| MA A PARTIE TO THE PARTIE TO T |                   |      | actice or any attempt to commit ation will DISQUALIFY THE C |                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------|-------------------------------------------------------------|---------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PAPER             | -I   | PHYSICS & CHEMIST                                           | ΓRY - 2021          |
| Version<br>Code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>A3</b>         |      | nestion Booklet<br>rial Number :                            | 6323745             |
| Time: 150 M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Time: 150 Minutes |      | Number of Questions: 120                                    | Maximum Marks : 480 |
| Name of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Candidate         |      |                                                             |                     |
| Roll Numbe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | r                 |      |                                                             |                     |
| Signature of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | the Candid        | ate  |                                                             |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | YNIC | TERLICENCE TO CANDIDATE                                     | 7.0                 |

## INSTRUCTIONS TO CANDIDATES

- 1. Please ensure that the VERSION CODE shown at the top of this Question Booklet is same as that shown in the OMR Answer Sheet issued to you. If you have received a Question Booklet with a different Version code, please get it replaced with a Question Booklet with the same Version Code as that of OMR Answer Sheet from the Invigilator. THIS IS VERY IMPORTANT.
- 2. Please fill the items such as Name, Roll Number and Signature in the columns given above. Please also write Question Booklet Serial Number given at the top of this page against item 3 in the OMR Answer Sheet.
- 3. This Question Booklet contains 120 questions. For each question five answers are suggested and given against (A), (B), (C), (D) and (E) of which only one will be the 'Most Appropriate Answer'. Mark the bubble containing the letter corresponding to the 'Most Appropriate Answer' in the OMR Answer Sheet, by using either Blue or Black Ball Point Pen only.
- 4. Negative Marking: In order to discourage wild guessing the score will be subjected to penalization formula based on the number of right answers actually marked and the number of wrong answer marked. Each correct answer will be awarded FOUR marks. ONE mark will be deducted for each incorrect answer. More than one answer marked against a question will be deemed as incorrect answer and will be negatively marked.
- 5. Please read the instructions in the OMR Answer Sheet for marking the answers. Candidates are advised to strictly follow the instruction contained in the OMR Answer Sheet.

IMMEDIATELY AFTER OPENING THE QUESTION BOOKLET, THE CANDIDATE SHOULD VERIFY WHETHER THE QUESTION BOOKLET CONTAINS ALL THE 120 QUESTIONS IN SERIAL ORDER. IF NOT, REQUEST FOR REPLACEMENT.

DO NOT OPEN THE SEAL UNTIL THE INVIGILATOR ASKS YOU TO DO SO.



## PLEASE ENSURE THAT THIS QUESTION BOOKLET CONTAINS 120 QUESTIONS SERIALLY NUMBERED FROM 1 TO 120 **PRINTED PAGES 32**

| 1. | When two sound waves of slightly different frequencies $f_1$ and $f_2$ are sounded | d |
|----|------------------------------------------------------------------------------------|---|
|    | together, then the time interval between successive maxima is                      |   |

$$(A)\frac{1}{f_1+f_2}$$

(B) 
$$\frac{1}{f_1} + \frac{1}{f_2}$$

(A) 
$$\frac{1}{f_1 + f_2}$$
 (B)  $\frac{1}{f_1} + \frac{1}{f_2}$  (C)  $\frac{1}{f_1 - f_2}$  (D)  $\frac{1}{f_1 f_2}$  (E)  $\frac{1}{f_1} - \frac{1}{f_2}$ 

$$(D)\frac{1}{f_1f_2}$$

$$(E)\frac{1}{f_1} - \frac{1}{f_2}$$

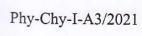
- 2. The electric potential at a point at a distance r due to an electric dipole is proportional
  - (A)  $r^2$
- (B) r
- (C)  $r^{-1}$  (D)  $r^{-2}$



- An air capacitor and identical capacitor filled with dielectric medium of dielectric 3. constant 5 are connected in series to a voltage source of 12V. The fall of potential across C1 and C2 are respectively
  - (A) 2 V and 10 V

(B) 10 V and 2 V

(C) 6 V and 6 V


(D) 4 V and 8 V

(E) 8 V and 4 V



|    | (A) 1:1              | (B) 2:1            | (C) 1:2              | (D) 4:1                                     | (E) 1:4         |
|----|----------------------|--------------------|----------------------|---------------------------------------------|-----------------|
| 5. | between them is      | F. When they       | are kept in a diele  | certain distance d a ctric medium at the sa | ame distance of |
|    | (A) 5                | (B) 2              | (C) 4                | (D) 3                                       | (E) 8           |
| 5. | The magnitude        | of the drift veloc | city per unit electr | ic field is defined as                      |                 |
|    | (A) mobility         |                    | B) resistivity       | (C) conductivity                            |                 |
|    | (D) current der      | nsity (            | E) impedance         |                                             |                 |
|    | and the state of the | Sı                 | pace for rough work  | vitocom en . 1 has                          | Table 1         |
|    |                      |                    |                      |                                             |                 |
|    |                      |                    |                      |                                             |                 |
|    |                      |                    |                      |                                             |                 |
|    |                      |                    |                      |                                             |                 |

