\varepsilon_0}$ $ \vec{r}_1 = \frac{1}{2} \frac{1}$			
$W_2 = q_2 V(\vec{r_2}) + \frac{1}{4\pi\epsilon_0} \cdot \frac{r_{12}}{r_{12}}$ Therefore Total work done = Electrostatic potential energy $U = q_1 V(\vec{r_1}) + q_2 V(\vec{r_2}) + \frac{1}{4\pi\epsilon_0} \cdot \frac{q_1 q_2}{r_{12}}$ OR Statement of Gauss's Law Derivation of electric field due to an infinitely long straight uniformly charged wire. 2 The surface integral of electric field over a closed surface is equal to $\frac{1}{\epsilon_0}$ times the charge enclosed by the surface. Alternatively, $\phi \vec{E} \cdot \vec{dS} = \frac{q}{\epsilon_0}$ 1 Flux through the Gaussian surface = flux through the curved cylindrical part of the surface = $E \times 2\pi rl$ Charge analysis of the surface = l		1/2	
potential energy $U = q_1 V(\vec{r_1}) + q_2 V(\vec{r_2}) + \frac{1}{4\pi\varepsilon_0} \cdot \frac{q_1 q_2}{r_{12}}$ OR Statement of Gauss's Law $Derivation of electric field due to an infinitely long straight uniformly charged wire. 2 The surface integral of electric field over a closed surface is equal to \frac{1}{\varepsilon_0} times the charge enclosed by the surface. Alternatively, \oint \vec{k} \cdot d\vec{s} = \frac{q}{\varepsilon_0} 1 Flux through the Gaussian surface = f \ln x \text{ through the curved cylindrical part of the surface} = E \times 2\pi r l Charge enclosed by the surface \frac{1}{\varepsilon_0}$	$W_2 = q_2 V(\vec{r_2}) + \frac{1}{4\pi\varepsilon_0} \cdot \frac{q_1 q_2}{r_{12}}$	72	
Statement of Gauss's Law Derivation of electric field due to an infinitely long straight uniformly charged wire. The surface integral of electric field over a closed surface is equal to $\frac{1}{\varepsilon_0}$ times the charge enclosed by the surface. Alternatively, $ \oint \vec{E} \cdot \vec{ds} = \frac{q}{\varepsilon_0} $ Flux through the Gaussian surface $= \operatorname{flux} \operatorname{through} \operatorname{the} \operatorname{curved} \operatorname{cylindrical} \operatorname{part} \operatorname{of} \operatorname{the} \operatorname{surface} $ $= E \times 2\pi r I$ Charge a pale and by the surface $\frac{1}{2}$		6780	1241
Statement of Gauss's Law Derivation of electric field due to an infinitely long straight uniformly charged wire. The surface integral of electric field over a closed surface is equal to $\frac{1}{\epsilon_0}$ times the charge enclosed by the surface. Alternatively, $ \oint \vec{E} \cdot d\vec{s} = \frac{q}{\epsilon_0} $ Flux through the Gaussian surface $= \text{flux through the curved cylindrical part of the surface} $ $= E \times 2\pi r l$ Charge analoged by the surface $= l$	$U = q_1 V(\overrightarrow{r_1}) + q_2 V(\overrightarrow{r_2}) + \frac{1}{4\pi\varepsilon_0} \cdot \frac{q_1 q_2}{r_{12}}$	1	3
Derivation of electric field due to an infinitely long straight uniformly charged wire. 2 The surface integral of electric field over a closed surface is equal to $\frac{1}{\varepsilon_0}$ times the charge enclosed by the surface. Alternatively, $ \oint \vec{E} \cdot \vec{ds} = \frac{q}{\varepsilon_0} $ Flux through the Gaussian surface = flux through the curved cylindrical part of the surface = $E \times 2\pi rl$ Charge analysed by the surface = $\frac{1}{2}l$	OR		
The surface integral of electric field over a closed surface is equal to $\frac{1}{\epsilon_0}$ times the charge enclosed by the surface. Alternatively, $ \oint \vec{E} \cdot \vec{ds} = \frac{q}{\epsilon_0} $ Flux through the Gaussian surface = flux through the curved cylindrical part of the surface = $E \times 2\pi r l$ Charge enclosed by the surface = $l l$	Statement of Gauss's Law 1		
