MARKING SCHEME(COMPARTMENT) 2018

SET 55/3

Q.NO.	VALUE POINTS/ EXPECTED ANSWERS	MARKS	TOTAL MARKS
	SECTION A		
1	The power of a lens equals to the reciprocal of its focal length (in meter).	1/2	
	Also accept		
	$p = \frac{1}{f(meter)}$	1/2	
	Do not deduct mark if student does not write the word meter.		
	(Alternatively		1
	Power of a lens is the ability of conversion /diversion of the rays incident on the lens.)		
	SI Unit: Dioptre(D)	125	
2	position on screen	Platfor 1	1
3	Normal : Circular	1/2	
	At an angle of 30° it will follow helical path	1/2	1
4	$V = \sqrt{\frac{2eV}{m}}$	1	1
5	From few MHz to 30-40 MHz	1	1
	SECTION B		

SET 55/3 Page 1 of 22

6			
	(a) One use (b) One example each 1 2+ 1/2		
	(a) used to destroy cancer cells	1	
	(b) (i) The region, between the plates of a capacitor, connected to time varying voltage source, has a displacement current but no conduction current.	1/2	
	(ii) The wires, connected to the plates of a capacitor, joined to a time varying or steady voltage source, carry a conduction current but no displacement current.	1/2	
	(Alternatively		
	A circuit, having no capacitor in it, and carrying a current has conduction current but no displacement current.)		
52 - 496		125	2
	Formula (i) Frequency of first case (ii) Frequency of second case Ratio We have	Platfor	
	$hv = E_f - E_i$ $= \frac{E_0}{n_f^2} - \frac{E_0}{n_i^2}$	1/2	
	$(i) hv_1 = E_0(\frac{1}{1^2} - \frac{1}{2^2}) = E_0 \times \frac{3}{4}$	1/2	
	$(ii) hv_2 = E_0(\frac{1}{2^2} - \frac{1}{\infty^2}) = E_0 \times \frac{1}{4}$	1/2	
	$\therefore \frac{v_1}{v_2} = 3$	1/2	2
8			
	Finding the Work function Finding the Frequency of incident light 1		

SET 55/3 Page 2 of 22

We have		
VV C Have		
$W = h \nu_0$	1/2	
$=6.63\times10^{-34}\times8\times10^{14} J$		
$6.63\times10^{-20}\times8$		
$=\frac{1.6\times10^{-19}}{1.6\times10^{-19}}$		
= 3.315 eV	1/2	
We have		
$h\nu = W + eV_s$	1/2	
=(3.315+3.3)eV		
$6.615 \times 1.6 \times 10^{-19}$		
$\therefore v = \frac{6.63 \times 10^{-34}}{6.63 \times 10^{-34}} Hz$		2
$=1.596\times10^{15}\ Hz$	1/2	
\mathbf{OR}	0 = =	
	1100) <u>.</u>
Coloulating		
Calculating (i) Energy of a photon	Diatfor	Li
(ii) Number of photons emitted	Na Processing	
dent ke		
agest Stud		
Energy of photon= $h\nu$	1/2	
$=6.63\times10^{-34}\times6.0\times10^{14}J$		
$=3.978\times10^{-19}J$		
$\cong 2.49eV$	1/2	
Number of photons emitted per second = $\frac{power}{r}$		
energy of photon	1/2	
$2.0 \times 10^{-3} J / s$		
$=\frac{1}{3.978\times10^{-19}J}$	1/2	
$=5.03\times10^{15} \ photons / \sec ond$		
		ı

SET 55/3 Page **3** of **22**

Q	(a)Definition		-3 \ldots
	(a)Definition ½ Relation ½		
	(b) Identification of A and B		
	(b) Identification of 11 and b		
		1/2	
	(a) Measure of the response of magnetic material to an external magnetic field.		
	Also accept		
	M		
	$\chi = \frac{ m }{ m }$		
	$\mathbf{W}_{\mathbf{a}}$ hore		
	We have	1/2	
	$\alpha = (m - 1)$		
	$\chi = (\mu_r - 1)$	1/2	
	(b) 0.96 : Diamagnetic		
	(b) 0.96 : Diamagnetic 500 : Ferromagnetic	1/2	
	. I circinagnetic	9 6	2
		1 2 9	2
10			
			m
	SHM nature of oscillation of the wire AB	plattor	
	Expression for instantaneous magnetic flux		
	Expression for instantaneous induced emf		
	Qualitative explanation 1/2		
	iorgest		
	The view A Dissould escillate in a sindial formania view	1/2	
	The wire AB would oscillate in a simple harmonic way		
	We can write		
	WC Call Wille		
	$x = -a\cos\omega t$		
	(as x = -a at t = 0)		
	Therefore Instantaneous magnetic Flux	1/2	
	$\phi(t) = Blx \qquad (l = AB)$		
	Instantaneous induced emf		
	$m{1}$ $m{1}$	1/2	
	$e(t) = -\frac{d\phi}{dt} = aBl\omega \sin \omega t$		
	dt		
	The induced emf therefore weries with time sinuscidelly		
	The induced emf, therefore varies with time sinusoidally.	1/2	
	(Alternatively		
	Arm AB executes SHM under the influence of restoring force developed in		
	the spring, consequently an induced emfis produced across the ends of		
		SFT 55/3 F	Page 4 of 22