| 1.5 V and internal resistance of 0.5 $\Omega$ , then the equivalent internal resistance of the combination is  (A) $0.5 \Omega$ (B) $1 \Omega$ (C) $1.5 \Omega$ (D) $2 \Omega$ (E) $2.5 \Omega$ A carbon resistor is marked with the rings coloured blue, black, red and silver. Its resistance in ohm is  (A) $60 \times 10^2 \pm 10\%$ (B) $1 \times 10^5 \pm 10\%$ (C) $1 \times 10^6 \pm 5\%$ (B) $3.2 \times 10^4 \pm 5\%$ (E) $45 \times 10^2 \pm 5\%$ A conductor of length 20 cm carrying a current of 5A is placed at an angle of $30^\circ$ to                                                                                                                                  | If one cell is connected wrongly in a series combination of four cells each of e.m.f. 1.5 V and internal resistance of 0.5 $\Omega$ , then the equivalent internal resistance of the combination is  (A) 0.5 $\Omega$ (B) 1 $\Omega$ (C) 1.5 $\Omega$ (D) 2 $\Omega$ (E) 2.5 $\Omega$ A carbon resistor is marked with the rings coloured blue, black, red and silver. Its resistance in ohm is  (A) $60 \times 10^2 \pm 10\%$ (B) $1 \times 10^5 \pm 10\%$ (C) $1 \times 10^6 \pm 5\%$ A conductor of length 20 cm carrying a current of 5A is placed at an angle of 30° to the external magnetic field of 0.5 T. The force acting on it is  (A) $0.5  \text{N}$ (B) $5  \text{N}$ (C) $0.25  \text{N}$ (D) $0.25  \text{N}$ (E) $0.125  \text{N}$ | If one cell is connected wrongly in a series combination of four cells each of e.m.f. 1.5 V and internal resistance of 0.5 $\Omega$ , then the equivalent internal resistance of the combination is  (A) 0.5 $\Omega$ (B) 1 $\Omega$ (C) 1.5 $\Omega$ (D) 2 $\Omega$ (E) 2.5 $\Omega$ A carbon resistor is marked with the rings coloured blue, black, red and silver. Its resistance in ohm is  (A) $60 \times 10^2 \pm 10\%$ (B) $1 \times 10^5 \pm 10\%$ (C) $1 \times 10^6 \pm 5\%$ A conductor of length 20 cm carrying a current of 5A is placed at an angle of 30° to the external magnetic field of 0.5 T. The force acting on it is  (A) $0.5  \text{N}$ (B) $5  \text{N}$ (C) $0.25  \text{N}$ (D) $2.5  \text{N}$ (E) $0.125  \text{N}$ | (A) 10Ω acros                       |                                     | $10\Omega$ across $P$                                                   | (C) 20Ω acro                             | oss Q                                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------------------------------------------|------------------------------------------|-----------------------------------------|
| 1.5 V and internal resistance of 0.5 $\Omega$ , then the equivalent internal resistance of the combination is  (A) 0.5 $\Omega$ (B) 1 $\Omega$ (C) 1.5 $\Omega$ (D) 2 $\Omega$ (E) 2.5 $\Omega$ A carbon resistor is marked with the rings coloured blue, black, red and silver. Its resistance in ohm is  (A) $60 \times 10^2 \pm 10\%$ (B) $1 \times 10^5 \pm 10\%$ (C) $1 \times 10^6 \pm 5\%$ (E) $45 \times 10^2 \pm 5\%$ A conductor of length 20 cm carrying a current of 5A is placed at an angle of 30° to the external magnetic field of 0.5 T. The force acting on it is  (A) $0.5  \text{N}$ (B) $5  \text{N}$ (C) $0.25  \text{N}$ (D) $2.5  \text{N}$ (E) $0.125  \text{N}$ | 1.5 V and internal resistance of 0.5 $\Omega$ , then the equivalent internal resistance of the combination is  (A) 0.5 $\Omega$ (B) 1 $\Omega$ (C) 1.5 $\Omega$ (D) 2 $\Omega$ (E) 2.5 $\Omega$ A carbon resistor is marked with the rings coloured blue, black, red and silver. Its resistance in ohm is  (A) $60 \times 10^2 \pm 10\%$ (B) $1 \times 10^5 \pm 10\%$ (C) $1 \times 10^6 \pm 5\%$ (D) $3.2 \times 10^4 \pm 5\%$ (E) $45 \times 10^2 \pm 5\%$ A conductor of length 20 cm carrying a current of 5A is placed at an angle of 30° to the external magnetic field of 0.5 T. The force acting on it is  (A) $0.5  \text{N}$ (B) $5  \text{N}$ (C) $0.25  \text{N}$ (D) $2.5  \text{N}$ (E) $0.125  \text{N}$                             | 1.5 V and internal resistance of 0.5 $\Omega$ , then the equivalent internal resistance of the combination is  (A) 0.5 $\Omega$ (B) 1 $\Omega$ (C) 1.5 $\Omega$ (D) 2 $\Omega$ (E) 2.5 $\Omega$ A carbon resistor is marked with the rings coloured blue, black, red and silver. Its resistance in ohm is  (A) $60 \times 10^2 \pm 10\%$ (B) $1 \times 10^5 \pm 10\%$ (C) $1 \times 10^6 \pm 5\%$ (E) $45 \times 10^2 \pm 5\%$ A conductor of length 20 cm carrying a current of 5A is placed at an angle of 30° to the external magnetic field of 0.5 T. The force acting on it is  (A) 0.5 N (B) 5 N (C) 0.25 N (D) 2.5 N (E) 0.125 N                                                                                                            | (D) $20\Omega$ acros                | $\operatorname{ss} P$ (E)           | $10\Omega$ across $Q$                                                   |                                          |                                         |
| A carbon resistor is marked with the rings coloured blue, black, red and silver. Its resistance in ohm is  (A) $60 \times 10^2 \pm 10\%$ (B) $1 \times 10^5 \pm 10\%$ (C) $1 \times 10^6 \pm 5\%$ (D) $3.2 \times 10^4 \pm 5\%$ (E) $45 \times 10^2 \pm 5\%$ A conductor of length 20 cm carrying a current of 5A is placed at an angle of 30° to the external magnetic field of 0.5 T. The force acting on it is  (A) $0.5  \text{N}$ (B) $5  \text{N}$ (C) $0.25  \text{N}$ (D) $2.5  \text{N}$ (E) $0.125  \text{N}$                                                                                                                                                                   | A carbon resistor is marked with the rings coloured blue, black, red and silver. Its resistance in ohm is  (A) $60 \times 10^2 \pm 10\%$ (B) $1 \times 10^5 \pm 10\%$ (C) $1 \times 10^6 \pm 5\%$ (D) $3.2 \times 10^4 \pm 5\%$ (E) $45 \times 10^2 \pm 5\%$ A conductor of length 20 cm carrying a current of 5A is placed at an angle of 30° to the external magnetic field of 0.5 T. The force acting on it is  (A) $0.5  \text{N}$ (B) $5  \text{N}$ (C) $0.25  \text{N}$ (D) $2.5  \text{N}$ (E) $0.125  \text{N}$                                                                                                                                                                                                                             | A carbon resistor is marked with the rings coloured blue, black, red and silver. Its resistance in ohm is  (A) $60 \times 10^2 \pm 10\%$ (B) $1 \times 10^5 \pm 10\%$ (C) $1 \times 10^6 \pm 5\%$ (D) $3.2 \times 10^4 \pm 5\%$ (E) $45 \times 10^2 \pm 5\%$ A conductor of length 20 cm carrying a current of 5A is placed at an angle of 30° to the external magnetic field of 0.5 T. The force acting on it is  (A) $0.5 \text{ N}$ (B) $5 \text{ N}$ (C) $0.25 \text{ N}$ (D) $2.5 \text{ N}$ (E) $0.125 \text{ N}$                                                                                                                                                                                                                            | 1.5 V and inter                     | onnected wrong<br>rnal resistance ( | gly in a series combined of $0.5 \Omega$ , then the expression $\Omega$ | ination of four ce<br>quivalent internal | ells each of e.m.f<br>resistance of the |
| resistance in ohm is  (A) $60 \times 10^2 \pm 10\%$ (B) $1 \times 10^5 \pm 10\%$ (C) $1 \times 10^6 \pm 5\%$ (D) $3.2 \times 10^4 \pm 5\%$ (E) $45 \times 10^2 \pm 5\%$ A conductor of length 20 cm carrying a current of 5A is placed at an angle of 30° to the external magnetic field of 0.5 T. The force acting on it is  (A) $0.5 \text{ N}$ (B) $5 \text{ N}$ (C) $0.25 \text{ N}$ (D) $2.5 \text{ N}$ (E) $0.125 \text{ N}$                                                                                                                                                                                                                                                        | resistance in ohm is  (A) $60 \times 10^2 \pm 10\%$ (B) $1 \times 10^5 \pm 10\%$ (C) $1 \times 10^6 \pm 5\%$ (D) $3.2 \times 10^4 \pm 5\%$ (E) $45 \times 10^2 \pm 5\%$ A conductor of length 20 cm carrying a current of 5A is placed at an angle of 30° to the external magnetic field of 0.5 T. The force acting on it is  (A) $0.5 \text{ N}$ (B) $5 \text{ N}$ (C) $0.25 \text{ N}$ (D) $2.5 \text{ N}$ (E) $0.125 \text{ N}$                                                                                                                                                                                                                                                                                                                  | resistance in ohm is  (A) $60 \times 10^2 \pm 10\%$ (B) $1 \times 10^5 \pm 10\%$ (C) $1 \times 10^6 \pm 5\%$ (D) $3.2 \times 10^4 \pm 5\%$ (E) $45 \times 10^2 \pm 5\%$ A conductor of length 20 cm carrying a current of 5A is placed at an angle of 30° to the external magnetic field of 0.5 T. The force acting on it is  (A) $0.5 \text{ N}$ (B) $5 \text{ N}$ (C) $0.25 \text{ N}$ (D) $2.5 \text{ N}$ (E) $0.125 \text{ N}$                                                                                                                                                                                                                                                                                                                 | (A) 0.5 Ω                           | (B) 1 Ω                             | (C) 1.5 Ω                                                               | (D) 2 Ω                                  | (E) 2.5 Ω                               |
| (D) $3.2 \times 10^4 \pm 5\%$ (E) $45 \times 10^2 \pm 5\%$ A conductor of length 20 cm carrying a current of 5A is placed at an angle of 30° to the external magnetic field of 0.5 T. The force acting on it is  (A) $0.5 \text{ N}$ (B) $5 \text{ N}$ (C) $0.25 \text{ N}$ (D) $2.5 \text{ N}$ (E) $0.125 \text{ N}$                                                                                                                                                                                                                                                                                                                                                                     | (D) $3.2 \times 10^4 \pm 5\%$ (E) $45 \times 10^2 \pm 5\%$ A conductor of length 20 cm carrying a current of 5A is placed at an angle of 30° to the external magnetic field of 0.5 T. The force acting on it is  (A) $0.5 \text{ N}$ (B) $5 \text{ N}$ (C) $0.25 \text{ N}$ (D) $2.5 \text{ N}$ (E) $0.125 \text{ N}$                                                                                                                                                                                                                                                                                                                                                                                                                               | (D) $3.2 \times 10^4 \pm 5\%$ (E) $45 \times 10^2 \pm 5\%$ A conductor of length 20 cm carrying a current of 5A is placed at an angle of 30° to the external magnetic field of 0.5 T. The force acting on it is  (A) $0.5 \text{ N}$ (B) $5 \text{ N}$ (C) $0.25 \text{ N}$ (D) $2.5 \text{ N}$ (E) $0.125 \text{ N}$                                                                                                                                                                                                                                                                                                                                                                                                                              | A carbon resist<br>resistance in oh | tor is marked v                     | vith the rings colour                                                   | red blue, black, re                      | ed and silver. Its                      |
| A conductor of length 20 cm carrying a current of 5A is placed at an angle of 30° to the external magnetic field of 0.5 T. The force acting on it is  (A) 0.5 N  (B) 5 N  (C) 0.25 N  (D) 2.5 N  (E) 0.125 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A conductor of length 20 cm carrying a current of 5A is placed at an angle of 30° to the external magnetic field of 0.5 T. The force acting on it is  (A) 0.5 N  (B) 5 N  (C) 0.25 N  (D) 2.5 N  (E) 0.125 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | A conductor of length 20 cm carrying a current of 5A is placed at an angle of 30° to the external magnetic field of 0.5 T. The force acting on it is  (A) 0.5 N  (B) 5 N  (C) 0.25 N  (D) 2.5 N  (E) 0.125 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (A) $60 \times 10^2 \pm 1$          | 10%                                 | (B) $1 \times 10^5 \pm 10\%$                                            | (C) 1×10                                 | 6 ± 5%                                  |
| A conductor of length 20 cm carrying a current of 5A is placed at an angle of 30° to the external magnetic field of 0.5 T. The force acting on it is  (A) 0.5 N  (B) 5 N  (C) 0.25 N  (D) 2.5 N  (E) 0.125 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A conductor of length 20 cm carrying a current of 5A is placed at an angle of 30° to the external magnetic field of 0.5 T. The force acting on it is  (A) 0.5 N  (B) 5 N  (C) 0.25 N  (D) 2.5 N  (E) 0.125 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | A conductor of length 20 cm carrying a current of 5A is placed at an angle of 30° to the external magnetic field of 0.5 T. The force acting on it is  (A) 0.5 N  (B) 5 N  (C) 0.25 N  (D) 2.5 N  (E) 0.125 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (D) $3.2 \times 10^4 \pm$           | 5%                                  | (E) $45 \times 10^2 \pm 5\%$                                            |                                          |                                         |
| Space for rough work                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Space for rough work                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Space for rough work                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                     | (B) 5 N                             | (C) 0.25 N                                                              | (D) 2.5 N                                | (E) 0.125 N                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (A) 0.5 N                           |                                     |                                                                         |                                          |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (A) 0.5 N                           | S                                   | pace for rough work                                                     |                                          |                                         |