The surface integral of electric field over a closed surface is equal to $\frac{1}{\varepsilon_0}$ times the charge enclosed by the surface. Alternatively, $ \oint \vec{E} \cdot \vec{ds} = \frac{q}{\varepsilon_0} $ Flux through the Gaussian surface = flux through the curved cylindrical part of the surface = $E \times 2\pi rl$ Charge analysed by the surface = l	Derivation of electric field due to an infinitely long		25
is equal to $\frac{1}{\varepsilon_0}$ times the charge enclosed by the surface. Alternatively, $\oint \vec{E} \cdot \vec{ds} = \frac{q}{\varepsilon_0}$ Flux through the Gaussian surface $= \text{flux through the curved cylindrical part of the surface}$ $= E \times 2\pi r l$ Charge analogoid by the surface $\frac{1}{2}$	straight uniformly charged wire. 2		Cas o.
is equal to $\frac{1}{\varepsilon_0}$ times the charge enclosed by the surface. Alternatively, $\oint \vec{E} \cdot \vec{ds} = \frac{q}{\varepsilon_0}$ Flux through the Gaussian surface $= \text{flux through the curved cylindrical part of the surface}$ $= E \times 2\pi r l$ Charge analogoid by the surface $\frac{1}{2}$		01	atforn
Alternatively, $ \oint \vec{E} \cdot \vec{ds} = \frac{q}{\epsilon_0} $ Flux through the Gaussian surface $= \text{flux through the curved cylindrical part of the surface} $ $= E \times 2\pi r l$ Charge analogoed by the surface and the surface are surface are surface and the surface are surface and the surface are surfac		- wiew F	
Flux through the Gaussian surface $= \text{flux through the curved cylindrical part of the surface}$ $= E \times 2\pi r l$ Charge analogoid by the surface = $l/2$	is equal to $\frac{1}{\varepsilon_0}$ times the charge enclosed by the surface.	Rea	
Flux through the Gaussian surface $= \text{flux through the curved cylindrical part of the surface}$ $= E \times 2\pi r l$ Charge analogoid by the surface = $l/2$	set Stude		
Flux through the Gaussian surface = flux through the curved cylindrical part of the surface $= E \times 2\pi r l$ Charge analoged by the surface = $\frac{1}{2}$		4	
Flux through the Gaussian surface = flux through the curved cylindrical part of the surface $= E \times 2\pi rl$ Charge analoged by the surface = $\frac{3}{4}$		(<u>)</u> R-201	
= flux through the curved cylindrical part of the surface $= E \times 2\pi r l$ Charge analogod by the surface = $\frac{1}{2}$			
= flux through the curved cylindrical part of the surface $= E \times 2\pi r l$ Charge analogod by the surface = $\frac{1}{2}$			
= flux through the curved cylindrical part of the surface $= E \times 2\pi r l$ Charge analogod by the surface = $\frac{1}{2}$			
= flux through the curved cylindrical part of the surface $= E \times 2\pi r l$ Charge analogod by the surface = $\frac{1}{2}$			
= flux through the curved cylindrical part of the surface $= E \times 2\pi r l$ Charge analogod by the surface = 21			
= flux through the curved cylindrical part of the surface $= E \times 2\pi r l$ Charge analogod by the surface = $\frac{1}{2}$	$\mathbf{P}_{\mathbf{i}}^{\mathbf{j}}$ \mathbf{r}		
= flux through the curved cylindrical part of the surface $= E \times 2\pi r l$ Charge analogod by the surface = $\frac{1}{2}$			
= flux through the curved cylindrical part of the surface $= E \times 2\pi r l$ Charge analogod by the surface = $\frac{1}{2}$		1/2	
= flux through the curved cylindrical part of the surface $= E \times 2\pi r l$ Charge analogod by the surface = $\frac{1}{2}$	($+$ $ +$ $+$ $ +$ $+$		
= flux through the curved cylindrical part of the surface $= E \times 2\pi r l$ Charge analogod by the surface = $\frac{1}{2}$			
= flux through the curved cylindrical part of the surface $= E \times 2\pi r l$ Charge analogod by the surface = $\frac{1}{2}$	Elvy through the Coverion synfore		
$= E \times 2\pi r l$ Charge analoged by the surface = 21			
Charge analoged by the curfees - 11		1/4	
	Charge enclosed by the surface = λl	1/2	
$\Rightarrow E \times 2\pi rl = \frac{\lambda l}{\varepsilon_0}$	$\implies F \times 2\pi rl = \frac{\lambda l}{-}$		
ϵ_0	ϵ_0		