moving armAB which varies sinusoidally.)		
(Give full credit for the above part if the student explains qualitatively without using mathematical equations)		2
SECTION C		
Labelled circuit diagram -1 Working as a voltage amplifier -2 R_B R_C R_C		
$v_{\iota} \bigcirc V_{BB} \nearrow V_{CC}$	1	
Working as a voltage amplifier:		
When a small sinusoidal voltage (with amplitude v_s) is connected in series with the dc bias voltage supply, V_{BB} , the base current will have sinusoidal variations super imposed on the value of I_B . As a result, the collector current will also have sinusoidal variations super imposed on the value of I_c . This results in corresponding sinusoidal variations in the value of the output voltage V_c . These sinusoidal variations in output voltage are an amplified version of the corresponding variations in the input voltage. This implies that the transistor can be used as a voltage amplifier.		
(Note: Give 1 mark to those students also who only draw either this circuit		
diagram or the circuit diagram given below:		3

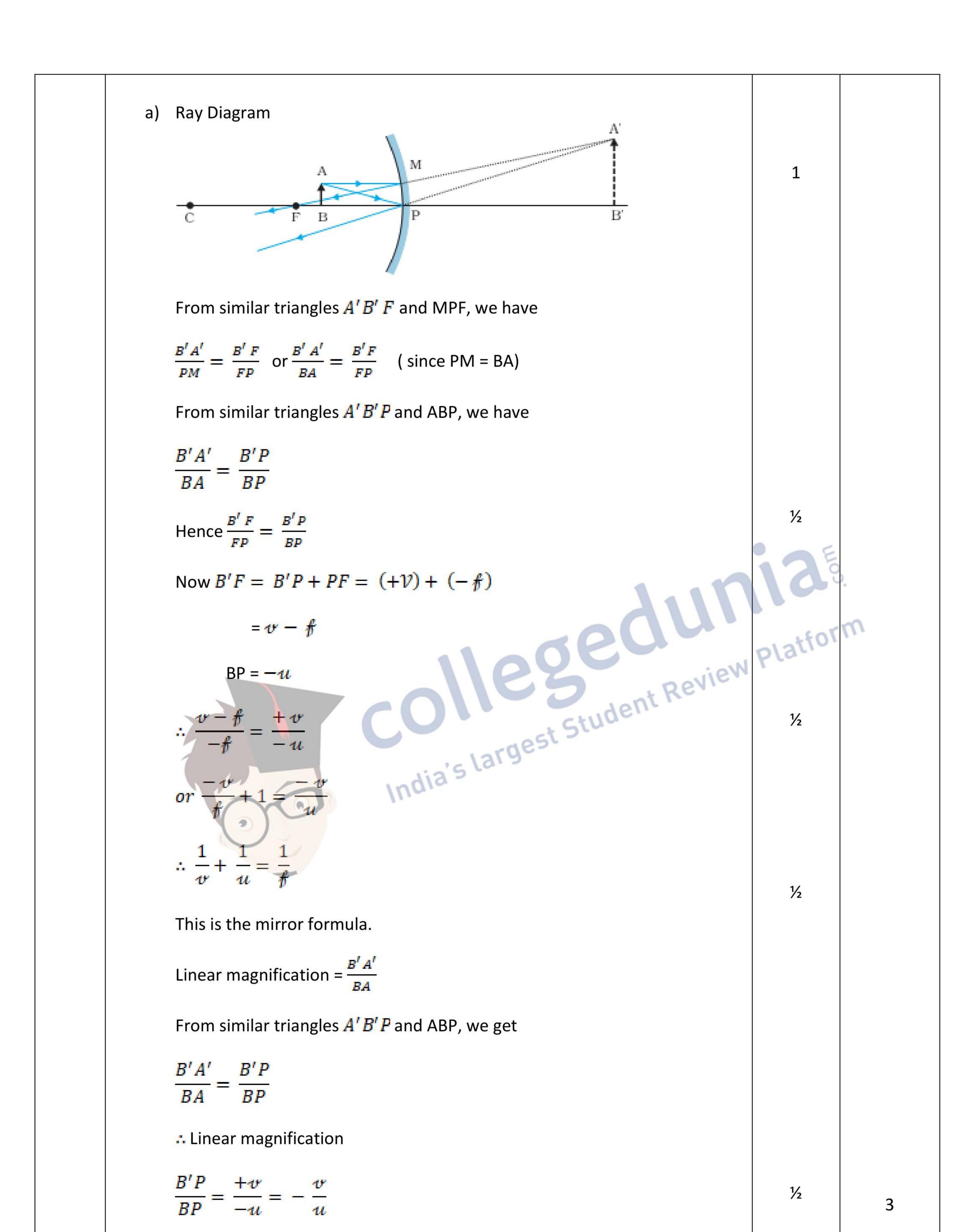
SET 55/3 Page **5** of **22**

12								
	1 1	Writing th			-1			
	b)	Photodioc	le and its	operation	-1+1			
	g g	a) The in iven belov		ne third ga	ite are Ā a	and $\overline{\mathbf{B}}$. Hence the truth table is as		
	Α	В	Ā	B	С			
	0	0	1	1	0			
	0	1	1	0	0			
	1	0	0	1	0		1	
		1	0	0	1			
	(Note: Th	e student	need not	write the	columns 1	for \overline{A} and \overline{B} in her/ his answer)		
	(b) A	photodio	de is a sp	ecial purp	ose p —	n junction diode fabricated with a	1/2	
	trans	parent wir	ndow to a	llow light	to fall on	the diode.		
	Incident	light, with	n photon	energy 8	greater th	nan the energy gap of the semi-	136	
						magnitude of the photo current	1/2	
	depends	on the inte	ensity of i	ntensity o	f incident	light.	TIZ FOR	LU.
	The phot	odiode is	usually op	erated ur	nder rever	se bias conditions.	1/	
	This is be	cause this	makes it	easier to	detect ch	nanges in light intensity and makes	/2	
	the photo							3
13					dia's	ala		
13	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Drawing to Marking to		nt regions	-1 -½+½			
	b)	Finding va	lues of a	and b	- ½+ ½			
	a)	Potential energy (MeV)		2 r (fm)	3		1	