| 11. | angle between the normal to the plane of the with the coil, then                          | e field B experiences a torque $\tau$ . If $\theta$ is the e coil and field B and $\phi$ is the flux linked |
|-----|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
|     | (A) $\tau$ is minimum for $\theta = 90^{\circ}$                                           | (B) $\tau$ and $\varphi$ are maximum for $\theta = 0^{\circ}$                                               |
|     | (C) $\varphi$ is maximum for $\theta = 90^{\circ}$                                        | (D) $\tau$ and $\varphi$ are zero for $\theta = 90^{\circ}$                                                 |
|     | (E) $\tau$ is zero and $\varphi$ is maximum for $\theta = 0^{\circ}$                      |                                                                                                             |
| 12. | In Cyclotron, the frequency of revolution of independent of  (A) its mass  (B) its energy | the charged particle in a magnetic field is  (C) oscillatory frequency                                      |
|     | (D) magnetic field (E) its charge                                                         | el mulo ill controler                                                                                       |
| 13. | The hard ferromagnetic material among the                                                 | following is                                                                                                |
|     | (A) gadolinium (B) iron (C) col                                                           | oalt (D) Alnico (E) nickel                                                                                  |

collegedunia [s

| 14. | If $B_c$ is the magnetic induction at the centre of a circular coil carrying current, then                 | L   |
|-----|------------------------------------------------------------------------------------------------------------|-----|
|     | the magnetic induction at a point on the axis of the coil at a distance equal to the radius of the coil is | 120 |

| $(A)\frac{B_c}{2\sqrt{2}}$ | į |
|----------------------------|---|
|                            |   |

(B)  $\frac{B_c}{2}$  (C)  $\frac{B_c}{4}$  (D)  $\frac{B_c}{\sqrt{2}}$  (E)  $\frac{B_c}{8}$ 

If air core is replaced by an iron core in an inductor, its self-inductance is increased 15. from 0.02 mH to 40 mH. The relative permeability of iron is

(A) 5000

(B) 2000

(C) 200

(D) 500

(E)400

Among various circuits constructed with resistor R, inductor L and capacitor C, the 16. circuit that gives maximum power dissipation is

(A) purely inductive circuit

(B) purely capacitive circuit

(C) purely resistive circuit

(D) L-C series circuit

(E) C-R series circuit

17. Eddy currents are not used in the application of

(A) induction furnace

(B) thermal generators

(C) electromagnetic damping

(D) electric power meters

(E) magnetic braking in trains

The total intensity of earth's magnetic field at the poles is 7 units. Its value at the 18. equator is

(A)  $7\sqrt{2}$  units

(B) 3.5 units

(C) 7 units

(D)  $\frac{7}{\sqrt{2}}$  units (E) 14 units



Electromagnetic waves against their detection devices are matched below. The mismatch is

Ionization chamber (A) Gamma rays

Point contact diode (B) Microwaves

Photographic film (C) X - rays

(D) Ultraviolet rays Thermopiles

Bolometer (E) Infrared rays

- In an electromagnetic wave, the oscillating electric and magnetic field vectors are 20. oriented in
  - (A) mutually perpendicular directions with a phase difference of  $\pi/2$
  - (B) the same direction and in the same phase
  - (C) mutually perpendicular directions with a phase difference of  $\pi$
  - (D) the same direction with a phase difference of  $\pi/2$
  - (E) mutually perpendicular directions and are in phase
- Fresnel distance for an aperture of size a illuminated by a parallel beam of light of 21. wavelength  $\lambda$ , deciding the validity of ray optics is