Page 8 of 18 July 20, 2017

$\Rightarrow E = \frac{\lambda}{2\pi\varepsilon_0 r}$	1/2	3
Statement of Lenz's Law 1 Explanation (with example) 2		
The Polarity of induced emf is such that it tends to produce a current which opposes the change in magnetic flux that produced it.	1	
N N	1/2	as.
India's largest Student	1/2 Pl	atform
When the north pole of a bar magnet is pushed towards the close coil, the magnetic flux through coil increases and the current is induced in the coil in such a direction that it opposes the increase in flux. This is possible when the induced current in the coil is in the anticlockwise direction. Just the opposite happens when the north pole is moved away from the coil. In either case, it is the work done against the force of magnetic repulsion/attraction that gets 'converted' into	1/2	3
the induced emf. Q18 Calculation of V and unknown capacitance 2 Calculation of charge when voltage is increased by 120 V 1		
Capacitance $C = \frac{Q_1}{V_1}$		

Page 9 of 18 July 20, 2017

Also $C = \frac{Q_2}{V_2}$ & $C = \frac{Q_3}{V_3}$ $\frac{360 \mu\text{C}}{V} = \frac{120 \mu\text{C}}{(V - 120)}$ $\Rightarrow 3V - 360 = V \Rightarrow 2V = 360 \Rightarrow V = 180 \text{V}$ $C = \frac{360 \mu\text{C}}{180 \text{V}} = 2 \mu\text{F}$ $2 \mu\text{F} = \frac{Q_3}{300}$ $Q_3 = 600 \mu\text{C}$	1/2 1/2 1/2 1/2 1/2 1/2	3
Diagram showing incident wavefront and refracted wavefront 1 Verification of Snell's Law 2 Incident wavefront A Medium 1 P Medium 2 Law Refracted wavefront Refracted wavefront	eview Pl	atform
$BC = v_1 \tau \& AE = v_2 \tau$	1/2	
$\sin i = \frac{BC}{AC} = \frac{v_1 \tau}{AC}$	1/2	
$\sin r = \frac{AE}{AC} = \frac{v_2 \tau}{AC}$	1/2	
$\Rightarrow \frac{\sin i}{\sin r} = \frac{v_1 \tau}{v_2 \tau} = \frac{v_1}{v_2} = \mu$	1/2	3
Distinction between sky wave and space wave modes of communication		
Page 10 of 18 Limitation of space wave mode ½	July 20,	2017
Expression for optimum separation ½		

transmitting are reflections from of communications	ode of communication waves reach from tenna to receiving antenna through m ionosphere, while in space wave mode tions wave travel either directly from receiver or through satellite.	1+1	
Direct waves go curvature of ea	get blocked at some point due to the arth.	1/2	
Optimum dista antenna.	ance between transmitting and receiving $= \sqrt{2h_T R} + \sqrt{2h_R R}$	1/2	3.
	output waveform 1 n of Logic gate 1	t Review Pl	attorn
Truth Table 0	India's larges 1	1	
	NAND GATE	1	
	Truth Table		
	Inputs A B 1 1 0 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1	1	3
Q22 Derivation of	current density 2		
	with reason the change in mobility of	July 20,	2017