	For r > 10,	the force	is attract	ive			1/2	
	For r < 170,	the force	is repulsi	ve			1/2	
		/e have, + 235 = a	+ 94 + 2 X	1				
		a = 236 –	96 = 140				1/2	
							SET 55/3 F	Page 6 of 22

	Also		
	$0 + 92 = 54 + b + 2 \times 0$		
	∴ b = 92 – 54 = 38	1/2	3
1 1		, 2	
14	Statement of equation with explanation of symbols – 1		
	Expression for		
	i. Planck's constant - 1		
	ii. Work function - 1		
	Einstein's photoelectric equation is		
	$h\nu = h\nu_0 (= W) + \frac{1}{2} m\nu_{max}^2$	1/2	
	v = frequency of incident light		
	$v_0 = threshold\ frequency\ of\ photo\ sensitive\ material$	3 5	
	$W = work \ function$		
	$\frac{1}{2} m v_{max}^2 = max. kinetic energy of the emitted photoelectrons$	Plator	
	(Also accept if the student writes $\hbar v = W + eV_s$ $W = \text{work function of photosensitive material}$		
	V_s = Stopping Potential)		
	From Einstein's photoelectric equation, we have		
	$h\nu = W + \frac{1}{2} m\nu_{max}^2$		
	$\therefore v_{max}^2 = \frac{2}{m} (hv - W)$		
	$= \left(\frac{2h}{m}\right)\nu + \left(\frac{-2W}{m}\right)$		
	Slope of the given graph = $\frac{l}{r}$	1/2	
	Intercept on the y – axis = $-l$	1/2	
	$\frac{2h}{m} = \frac{\ell}{m} \text{ or } h = \frac{m\ell}{2m}$	1/	
	m n 2n	1/2	
		SET 55/3 I	Page 7 of 22

SET 55/3 Page **7** of **22**

and $-\ell = \frac{-2w}{m}$ or $w = \frac{m\ell}{2}$	1/2	
		3
(a) Two points of difference ½ + ½ Marks (b) Formula ½ Marks Calculation of wavelength 1½ Mark	k	
(a)		
(a)		
Any two point of difference :		
Interference Diffraction		
Fringes are equally spaced. Fringes are	not equally spaced.	
	Ils as we go to successive $\frac{1}{2} + \frac{1}{2}$ ay from the centre.	
	on of a continuous family riginating from each point	
on a single		
narrow slits separated by a distance a. single slit o	f width a.	
Let D be the distnce of the screen from the plane of	of the slits.	
We have		
Fring width $\beta = \frac{\lambda D}{d}$	1/2	
In the first case		
$\beta = \frac{\lambda D}{d}$ or $\beta d = \lambda D$	(i)	
In the second case		
$(\beta - 30 \times 10^{-6}) = \frac{\lambda(D - 0.05)}{d}$ or $(\beta - 30 \times 10^{-6})d = \lambda$	(D - 0.05) (ii)	
Subtracting (ii) from (i) we get		
$30 \times 10^{-6} \times d = \lambda \times 0.05$		