(A)  $\frac{\lambda}{a^2}$  (B)  $\lambda a$ 

(D)  $\frac{a^2}{1}$ 

(E)  $a^2 \lambda^2$ 

The apparent depth of a needle lying in a water beaker is found to be 9 cm. If water is 22. replaced by a liquid of refractive index 1.5, then the apparent depth of needle will be ( $\mu$  of water is 4/3)

(A) 10 cm

(B) 9 cm

(C) 12 cm

(D) 7 cm

(E) 8 cm

|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n the same side o  | f the object, then t                              | the magnificatio           | n produced by the                                                |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------------------------------------------|----------------------------|------------------------------------------------------------------|
|     | mirror is (A) 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (B) -0.5           | (C) -2                                            | (D) 0.33                   | (E) -1                                                           |
| 24. | $\lambda_1$ and $\lambda_2$ produte the ratio between                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ce interference p  |                                                   | widths $eta_1$ and $eta_2$ | of wavelengths $\beta_2$ respectively. If $\lambda_2$ is (E) 4:5 |
| 25  | (A) 3:1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    |                                                   | . N. 160_                  | and critical angle                                               |
| 25. | $\theta_c$ , then                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Tizing angle for a | glass place of fell                               | tactive mach p             |                                                                  |
|     | $(A) \theta_p = \theta_c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    | (B) $tan \theta_p \cdot sin$                      | $\theta_c = 1$             | (C) $\theta_p \theta_c = 1$                                      |
|     | (D) $tan \theta_p = sin$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $i\theta_c$        | (E) $tan \theta_p sin$                            | $\theta_c = \mu$           |                                                                  |
|     | The state of the s |                    | kinetic energy of light incident on E  (C) 350 nm |                            | elength of incident (E) 250 nm                                   |
|     | (A) 400 IIII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    | ce for rough work                                 | (2) 000 1                  | NA.                                                              |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                   |                            |                                                                  |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                   |                            |                                                                  |

An object is placed at 10 cm in front of a concave mirror. If the image is at 20 cm

| 27. | If the momentum of an $\alpha$ -particle is half that of a proton, then the ratio between the wavelengths of their de-Broglie waves is                                                                     |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | (A) 1:2 (B) 4:1 (C) 1:4 (D) 1:1 (E) 2:1                                                                                                                                                                    |
| 28. | During $\beta^-$ decay of a radioactive element there is an increase in its                                                                                                                                |
|     | (A) mass number (B) neutron number (C) electron number                                                                                                                                                     |
|     | (D) proton number (E) atomic weight                                                                                                                                                                        |
| 29. | 10 <sup>18</sup> fissions per second is required for producing power of 300 MW in a nuclear power station. To increase the power output to 360 MW the additional number of fissions required per second is |
|     | (A) $2 \times 10^{18}$ (B) $5 \times 10^{18}$ (C) $5 \times 10^{17}$ (D) $6 \times 10^{17}$ (E) $2 \times 10^{17}$                                                                                         |
| 30. | The ratio of the total energy $E$ of the electron to its kinetic energy $K$ in hydrogen atom is                                                                                                            |
|     | (A) 1 (B) $\frac{1}{2}$ (C) 2 (D) $-1$ (E) $-\frac{1}{2}$                                                                                                                                                  |
|     | Space for rough work                                                                                                                                                                                       |
|     |                                                                                                                                                                                                            |
|     |                                                                                                                                                                                                            |
|     |                                                                                                                                                                                                            |
|     |                                                                                                                                                                                                            |
|     |                                                                                                                                                                                                            |
|     |                                                                                                                                                                                                            |
|     |                                                                                                                                                                                                            |
|     |                                                                                                                                                                                                            |
|     |                                                                                                                                                                                                            |

| 31. | If the mass num densities is: | nbers of two nuclei                     | are in the ratio 3 | : 2, then the ratio  | of their nuclear  |
|-----|-------------------------------|-----------------------------------------|--------------------|----------------------|-------------------|
|     | (A) $3^{1/3}:2^{1/3}$         | (B) $2^{1/3}:3^{1/3}$                   | (C) 2:3            | (D) 1:1              | (E) 3:2           |
| 32. | In p-type semic               | onductors                               |                    |                      |                   |
|     | (A) holes are m               | inority carriers                        |                    |                      |                   |
|     | (B) the vacancy               | of electron is a ho                     |                    |                      |                   |
|     | (C) the impurity              | element added is                        | donor type         |                      |                   |
|     | (D) for every p               | entavalent impurity                     | y atom added an e  | xtra hole is created | l (a)             |
|     | (E) the electron              | will move from on                       | e hole to another  | hole constituting a  | flow of current   |
| 33. |                               | of a transistor the sistor is 0.95 then |                    |                      | A. If the current |
|     | (A) 0.2 mA                    | (B) 0.3 mA                              | (C) 0.5 mA         | (D) 0.4 mA           | (E) 0.8 mA        |
| 34. | The compound                  | semiconductor use                       | d for making LED   | s of different colo  | urs is            |
|     | (A) Gallium Ar                | senide – Phosphide                      | (B) Ind            | ium Arsenide – Ph    | osphide           |

(D) Gallium Arsenide - Selenide

(C) Indium Arsenide - Selenide

(E) Scandium Arsenide - Phosphide





A transistor amplifier along with a tank circuit with positive feedback will act as

(A) power amplifier

(B) voltage amplifier

(C) full wave rectifier

(D) half-wave rectifier

(E) oscillator

In a transmitter the audio signal of frequency  $\omega_m$  is modulated by the carrier signal 36.  $\omega_c$  and the band pass filter in it rejects the frequencies

(A)  $\omega_c$  and  $\omega_m$ 

(B)  $\omega_c - \omega_m$  and  $\omega_c + \omega_m$ 

(C)  $\omega_m$  and  $2\omega_c$ 

(D)  $\omega_c - \omega_m$  and  $\omega_c$  (E)  $\omega_c + \omega_m$  and  $\omega_c$ 

37. Pick out the INCORRECT statement from the following

(A) Speech signal requires a bandwidth of 2800 Hz

(B) The approximate bandwidth to transmit music is 20 kHz

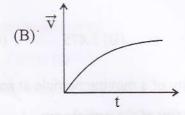
(C) The bandwidth of video signals required to transmit pictures is 4.2 MHz

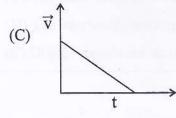
(D) The bandwidth usually allocated to transmit TV signals is 6 MHz

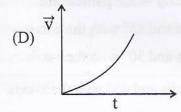
(E) Digital signals are usually in the form of sine waves

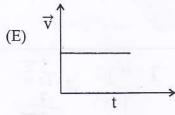


| 38.    | A physical qu                 | antity $A$ on multiplica | tion with veloc | ity results in another              | quantity B. If |
|--------|-------------------------------|--------------------------|-----------------|-------------------------------------|----------------|
|        | the quantity B                | is energy, then the qu   | antity A is     |                                     |                |
|        | (A) mass                      | (B) momentum             | (C) force       | (D) acceleration                    | (E) power      |
| 39.    | If the percenta               | ge errors in the measu   | rements of mas  | ss, length and time are             | 1%, 2% and     |
|        | 3% respective acceleration of |                          | m permissible   | error in the measure                | ement of the   |
| -07101 | (A) 8%                        | (B) 9%                   | (C) 6%          | (D) 10%                             | (E) 2%         |
| 40.    | The radius of figures is      | a circular plate is 1.   | 05 m. Its area  | (in m <sup>2</sup> ) up to correc   | et significant |
|        | (A) 3.47                      | (B) 3.475                | (C) 3.467°      | (D) 3.82                            | (E) 3.825      |
| 41.    | The velocity o                | f a moving particle at   | any instant is  | $\hat{i}+\hat{j}$ . The magnitude a | and direction  |
|        | of the velocity               | of the particle are      |                 |                                     |                |
|        | (A) 2 units an                | d 45° with the x-axis    |                 |                                     |                |
|        | (B) 2 units an                | d 30° with the z-axis    |                 |                                     |                |
|        | (C) $\sqrt{2}$ units          | and 45° with the x-axi   | s               |                                     |                |
|        | (D) $\sqrt{2}$ units          | and 60° with the y-axi   | S               |                                     |                |
|        | (E) 2 units and               | d 60° with the x-axis    |                 |                                     |                |
|        | 12                            | Space f                  | or rough work   |                                     |                |