	Using Ohm's law		
	$V = IR = \frac{I\rho l}{A}$	1/2	
	Potential difference (V) , across the ends of a conductor of		
	length 'l', where field 'E' is applied, is given by $V = El$		
	$El = \frac{I\rho l}{\Lambda}$	1/2	
	But current density $J = \frac{I}{I}$		
	$^{A}_{\it Il}$	1/2	
	$El = J\rho l = \frac{J\sigma}{\sigma}$ $\implies J = \sigma E$		25.
	No change	1/2	
	mobility $\mu = \frac{v_d}{E}$ and $v_d = \frac{eV\tau}{ml}$	1/2	atfor
	As potential is doubled, drift velocity also gets doubled,	evie	3
	therefore, no change in mobility.	, _	
1	SECTION D		
Q23	(1) Moral values of Prof. Srivastava ½ + ½		
	(2) Relation between mean life & half life 1 (3) Coloulation of half life and initial activity 1 1 1		
	(3) Calculation of half life and initial activity 1+1		
	Care, concern, helping attitude	1/ .1/	
	[any two values] $Mean life = (half life/0.693)/(1.44 times half life)$	1/2 +1/2	
	$\left(=1.44\ T_{\frac{1}{2}}\right)$	1	
	Half life = $10 hour$ (as per given information)	1 /	
	$R = R_0(\frac{1}{2})^n \Longrightarrow \frac{R_0}{R} = (2)^n$	1/2	
	R_{\circ}	1/2	
	$\frac{R_0}{10000} = (2)^2$		
	$\Rightarrow R_0 = 40000 \text{ dps}$	1/2 1/2	4
	SECTION E		

Page 12 of 18 July 20, 2017

collegedunia India's largest Student Review Platform

Q24	Calculation of		
	(a) Capacitance 1 (b) Q-factor of circuit and its importance 2		
	Calculation of average power dissipated 2		
	(a) As power factor is unity, $\therefore X_L = X_C$ $\Rightarrow \omega = \frac{1}{\sqrt{LC}}$	1/2	
	$100 = \frac{1}{\sqrt{200 \times 10^{-3} \times C}}$		
	$10^4 \times 2 \times 10^2 \times 10^{-3} \times C = 1$	1/2	3 6
	$C = \frac{1}{2 \times 10^3} F = 0.5 \times 10^{-3} F$		etform.
	(b) Quality factor = 0.5 mF	eview Pl	a.
	$Q = \frac{1}{R} \sqrt{\frac{L}{c}} \text{gest Student}$	1/2	
	$= \frac{1}{10} \sqrt{\frac{200 \times 10^{-3}}{0.5 \times 10^{-3}}}$		
	$=\frac{1}{10}\times 20=2$	1/2	
	Significance: It measures the sharpness of resonance.	1/2	
	Average Power dissipated		
	$P = V_{rms}I_{rms}\cos\varphi$	1	
	$= 50 \times \frac{50}{10} \times 1W$ $= 250 \text{ watts}$	1	5
	OR		
	(a) Showing that of current lags voltage by an angle $\frac{\pi}{2}$ in an ideal inductor		
Page 13 of 18	(b) Calculation of inductance and average power	July 20,	2017

(b) Calculation of inductance and average power

dissipation

	induced emf $e=-L\frac{dI}{dt}$ Hence Net voltage in the circuit $=V-L\frac{dI}{dt}$ According to Kirchoff's Rule $V-L\frac{dI}{dt}=0$ $V_m \sin \omega t = L\frac{dI}{dt}$ $dI = \frac{V_m}{U}\sin \omega t dt$ $I = -\frac{V_m}{\omega L}\cos \omega t$ $= \frac{V_m}{\omega L}\sin(\omega t - \frac{\pi}{2})$ $\therefore i = i_m \sin(\omega t - \frac{\pi}{2})$ Hence current lags by $\frac{\pi}{2}$ (b) Inductance of the inductor $= 100mH$ Average power dissipation $P = V_{rms}I_{rms}\cos \varphi$ $= 10 \times 1 \times \cos \frac{\pi}{4}$	1/2 1/2 1/2 1/2 1/2	3. Satisform
	$=\frac{10}{\sqrt{2}}W = 5\sqrt{2}$ watts(17.07W)	1	5
Q25	(a) Explanation, how plane polarized light can be produced by scattering 2 (b) Calculation of intensity of light transmitted by		