$\lambda = \frac{30 \times 10^{-6} \times 10^{-3}}{10^{-6} \times 10^{-3}}$ m		
5×10^{-2}		
$\therefore \lambda = 6 \times 10^{-7} \mathrm{m} = 600 \mathrm{nm}$	1/2	3
Writing the two loop equations ½ + ½ Mark Finding the current through DB 1½ Marks Finding the p.d. between B and D ½ Mark		
Using Kirchoff's voltage rule, we have : For loop DABD Typical A		
$I_1 \times 1 + (1) + (-2) + 2I_1 + 2(I_1 + I_2) = 0$ Or $5I_1 + 2I_2 = 1$ (i)	1/2	
For loop DCBD $ + I_2 \times 3 + (3) + (-1) + I_2 + 2(I_1 + I_2) = 0 $	1/2	
Or $2I_1 + 6I_2 = -2$ (ii) Solving (i) and (ii), we get $I_1 = \frac{5}{4} A$	Platio	
$I_2 = \frac{-6}{13} A$ $I_3 = \frac{-6}{13} A$ $I_4 = \frac{-1}{13} A$	1/2	
$\therefore \text{Current through DB} = I_1 + I_2 = \frac{-1}{13} \text{A}$	1/2	3
∴ P.D. between B and D = 0.154 V	1/2	
(a) Statement of Biot-Savaart law Its vector form (b) Obtaining the required expression 1/2 Mark 2 Mark		
a) According to Biot Savart law :		
The magnitude of magnetic field $d\vec{B}$, due to a current element $d\vec{1}$, is		
(i) proportional to current I and element length, dl		
(ii) inversely proportional to the square of the distance r.		
	SET 55/3	Page 9 of 22

	Its direction is perpendicular to the plane containing $d\vec{l}$ and \vec{r} .	1/2	
	In vector notation,		
	$\rightarrow \mu_0 + d\vec{l} \times \vec{r}$	1/2	
	$\overrightarrow{dB} = \frac{\mu_0}{4\pi} I \frac{dI \times r}{r^3}$		
	(b)		
	, Y		
		24504	
	$\frac{d\mathbf{B}}{R}$	1/2	
	$X \rightarrow \mathbf{P} d\mathbf{B}_{\mathbf{x}} \rightarrow X$		
	J.di		
		3 E	
	We have $\overrightarrow{dB} = \frac{\mu_0}{4\pi} I \frac{ dl \times \overrightarrow{r} }{r^3}$	1 OF	
	4π r	tfor	m
	$r^2 = x^2 + R^2$	1/2	
	$\therefore dB = \frac{\mu_0 I}{4\pi} \frac{dl}{(x^2 + R^2)^{3/2}}$		
	We need to add only the components of $d\vec{B}$ along the axis of the coil.		
	Hence, $B = \int \frac{\mu_0}{4\pi} \frac{Idl}{(x^2 + R^2)^{3/2}} \cos \theta$.		
	$= \int \frac{\mu_0}{4\pi} \frac{(I dl) R}{(x^2 + R^2)^{3/2}} .$	1/2	
	$\forall n \ (x \ \top x)$	12	
	$=\frac{\mu_0 I R^2}{2 (2 + 2)^2}$.		
	$= \frac{1}{2(x^2 + R^2)^{3/2}}.$	211124	
	$\therefore B = \frac{\mu_0 I R^2}{2(x^2 + R^2)^{3/2}} \hat{i}$	1/2	3
	$2(x^2 + R^2)^{3/2}$		
18			
	a) Ray diagram b) Obtaining		
	i. mirror formula – 1½		
	ii. expression for liner magnification – ½		age 10 of 22

SET 55/3 Page **10** of **22**

SET 55/3 Page **11** of **22**

19			
	a) Intensity of linearly polarized light −½ Dependence on orientation −½		
	Explanation - 1		
	b) Graphical representation - 1		
	(a) The intensity of the linearly polarized light would be $^{I_0}\!/_2$. No; it does not depend on the orientation. Explanation : The polaroid will let the component of the unpolarized light, parallel to its pass axis, to pass through it irrespective of its orientation. (b) We have $I = I_0 cos^2 \theta$ \therefore The graph is as shown below	1/2	
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	A as	3
20	(a) Definition of SI unit Of current (b) Explanation of the force of attraction Finding the resultant force acting on the third conductor (a) The <i>ampere</i> is the value of that steady current which, when maintained in each of the two very long, straight, parallel conductors of negligible cross-section, and placed one metre apart in vacuum, would produce on each of these conductors a force equal to 2×10^{-7} newton per metre of length. (b) The wire (b) experiences a force due to the magnetic field caused by the current flowing in wire (a).	1	

SET 55/3 Page **12** of **22**

The magnetic field at any point on the wire (b) due to the current in wire (a) is is perpendicular to the plane of two wires and pointing inwards and hence force on it will be towards wire (a). Similarly force on wire (a) will be towards wire (b). Hence two wires carrying currents in same direction attract each other.	1/2
Force on wire (3) due to wire (1) $= \frac{\mu_0 I_a I_c}{2\pi \left(\frac{d}{2}\right)} \text{ towards right}$ Force on wire 3 due to wire 2	1/2
$\left(\frac{\mu_0 I_b I_c}{2\pi \left(\frac{d}{2}\right)}\right) \text{ towards left}$ Net force on wire 3	1/2
$= \frac{\mu_0 I_c}{\pi d} [I_a - I_b] \text{ towards right}$ Also accept $= \frac{\mu_0 I_c}{I_b} [I_b - I_a] \text{ towards left}$	1/2 Latform
Note: please do not deduct last 1/2 mark if the student does not write the direction of force.	3
Obtaining Expression for the equivalent	
(i) resistance (ii) emf	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1/2
	SET 55/3 Page 13 of 22