- A hammer is dropped into a mine. Its velocities at depths d, 2d and 3d are in the ratio
  - (A) 1:2:3
- (B)  $1:\sqrt{2}:\sqrt{3}$
- (C) 1:4:9 (D) 6:3:2
- (E) 1:1:1
- The stopping distance of a moving vehicle is proportional to the 43.
  - (A) initial velocity


X


- (B) cube of the initial velocity
- (C) square of the initial velocity
- (D) cube root of the initial velocity
- (E) square root of the initial velocity
- When a body starts from rest and moves with a constant acceleration, the velocity-44, time graph for its motion is











- A wooden block of mass 10 kg is moving with an acceleration of 3 ms<sup>-2</sup> on a rough floor. If the coefficient of friction is 0.3, then the applied force on it is  $(g=10 \, \text{ms}^{-2})$ 
  - (A) 10 N
- (B) 30 N
- (C) 80 N
- (D) 60 N
- (E) 65 N

- Which one of the following statement is INCORRECT?
  - (A) The state of rest or uniform linear motion both imply zero acceleration.
  - (B) A net force is needed to keep a body in uniform motion.
  - (C) Inertia means resistance to change.
  - (D) The rate of change of momentum is proportional to the applied force.
  - (E) Momentum is a vector quantity.
- On a conveyor belt moving with a speed u, sand falls at a constant rate  $\left(\frac{dm}{dt}\right)$ , where 47. m is the mass of sand. The extra force required to maintain the speed of the belt is



(A)  $m \left(\frac{du}{dt}\right)$  (B) mu (C)  $\left(\frac{dm}{dt}\right)/u$  (D)  $u \left(\frac{dm}{dt}\right)$ 

Area under the force-time graph gives the change in 48.

(A) velocity

(B) acceleration

(C) linear momentum

(D) angular momentum

(E) impulsive force

When a metal spring is elongated within its elastic limit 49.

(A) work is done by the spring

(B) potential energy is stored in it

(C) its potential energy is lost

(D) its total energy remains constant

(E) its kinetic energy is increased

The instantaneous power in terms of force F and instantaneous velocity  $\nu$  is 50.

(A)  $P = F \cdot t$ 

(B)  $P = F \cdot v$  (C)  $P = F \cdot v^{-1}$  (D)  $P = F \cdot v^{-2}$  (E)  $P = F \cdot v \cdot t^{-1}$ 

Space for rough work

| 51. | A ball with 10        | 0 <sup>3</sup> J of kinetic end | ergy collides with a           | horizontally mou      | inted spring. If the          |
|-----|-----------------------|---------------------------------|--------------------------------|-----------------------|-------------------------------|
|     | maximum cor           | npression of the s              | spring is 50 cm, ther          | the spring consta     | ant of the spring is          |
|     | (A) $2 \times 10^3$ 1 | $\mathrm{Nm}^{-1}$              | (B) $6 \times 10^3 \text{ Nm}$ | n <sup>-1</sup> (C) 8 | $\times 10^3 \text{ Nm}^{-1}$ |
|     | (D) $5 \times 10^3$ 1 | Nm <sup>-1</sup>                | (E) $3 \times 10^3 \text{ Nm}$ | 1-1                   | at, u(0)                      |
| 52. | An object rel         | eased from certa                | in height $h$ from the         | ne ground reboun      | ids to a height $\frac{h}{4}$ |
|     |                       |                                 | raction of the energy          |                       |                               |
|     | (A) $\frac{1}{4}$     | (B) $\frac{3}{4}$               | (C) $\frac{1}{2}$              | (D) $\frac{1}{8}$     | (E) $\frac{3}{8}$             |

53. A solid metal ring and a disc of same radius and mass are rotating about their diameters with same angular frequency. The ratio of their respective rotational kinetic energy values is

(A) 1:1 (B) 1:2 (C) 2:1 (D) 1:4 (E) 4:1

54. The X and Y coordinates of the three particles of masses m, 2m and 3m are

system is

(A)  $\frac{1}{3}$  (B)  $\frac{2}{3}$  (C)  $-\frac{1}{3}$  (D)  $-\frac{2}{3}$  (E)  $\frac{1}{6}$ 

respectively (0,0), (1,0) and (-2,0). The X-coordinate of the centre of mass of the

Radius of gyration of a solid cylinder of radius R and length L about its long axis of symmetry is

(A) R

(B)  $\frac{R}{\sqrt{2}}$ 

(C)  $\sqrt{2}R$ 

(D)  $\frac{R}{2}$ 

(E) 2R



| 56. | When no external torque acts on a rotating system,                                                                                                                 |                                                                                 |                       |                     |                               |  |  |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------|---------------------|-------------------------------|--|--|
|     | (A) angular momentum of the system is not conserved                                                                                                                |                                                                                 |                       |                     |                               |  |  |
|     | (B) its rotational kinetic energy is conserved                                                                                                                     |                                                                                 |                       |                     |                               |  |  |
|     | (C) its rotational kinetic energy is independent of moment of inertia                                                                                              |                                                                                 |                       |                     |                               |  |  |
|     | (D) its rotation                                                                                                                                                   | (D) its rotational kinetic energy is directly proportional to moment of inertia |                       |                     |                               |  |  |
|     | (E) its rotational kinetic energy is inversely proportional to moment of inertia                                                                                   |                                                                                 |                       |                     |                               |  |  |
| 57. | the Sun, then a                                                                                                                                                    | ne period of a pla<br>ccording to Kepler                                        | 's third law          |                     |                               |  |  |
|     | (A) $T \propto d$                                                                                                                                                  | (B) $T \propto d^2$                                                             | $(C) T^2 \propto d^3$ | (D) $T^2 \propto d$ | (E) $T^2 \propto d^{-3}$      |  |  |
| 58. | If the earth shrinks to half of its present size and its mass reduces to half of its actual mass, then the acceleration due to $gravity(g)$ on its surface will be |                                                                                 |                       |                     |                               |  |  |
|     | (A) 4g                                                                                                                                                             | (B) g                                                                           | (C) 2g                | (D) $\frac{g}{2}$   | (E) 3g                        |  |  |
| 59. |                                                                                                                                                                    | atical spheres each raction between the                                         | W 950                 |                     | each other, then $(E) r^{-4}$ |  |  |
| 60. | With the increa                                                                                                                                                    | se of temperature                                                               |                       |                     |                               |  |  |
|     | (A) surface tension of liquid increases                                                                                                                            |                                                                                 |                       |                     |                               |  |  |
|     | (B) viscosity                                                                                                                                                      | of gases decreases                                                              |                       |                     |                               |  |  |
|     | (C) viscosity                                                                                                                                                      | of liquids increases                                                            | Soyina alseau         |                     |                               |  |  |
|     | (D) both the s                                                                                                                                                     | urface tension and                                                              | viscosity of liquid   | s increase          | mattle Sall Vie               |  |  |
|     | (E) both the s                                                                                                                                                     | urface tension and                                                              | viscosity of liquid   | decrease            | 1000 11000)                   |  |  |