Page 14 of 18

(b) Calculation of intensity of light transmitted by A,B and C

July 20, 2017

(a) Incident Sunlight (Unpolarised)	1	
Scattered Light (Polarised) To Observer		
Unpolarised light, from sun, has Electric field components perpendicular to plane of figure and in the plane of figure. Under the influence of Electric field of the incident wave the electrons in the molecules acquires components of motion in both these directions. As the observer is looking 90° to the direction of sun, hence charges parallel to the plane of figure do not radiate energy towards the observer since their acceleration has	eview Pi	atform
no transverse components. Therefore it gets polarized perpendicular to plane of figure. Io Io/2 A5° B C	1	
A Intensity of light transmitted through $A = \frac{I_0}{2}$	1/2	
Transmitted through Polaroid 'C'	1/2	
$I' = \frac{I_0}{2}\cos^2 45^\circ$ $= \frac{I_0}{4}$ Transmitted through Polaroid 'B;	1/2	

Page 15 of 18 July 20, 2017

$I'' = \frac{I_0}{4}\cos^2 45^\circ$ $= \frac{I_0}{8}$	1/2	5
OR		
(a) Explanation of formation of dark and bright fringes 2 ½ (b) (i) Calculation of the distance of third bright fringe 1 (ii) Calculation of least distance 1 ½		
s, z dest Student R	1/2	atform
At centre of the screen i.e. at point O, waves from two sources S_1 and S_2 meet in same phase and produce constructive interference, and similarly at all those points on the screen where waves have path difference n_{λ} , $n = 0,1,2,3$, they produce constructive interference hence bright fringes are obtained.	1	
At the points on the screen where wewes from S. and S.	1	
At the points on the screen where waves from S_1 and S_2 meet with phase difference of $(2n + 1)\pi$ or path difference of $(2n + 1)\frac{\lambda}{2}$, the waves will produce destructive interference and dark fringes are obtained.		
(b) (i) $x_n = \frac{n\lambda D}{d} = \frac{3 \times 650 \times 10^{-9} \times 1.2}{4 \times 10^{-3}}$	1/2	
	1/2	
$\frac{n_{1\lambda_1 D}}{d} = \frac{n_{2\lambda_2 D}}{d}$	1/2	

Page 16 of 18 July 20, 2017

	$\Rightarrow n_1 \lambda_1 = n_2 \lambda_2$ $\frac{n_1}{n_2} = \frac{\lambda_2}{\lambda_1} = \frac{520}{650} = \frac{4}{5}$	1/2	
Le	herefore, 4^{th} bright fringe of $\lambda = 650 \text{mm}$ will coincide ith 5^{th} bright fringe 520mm. east distance from central maximum where bright inges of both wavelength coincide $\frac{4 \times 650 \times 1.2 \times 10^{-9}}{4 \times 10^{-3}} \text{m} = 780 \times 10^{-6} \text{m} = 0.78 \text{nm}$	1/2	5
	(a) Labelled circuit diagram of meter bridge & derivation of expression of R 3 (b) Meaning of end error and its correction ½ +½ Effect on balancing Length ½ Reason ½ (a)	eview Plants	atform
	the the bridge is balanced at null point. Therefore $ \frac{R}{S} = \frac{l_1}{(100 - l_1)} $ $ \Rightarrow R = S \frac{l_1}{(100 - l_1)} $	1	
	(b) The error which arises on account of resistance of copper strips and the connecting wire at both ends of the meter bridge is called end error.It is minimized by adjusting the balance point near the middle point of the bridge.No effect, as the bridge remains balanced.	1/ ₂ 1/ ₂ +1/ ₂	5
	OR		
Page 17 of 18	(a) Statement of working Principle 1 Circuit diagram and determination of internal resistance 3	July 20,	2017

*These answers are meant to be used by evaluators

(b) (i) Effect of internal resistance

(ii) Series resistance

collegedunia

India's largest Student Review Platform

1/2

1/2

(a) Potentiometer principle: When a constant current flows through a wire of uniform cross sectional area, the potential difference, across any length, is directly proportional to the length. $V \propto L$ $E = \varphi l_1$ $V = \varphi l_2$ $E = \psi l_1$ $V = \psi l_2$ $V = \psi$	1 1/2 1/2 1/2 1/2	atform
From (iii) & (iv)		
$r = R\left(\frac{l_1}{l_2} - 1\right)$ (b) As the question is incomplete, award 1 mark to all candidates who attempt this part.	1	5