		T	
	$\frac{1}{r} = \frac{1}{r_1} + \frac{1}{r_2}$		
	$\therefore r = \frac{r_1 r_2}{r_1 + r_2}$	1/2	
	$I = I_1 + I_2$ $V = E_1 - I_1 r_1$ and $V = E_2 - I_2 r_2$ $\therefore I = \left(\frac{E_1 - V}{r_1}\right) + \left(\frac{E_2 - V}{r_2}\right)$	1/2	
	$V = \left(\frac{E_1 r_2 + E_2 r_2}{r_1 + r_2}\right) - I\left(\frac{r_1 r_2}{r_1 + r_2}\right)$	1/2	
	$also \ V = E_{eq} - Ir_{eq}$	1/2	
	$\Rightarrow \frac{E_{eq}}{r_{eq}} = \frac{E_1}{r_1} + \frac{E_2}{r_2}$	1/2	
	eq 1 2		3
22			
	Definition of Electric flux SI unit Formula (Gauss's Law) Calculation of Charge within the cube	AS.	
		Platfoi	
	Electric Flux is the dot product of electric field and area vector.	1	
	Also Accept $\varphi = \oint \overrightarrow{E} \cdot \overrightarrow{ds}$ SI Unit : Nm ² /C or volt -meter	1/2	
	For a given case		
	$\phi = \phi_1 + \phi_2 = \left[E_x(at \ x = 2a) - E_x(at \ x = a) \right] a^2$		
	$= \left[\alpha(2a) - \alpha(a)\right]a^2$		
	$=\alpha a^3$		
	$=100\times(0.1)^3=0.1Nm^2/C$	1/2	
	But		
	$\phi = \frac{q}{\mathcal{E}_0}$	1/2	
	$\therefore q = \varepsilon_0 \phi = 8.854 \times 10^{-12} \times 10^{-1} C$		
	=0.8854 pC	1/2	
<u></u>		SET 55/3 Pag	11 -f 22

SET 55/3 Page **14** of **22**

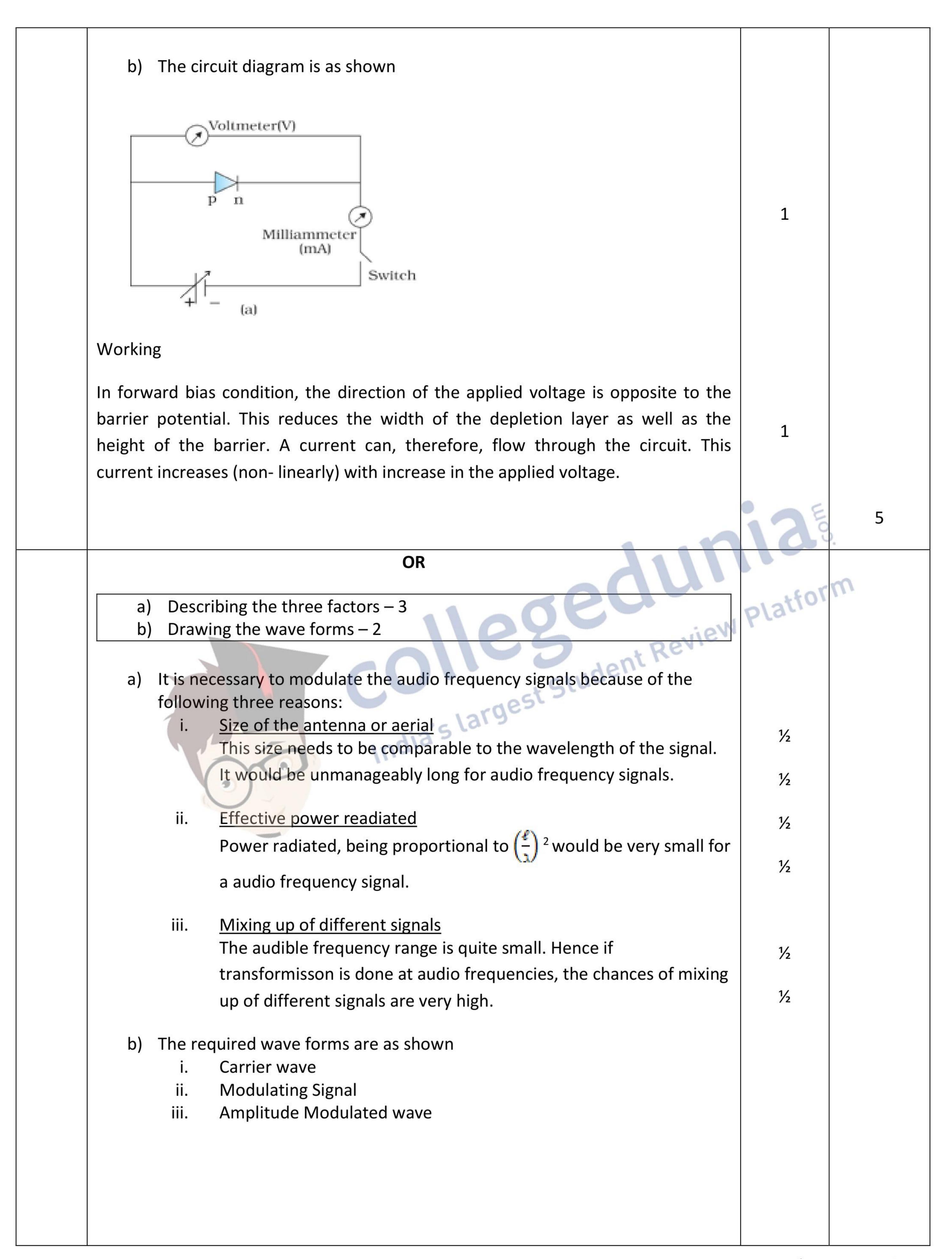
OR		
Relevant formulae Calculation of time taken by the electron Calculation of time taken by the proton Calculation of time taken by the proton		
We have		
Force =qE		
Acceleration a = $\frac{qE}{m}$	1/2	
Also		
$s = \frac{1}{2}at^2 as u = 0$	126	
$\therefore t = \sqrt{\frac{2s}{a}}$	1/2	
(i) For the electron	Platfor	
$a = \frac{eE}{m}$ $\therefore t = \sqrt{\frac{3 \times 10^{-2} \times 9.1 \times 10^{-31}}{1.6 \times 10^{-19} \times 2.0 \times 10^{4}}} \text{ as largest 5 tudent}$	1/2	
=2.92 ns	1/2	
(ii) for proton		
$t = \sqrt{\frac{2 \times 1.5 \times 10^{-2} \times 1.67 \times 10^{-27}}{1.6 \times 10^{-19} \times 2 \times 10^4}}$	1/2	
$= 0.125 \mu s$	1/2	3
SECTION D		
(a) Name of e.m. radiation ½ Mark (b) Method of production ½ Mark (c) Range of wavelength 1 Mark		