- The TRUE statement is 61.
  - (A) Young's modulus of a wire depends on its length
  - (B) The unit of Young's modulus is Nm<sup>-1</sup>
  - (C) Dimensional formula of stress is same as that of force
  - (D) The unit of strain is kgm<sup>-2</sup>
  - (E) Compressibility is the reciprocal of bulk modulus
- When a body is strained, energy stored per unit volume is (Y = Young's modulus)

(A) 
$$\frac{(stress)}{Y}$$

(B) 
$$\frac{Y \times strain}{2}$$

(C) 
$$\frac{\left(stress\right)^2}{2Y}$$

(D) 
$$Y \times (strain)^2$$

(E) 
$$\frac{1}{2} \left( \frac{stress}{Y} \right)$$

According to equation of continuity when a liquid flows through a tube of variable 63. cross section a with variable velocity v, the quantity that remains constant is

(A) 
$$av^2$$

- (B)  $a^2v$  (C) av

- (D)  $\frac{a}{v}$  (E)  $\frac{a^2}{v}$
- Two thermally insulated identical vessels A and B are connected through a stopcock. 64. A contains a gas at STP and B is completely evacuated. If the stopcock is suddenly opened then
  - (A) temperature is halved
  - (B) internal energy of the gas is halved
  - (C) internal energy of the gas and pressure are halved
  - (D) temperature and internal energy of the gas remain the same
  - (E) pressure and internal energy of the gas remain the same



| The required in s  800 K (I an ideal diato ed that increase | re of the sour<br>ncrease in tem<br>B) 600 K | (C) 100 K         | engine is at 400 K, source to increase (D) 400 K | its efficiency<br>the efficiency<br>(E) 200 K |
|-------------------------------------------------------------|----------------------------------------------|-------------------|--------------------------------------------------|-----------------------------------------------|
| The required in s  800 K (I an ideal diato ed that increase | B) 600 K                                     | (C) 100 K         | (D) 400 K                                        | the efficiency                                |
| an ideal diato                                              | omic gas is he                               | eated at constant |                                                  | (E) 200 K                                     |
| ed that increase                                            |                                              |                   | t pressure fraction                              |                                               |
| 5                                                           |                                              |                   | is is                                            | (2000)                                        |
| 7                                                           | B) $\frac{7}{5}$                             | (C) $\frac{3}{5}$ | (D) $\frac{5}{3}$                                | (E) $\frac{2}{3}$                             |
| atio of the kinet<br>temperature is                         | ic energy val                                | ues of 4g of hydr | rogen (H <sub>2</sub> ) to 7g of                 | nitrogen (N <sub>2</sub> )                    |
| 4:1 ()                                                      | B) 1:4                                       | (C) 4:7           | (D) 7:4                                          | (E) 1:1                                       |
|                                                             | Spac                                         | ce for rough work |                                                  |                                               |
|                                                             |                                              |                   |                                                  |                                               |
|                                                             |                                              |                   |                                                  |                                               |
|                                                             |                                              |                   |                                                  |                                               |
|                                                             |                                              |                   |                                                  |                                               |
|                                                             |                                              |                   |                                                  |                                               |
|                                                             |                                              |                   |                                                  |                                               |
|                                                             |                                              |                   |                                                  |                                               |

A planet with radius R and acceleration due to gravity g, will have atmosphere only if r.m.s. speed of air molecules is less than

(A)  $1.414\sqrt{gR}$ 

(B)  $1.732\sqrt{gR}$  (C)  $2\sqrt{gR}$  (D)  $3.14\sqrt{gR}$  (E)  $2.75\sqrt{gR}$ 

If the ratio of the acceleration due to gravity on the surface of earth to that on the 70. surface of the moon is 6:1, then the ratio of the periods of a simple pendulum on their surfaces is

(A) 1 : 1

(B) 1:6

(C)1:3

(D)  $1:\sqrt{6}$ 

(E)  $1:\sqrt{3}$ 

The velocity of a transverse wave propagating on a stretched string represented by the equation,  $y = 0.5 \sin\left(\frac{\pi}{2}t + \frac{\pi}{3}x\right)$  is (where x and y are in metres and t in seconds)

 $(A) 0.5 \,\mathrm{ms}^{-1}$ 

(B) 1.0 ms<sup>-1</sup>

 $(C) 2 \, \text{ms}^{-1}$ 

(D)  $3 \, \text{ms}^{-1}$ 

 $(E) 1.5 \, \text{ms}^{-1}$ 

72. The kinetic energy of a particle of mass m executing linear simple harmonic motion with angular velocity  $\omega$  and amplitude a is  $\frac{1}{4}ma^2\omega^2$  at a distance of \_ from the mean position.

(A)  $\frac{a}{\sqrt{2}}$ 

(D) a

| 73. | The reagent that is used to convert but-2-yne to trans-but-2-ene is |                       |            |  |  |  |
|-----|---------------------------------------------------------------------|-----------------------|------------|--|--|--|
|     | (A) $H_2/Pd/C$                                                      | (B) NaBH <sub>4</sub> | (C) Sn/HCl |  |  |  |
|     | (D) Na/liquid NH <sub>2</sub>                                       | (E) Zn-Hg/HC          | 1          |  |  |  |

- Compound 'A' is obtained by the reaction of benzyl chloride with magnesium metal 74. in dry ether followed by treatment with water. What is the compound 'A'?
  - (C) Phenol (B) Benzyl alcohol (A) Toluene (E) Benzaldehyde (D) Benzene
- The correct increasing order of boiling points of the following compounds is 75.
  - (A)  $CH_2Br_2 < CH_3Br < CHBr_3 < CH_3Cl$
  - (B) CH<sub>2</sub>Br<sub>2</sub> < CHBr<sub>3</sub> < CH<sub>3</sub>Br < CH<sub>3</sub>Cl
  - (C)  $CH_3C1 < CH_3Br < CH_2Br_2 < CHBr_3$
  - (D) CH<sub>3</sub>Cl < CHBr<sub>3</sub> < CH<sub>3</sub>Br < CH<sub>2</sub>Br<sub>2</sub>
  - (E)  $CHBr_3 < CH_2Br_2 < CH_3Br < CH_3Cl$
- Compounds 'A', 'B' and 'C' have the same molecular formula C7H8O. Compound 76. 'A' and 'B' liberate hydrogen gas with sodium metal. When treated with sodium hydroxide, compound 'B' alone dissolves. Compound 'C' is inert towards both sodium metal and sodium hydroxide. Compounds 'A', 'B' and 'C' are respectively
  - (A) Cresol, benzyl alcohol and anisole
  - (B) Benzyl alcohol, cresol and anisole
  - (C) Benzyl alcohol, anisole and cresol
  - (D) Cresol, anisole and benzyl alcohol
  - (E) Anisole, cresol and benzyl alcohol

- 77. The suitable Grignard reagent used for the preparation of 2-methylpropan-1-ol using methanal is
  - (A) CH<sub>3</sub>-CH<sub>2</sub>-CH<sub>2</sub>MgBr
- (B) CH<sub>3</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>MgBr
- (C) CH<sub>3</sub>-CH(CH<sub>3</sub>)-CH<sub>2</sub>MgBr
- (D)  $(CH_3)_3 C MgBr$
- (E) CH<sub>3</sub>-CH(CH<sub>3</sub>)-MgBr
- Isopropylbenzene (cumene) is oxidized in the presence of air to give compound 'X' which on hydrolysis in the presence of acids gives compounds 'Y' and 'Z'. Compounds 'X', 'Y' and 'Z' are respectively
  - (A) benzyl alcohol, benzaldehyde, ethanol
  - (B) cumene hydroperoxide, phenol, acetaldehyde
  - (C) cumene hydroperoxide, benzaldehyde, acetone
  - (D) cumene hydroperoxide, phenol, acetone
  - (E) cumene hydroperoxide, benzaldehyde, acetaldehyde



A research scholar returned to the laboratory after the lock down due to Covid-19. He kept acetone, benzaldehyde, acetaldehyde and diethyl ketone in four different bottles. The bottles contained only the label as *P*, *Q*, *R* and *S*. He forgot which bottle contained which compound. Compounds *P* and *R* only underwent iodoform test. Compound *R* alone gave reddish brown precipitate with Fehling's reagent. Compounds *Q* and *R* alone underwent Tollen's test. Compound *S* did not answer any of the above tests.