SET 55/3 Page **15** of **22**

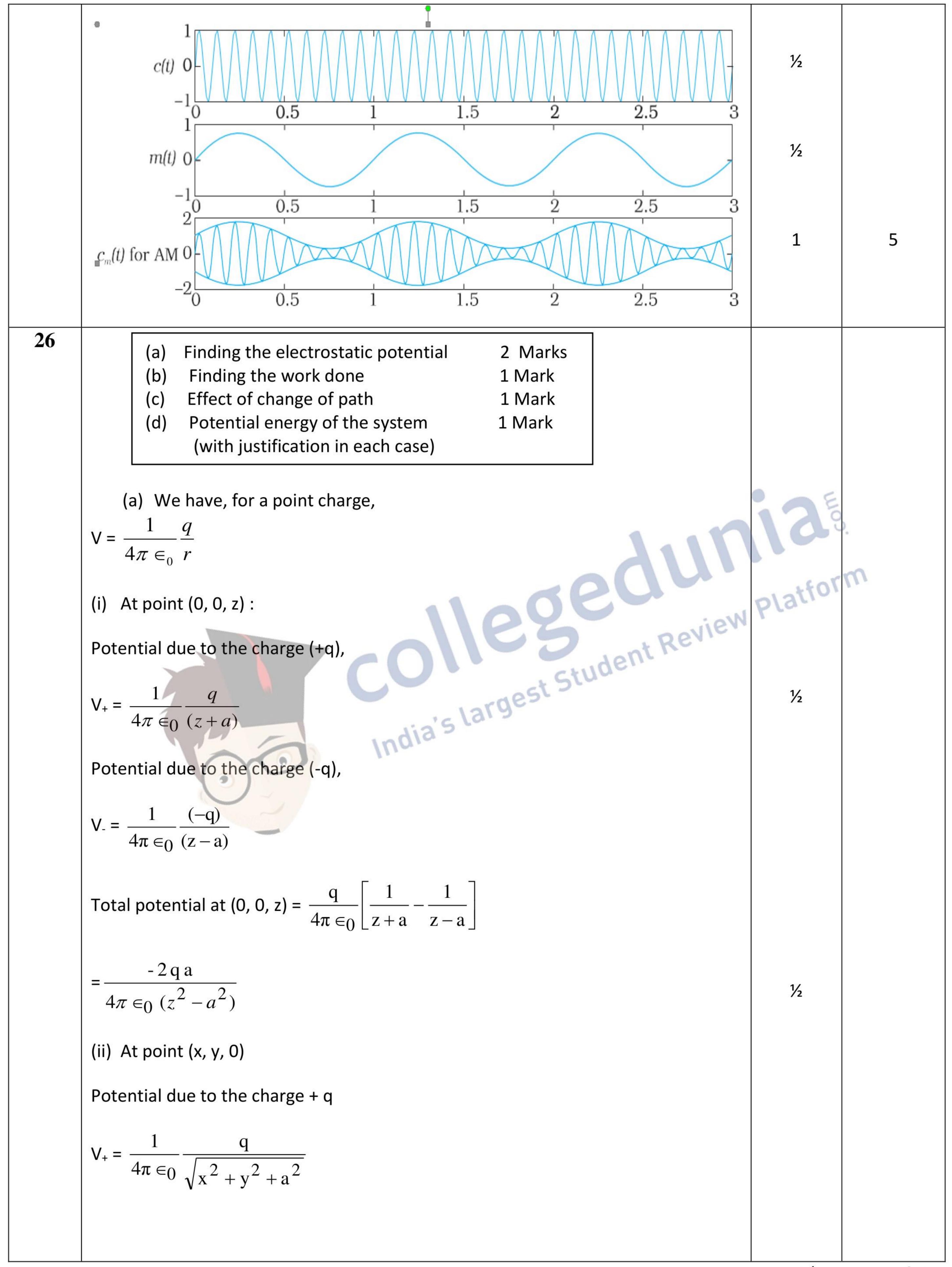
	(a) X-rays	1/2	-
	(b) By using X-ray tubes	1/2	
	(Alternatively: By bombarding a metal target with high energy electrons)	/ 2	
	(c) Wave length range of X-rays is from about (10 nm to 10 ⁻⁴ nm)	1	
	(d) Alertness, empathy; concern for her mother, knowledgeable (any two)	(1 + 1)	
	(u) Alerthess, empathy, concern for her mother, knowledgeable (any two)	(1 + 1)	4
	SECTION E		
24	a) Drawing the two graphs ½ + ½		
	b) Drawing the phaser diagram		
	c) i) Naming the devices		
	ii) Calculating the current flowing		
	a) The two graphs are as shown Capacitive Reactance (Ohm)	1/2 + 1/2	
	b) (The current leads the voltage by an angle Θ where $0 < \Theta < \frac{\pi}{2}$). The required phaser diagram is as shown.	Platfor	
	[Here $\Theta = \tan^{-1} \left[\binom{1}{\omega CR} \right]$	1	
<u> </u>			
	(C) In device X:		
	Current lags behind the voltage by $\frac{\pi}{2}$		
	∴ X is an inductor.	1/2	
	In device Y:		
	Current is in phase with the applied voltage		
			<u> </u>