Identify the compounds P, Q, R and S.

- (A) P-diethyl ketone; Q-benzaldehyde; R-acetaldehyde; S-acetone
- (B) P-acetone; Q-benzaldehyde; R-acetaldehyde; S-diethyl ketone
- (C) P-acetone; Q-acetaldehyde; R-benzaldehyde; S-diethyl ketone
- (D) P-acetaldehyde; Q-acetone; R-diethyl ketone; S-benzaldehyde
- (E) P-benzaldehyde; Q-diethyl ketone; R-acetone; S-acetaldehyde
- 80. The increasing order of acid strength of the following carboxylic acids is
  - (A) CICH<sub>2</sub>-CH<sub>2</sub>-COOH < CICH<sub>2</sub>COOH < NC CH<sub>2</sub>COOH < CHCl<sub>2</sub>COOH
  - (B) CICH<sub>2</sub>-COOH < NC CH<sub>2</sub>COOH < CICH<sub>2</sub>CH<sub>2</sub>COOH < CHCl<sub>2</sub>COOH
  - (C)  $CICH_2$ - $CH_2$ -COOH <  $CHCl_2$ -COOH <  $CICH_2$ -COOH < NC- $CH_2$ -COOH
  - (D) NC-CH $_2$ -COOH < Cl-CH $_2$ COOH < CH-Cl $_2$ COOH < Cl-CH $_2$ COOH
  - (E)  $CICH_2CH_2$ - $COOH < CHCl_2COOH < CICH_2COOH < NC-<math>CH_2COOH$
- 81. Which one of the following is not correct with respect to properties of amines?
  - (A)  $pK_b$  of aniline is more than that of methylamine.
  - (B) Ethylamine is soluble in water whereas aniline is not.
  - (C) Ethanamide on reaction with Br2 and NaOH gives ethylamine.
  - (D) Ethylamine reacts with nitrous acid to give ethanol.
  - (E) Aniline does not undergo Friedel-Crafts reaction.

Space for rough work



| 82. | The increasing order of extent of H-bonding of the alkyl ammonium ions, $RNH_3^+$ , $R_2NH_2^+$ , $R_3NH_3^+$ in water is |                                                     |                       |                             |                             |  |  |
|-----|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-----------------------|-----------------------------|-----------------------------|--|--|
|     | (A) $R_3NH^+$                                                                                                             | $< R_2 NH_2^+ < RNH_3^+$                            | (B) R <sub>3</sub> NH | $I^+ < RNH_3^+ < R_2NH_3^+$ | H <sub>2</sub> <sup>+</sup> |  |  |
|     | (C) $R_2NH_2^+$                                                                                                           | < RNH <sub>3</sub> < R <sub>3</sub> NH <sup>+</sup> |                       | $< R_2 NH_2^+ < R_3 NH_2^-$ | -                           |  |  |
|     | (E) $RNH_3^+$                                                                                                             | $\langle R_3 NH^+ \langle R_2 NH_2^+ \rangle$       |                       | Property of                 | Compound<br>of State        |  |  |
| 83. | The convers                                                                                                               | sion of benzene dis<br>presence of copper           | azonium chloric       | le to bromobenzen           | e by treating with          |  |  |
|     | (A) Sandmeyer reaction                                                                                                    |                                                     | (B) Gattern           | (B) Gattermann reaction     |                             |  |  |
|     | (C) Wurtz re                                                                                                              | (C) Wurtz reaction (D) Hoffmann reaction            |                       |                             |                             |  |  |
|     | (E) Gabriel                                                                                                               | synthesis                                           |                       |                             |                             |  |  |
| 84. | Which one o                                                                                                               | of the following state                              | ements is TRUE        | E with regard to glu        | cose?                       |  |  |
|     |                                                                                                                           | (A) It gives Schiff's test                          |                       |                             |                             |  |  |
|     | (B) It forms addition product with NaHSO <sub>3</sub>                                                                     |                                                     |                       |                             |                             |  |  |
|     | (C) Its pentaacetate does not react with NH <sub>2</sub> OH                                                               |                                                     |                       |                             |                             |  |  |
|     | (D) It does not undergo mutarotation                                                                                      |                                                     |                       |                             |                             |  |  |
|     | (E) β- form<br>at 303K                                                                                                    | of glucose is obtain                                | ned by crystallis     | sation from conc. so        | olution of glucose          |  |  |
| 85. | Fibrous prote                                                                                                             | ein present in muscl                                | ec ic                 |                             |                             |  |  |
|     | (A) keratin                                                                                                               | (B) albumin                                         | (C) insulin           | (D) myosin                  | (E) histidine               |  |  |
| 86. | The drug u                                                                                                                | used to inhibit the                                 | e enzymes w           | hich catalyse the           | degradation of              |  |  |
|     | (A) phenelzir                                                                                                             | ne                                                  | (B) prontosil         | (C) cimetidin               | ne                          |  |  |
|     | (D) terfenadi                                                                                                             | ne                                                  | (E) chlorampher       | (6) 37.                     | hatel en                    |  |  |
| 87. | The gas whic                                                                                                              | h is the major contr                                | ibutor to global      | warming is                  |                             |  |  |
|     | (A) NO <sub>2</sub>                                                                                                       | (B) CO <sub>2</sub>                                 |                       | 0                           |                             |  |  |



| 88. | A cooking gar<br>found to weig                                                                          | as contains carb<br>gh 22 g at STP.  | oon and hydrogen only<br>Then the molecular for | y. A volume of 11 ormula of the gas is | .2 L of this gas is |  |
|-----|---------------------------------------------------------------------------------------------------------|--------------------------------------|-------------------------------------------------|----------------------------------------|---------------------|--|
|     | (A) C <sub>3</sub> H <sub>8</sub>                                                                       |                                      | (C) C <sub>2</sub> H <sub>4</sub>               |                                        |                     |  |
| 89. | The number $m_s = +\frac{1}{2}$ is                                                                      | of electrons in                      | an atom that may ha                             | ave the quantum n                      | sumbers $n=3$ and   |  |
|     | (A) 32                                                                                                  | (B) 9                                | (C) 18                                          | (D) 16                                 | (E) 8               |  |
| 90. | "No two elec<br>is known as                                                                             | trons in an ator                     | n can have the same                             | set of four quantur                    | n numbers." This    |  |
|     | (A) Hund's                                                                                              | rule                                 | (B) Pauli's exclusio                            | n principle (C) A                      | ufbau principle     |  |
|     | (D) Heisenb                                                                                             | erg's principle                      | (E) Fajan's rule                                | To a designation of the                | 48(0)               |  |
| 91. | The first ionisation enthalpy is the least in                                                           |                                      |                                                 |                                        |                     |  |
|     | (A) Germani                                                                                             | ium                                  | (B) Antimony                                    | (C) Tellu                              | rium                |  |
|     | (D) Arsenic                                                                                             |                                      | (E) Bismuth                                     | nemsunoi 36 voien<br>Maturana Paumini  |                     |  |
| 92. | Predict in whi                                                                                          | ch of the follow                     | ving, entropy decrease                          | es:                                    |                     |  |
|     | (A) A liquid                                                                                            | crystallizes into                    | o a solid.                                      |                                        |                     |  |
|     | (B) Temperature of a crystalline solid is raised from 0K to 115K.                                       |                                      |                                                 |                                        |                     |  |
|     | (C) $2\text{NaHCO}_3(s) \rightarrow \text{Na}_2\text{CO}_3(s) + \text{CO}_2(g) + \text{H}_2\text{O}(g)$ |                                      |                                                 |                                        |                     |  |
|     | (D) $H_2(g) =$                                                                                          | 40                                   | ncess peyo trons                                | TEM ME OF                              |                     |  |
|     | (E) 2SO <sub>3</sub> (g)                                                                                | $\rightarrow$ 2SO <sub>2</sub> (g)+0 | ) <sub>2</sub> (g)                              |                                        |                     |  |
| 93. | In which one o                                                                                          | of the following                     | $sp^2$ hybridisation is                         | involved in the cer                    | ntral atom?         |  |
|     | (A) NH <sub>3</sub>                                                                                     | (B) BCl <sub>3</sub>                 | (C) ClF <sub>3</sub>                            | (D) PCl <sub>3</sub>                   | (E) PH <sub>3</sub> |  |
|     | in rectifica                                                                                            | / 4                                  | Space for rough work                            |                                        | 03(0)               |  |