SET 55/3 Page **16** of **22**

X is a resistor.	1/2	
We are given that		
$0.25 = \frac{220}{x_L}$		
or $X_L = \frac{220}{0.25} \Omega = 880 \Omega$	1/2	
Also $0.25 = 0.25 = \frac{220}{X_R}$		
$\therefore X_R = \frac{220}{0.25}\Omega = 880\Omega$	1/2	
For the series combination of X and Y,		
Equivalent impedance = $\sqrt{X_L^2 + X_R^2} = (880\sqrt{2})\Omega$	1/2	
$\therefore \text{ Current flowing} = \frac{220}{880\sqrt{2}} A = 0.177 A$	1/2	5
OR	125)_
a) Principal of working – 1 b) Defining efficiency – 1 c) Any two factor – ½ + ½ d) Calculating the current drawn - 2	Platfor	
 a) A transformer works on the principle of mutual induction. (Alternatively – an emf is induced in the secondary coil when the magnetic flux, linked with it changes with time due to ta (time) changing magnetic flux linked with the primary coil). 	1	
b) The efficiency of a transformer equals the ratio of the output power to the input power. (Alteratively:	1	
$Efficiency = \frac{output power}{input power}$ $or Efficiency \frac{V_S I_S}{V_P I_P}$		
c) i) Eddy current losses ii) joule heat losses	1/2 + 1/2	
iii) hysteresis losses		
iv) magnetic flux leakage losses		
(Any two)		
	SET 55/2 D	age 17 of 22

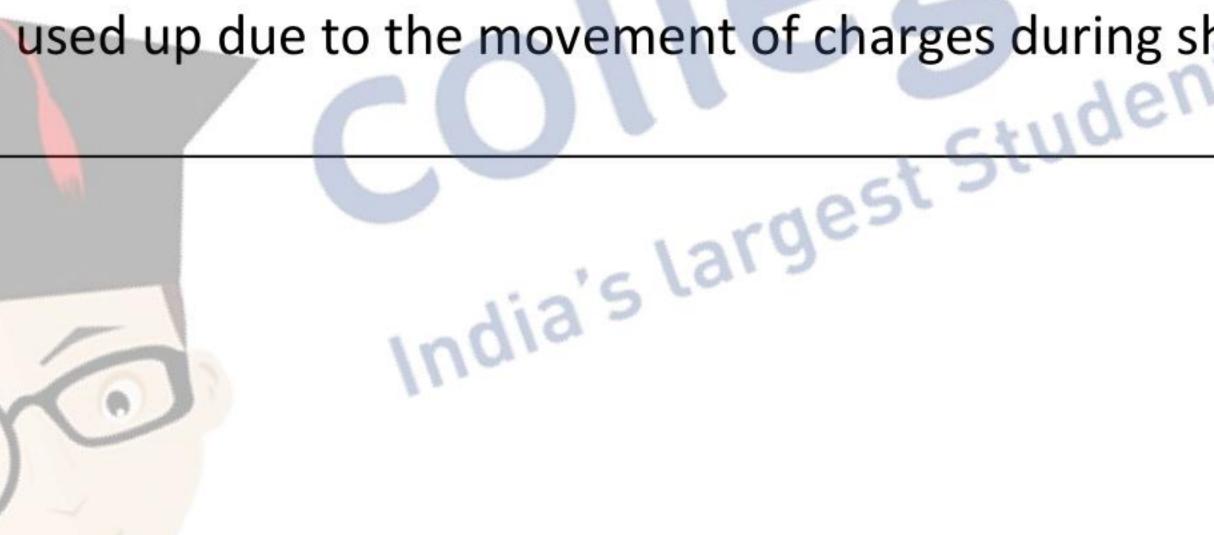

SET 55/3 Page **17** of **22**

	d) We have	1/_	
	d) We have	/2	
	$\frac{V_S I_S}{V_P I_P} = 90\% = 0.9$		
	VP IP		
	$\frac{220}{32} \frac{I_s}{I_s} = 0.9$	1/2	
	$22 I_p$		
	$or^{\frac{I_s}{-}} = \frac{0.9}{-} = 9$		
	$I_{\mathcal{P}}$ 0.1	1/2	
	$I_{s} = I_{s} = \frac{(22/_{440})}{440}$		
	$\frac{1}{p} = \frac{1}{9} = \frac{1}{9}$		
	1		
	180 A		
	= 0.0056A	1/2	
25			
	a) Explaining the two processes- 1+1		
	Defining the two terms - ½ + ½	3 2 8	
	b) Circuit diagram -1	1 CB).
	Working -1		
		platfor	11.
	a view		
	a) The two important processes are diffusion and drift Due to concentration gradient, the electrons diffuse from the n side to the	1/2	
	p side and holes diffuse from the p side to the m side.	1/2	
	p side and holes diffuse from the p side to the m side.	/2	
	Electron diffusion		
	Electron drift ->		
	р	1/2	
	$\Theta\Theta\Theta\Theta$		
	i ← Depletion region Hole diffusion → Hole drift		
	← Hole drift Due to the diffusion, an electric field develops across the junction. Due to the field,		
	an electron moves from the p-side to the n-side, a hole moves from the n-side to	1/	
	the p-side. The flow of the charge carriers due to the electric field, is called drift.	1/2	
	Donlotion rogions		
	Depletion region: It is the space charge region on either side of the junction, that gets depleted of		
	free charges, is known as the depletion region.		
	nee enarges, is known as the acpiction region.	1/2	
	Potential Barrier		
	The potential difference, that gets developed across the junction and opposes the		
	diffusion of charge carries and brings about a condition of equilibrium, is known as		
	the barrier potential.	1/2	
		SFT 55/3 Pa	age 18 of 22


SET 55/3 Page **18** of **22**

SET 55/3 Page **19** of **22**

SET 55/3 Page **20** of **22**


Potential due to the charge (-q) 1/2 Total potential at (x, y, 0) $4\pi \in 0 \left(\sqrt{x^2 + y^2 + a^2} \right) \sqrt{x^2 + y^2 + a^2}$ Give full credit of part (ii) if a student writes that the point (x,y,0) is equidistant from charges +q and -q, Hence total potential due to them at the given point will be zero. (b) Work done = $q[V_1 - V_2]$ 1/2 $V_1 = 0$ and $V_2 = 0$ \therefore work done = 0 Where V₁ and V₂ are the total potential due to dipole at point (5,0,0) and (-7,0,0) There would be no change This is because the electrostatic field is a conservative field. (Alternatively: The work done, in moving a test charge between two given points is independent of the path taken) $(d) \ \text{The two given charges make an electric dipole of dipole moment } \vec{p} = q. \ \overrightarrow{2a}$ 1/2 P.E. in position of unstable equilibrium (where \vec{p} and \vec{E} are antiparallel to each other) 1/2 = + pE = 2 aq EOR Finding the total energy before the capacitors are connected 1 Mark Finding the total energy in the parallel combination (b) Reason for difference 1 Mark (a) We have Energy Stored in a capacitor = $\frac{1}{2}CV^2$ Energy stored in the charged capacitors $E_1 = \frac{1}{2}C_1V_1^2$ And $E_2 = \frac{1}{2}C_2V_2^2$

SET 55/3 Page **21** of **22**

∴ Total energy stored = $\frac{1}{2}C_1V_1^2 + C_2V_2^2$	1/2	
(b)Let V be the potential difference across the parallel combination.		
Equivalent capacitance = $(C_1 + C_2)$		
	1/2	
Since charge is a conserved quantity, we have		
$(C_1 + C_2)V = C_1V_1 + C_2V_2$	1/2	
$V = \left[\frac{C_1 V_1 + C_2 V_2}{(C_1 + C_2)} \right]$	1	
∴ Total energy stored in the parallel combination		
$= \frac{1}{2}(C_1 + C_2)V^2$	1/2	
$= \frac{1}{2} \frac{(C_1 V_1 + C_2 V_2)^2}{(C_1 + C_2)}$	1/2	
(c) The total energy of the parallel combination is different (less) from the	platfor	
total energy before the capacitors are connected. This is because some energy gets used up due to the movement of charges during sharing of charge.		5