| 94. | In which one of the following molecules, the central atom has expanded octet?                                                                                                             |                                        |                                                                          |                              |  |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------------------|------------------------------|--|
|     |                                                                                                                                                                                           |                                        | (C) Nitrogen di                                                          |                              |  |
|     | (D) 6                                                                                                                                                                                     | Sulphuric acid                         |                                                                          | OAIGO                        |  |
| 95. | A cycle tube will burst if the volu<br>If at 1 bar pressure the air occupie<br>expanded at the same temperature                                                                           | es 500 mL, then ur                     | ceeds 1L at the room<br>to what pressure ca                              | n temperature.               |  |
|     | (A) 2 bar (B) 1.5 bar                                                                                                                                                                     | (C) 0.5 bar                            | (D) 0.002 bar                                                            | (E) 1.2 bar                  |  |
| 96. | The ratio of the actual molar voluthe gas.                                                                                                                                                | ame of a gas to th                     | e ideal molar volum                                                      | ne is of                     |  |
|     | (A) co-volume (C) critical volume (E) compressibility factor                                                                                                                              | (B) van der Wa<br>(D) molar gas        |                                                                          |                              |  |
| 97. | Enthalpy change is always negative for which one of the following processes?  (A) Enthalpy of ionisation (B) Enthalpy of sublimation (C) Enthalpy of vapourisation (D) Enthalpy of fusion |                                        |                                                                          |                              |  |
| 98. | The enthalpy change for the evaluation $+40.32 \text{ kJmol}^{-1}$ . What is the value $127^{\circ}\text{C}$ ? ( $R = 8.3 \text{ JK}^{-1}\text{mol}^{-1}$ )                               | poration of a lique of internal energy | id at its boiling po<br>y change for the abo                             | oint 127°C is eve process at |  |
|     | (A) -37.0 kJmol <sup>-1</sup><br>(C) +37.0 kJmol <sup>-1</sup><br>(E) +43.64 kJmol <sup>-1</sup>                                                                                          | (B) +43.0 kJmo<br>(D) -43.0 kJmo       |                                                                          |                              |  |
| 9.  | In which one of the following equilibria $\Delta n_g$ value is zero?                                                                                                                      |                                        |                                                                          |                              |  |
|     | (A) $2NOCl(g) \leftrightharpoons 2NO(g) + Cl_2(g)$<br>(C) $CO_2(g) + C(s) \leftrightharpoons 2CO(g)$<br>(E) $N_2O_4(g) \leftrightharpoons 2NO_2(g)$                                       | (B) Ni(s)                              | $+4CO(g) \leftrightarrows Ni(CO)$<br>$+Br_2(g) \leftrightarrows 2HBr(g)$ | )) <sub>4</sub> (g)          |  |
|     | Space                                                                                                                                                                                     | for rough work                         |                                                                          |                              |  |



The following concentrations were obtained for the formation of NH<sub>3</sub>(g) 100. from  $N_2(g)$  and  $H_2(g)$  at equilibrium and at 500K:  $[N_2] = 1 \times 10^{-2} M$ ,  $[H_2] = 2 \times 10^{-2} M$ and  $[NH_3]=2\times10^{-2}M$ . The equilibrium constant,  $K_c$ , for the reaction

 $N_2(g)+3H_2(g) \rightleftharpoons 2NH_3(g)$  at 500K is

- (A)  $5 \times 10^3 \text{mol}^{-2} \text{dm}^6$
- (B)  $1 \times 10^3 \text{mol}^{-2} \text{dm}^6$
- (C)  $5 \times 10^{-3} \text{mol}^{-2} \text{dm}^{6}$

- (D)  $2 \times 10^3 \text{mol}^{-2} \text{dm}^6$
- (E)  $2 \times 10^{-3} \text{mol}^{-2} \text{dm}^{6}$
- 101. The SI unit of molar conductivity is
  - (A) S m<sup>3</sup> mol<sup>-1</sup> (B) S m mol<sup>-1</sup> (C) S m mol<sup>-2</sup> (D) S m<sup>2</sup> mol<sup>-1</sup>

- (E) S  $m^2$  mol<sup>-2</sup>
- Which of the following is an example of disproportionation redox reaction? 102.
  - (A)  $N_2(g) + O_2(g) \rightarrow 2NO(g)$
  - (B)  $2H_2(g) + O_2(g) \rightarrow 2H_2O(1)$
  - (C)  $2Pb(NO_3)_2(s) \rightarrow 2PbO(s) + 4NO_2(g) + O_2(g)$
  - (D) NaH(s) +  $H_2O(1) \rightarrow NaOH(aq) + H_2(g)$
  - (E)  $2NO_2(g) + 2OH^- \rightarrow NO_2^- (aq) + NO_3^- (aq) + H_2O(1)$
- 103. A scientist wants to perform an experiment in aqueous solution in a hill station where the boiling point of water is 98.98°C. How much urea (mol.wt 60 g mol-1) is to be added by him to 2 kg of water to get the boiling point 100°C at the same place?  $(K_b \text{ of water} = 0.51 \text{K kg mol}^{-1})$ 
  - (A) 60 g
- (B) 120 g
- (C) 180 g
- (D) 240 g
- (E) 1.02 g
- 104. The vapour pressure of pure benzene at a certain temperature is 0.850 bar. A nonvolatile, non-electrolyte solid weighing 1.0 g when added to 39.0 g of benzene (molar mass 78 g mol-1), vapour pressure of the solution is reduced to 0.845 bar. What is the molar mass of the solid substance?
  - (A) 340 g mol<sup>-1</sup>
- (B) 170 g mol<sup>-1</sup>
- (C) 240 g mol<sup>-1</sup>

- (D)  $270 \text{ g mol}^{-1}$
- (E)  $370 \text{ g mol}^{-1}$



- 105. For the reaction  $2P + Q \rightleftharpoons P_2Q$ , the rate of formation of  $P_2Q$  is 0.24 mol dm<sup>-3</sup>s<sup>-1</sup>. Then the rates of disappearance of P and Q respectively are
  - (A)  $-0.48 \text{ mol dm}^{-3}\text{s}^{-1}$  and  $-0.48 \text{ mol dm}^{-3}\text{s}^{-1}$
  - (B)  $-0.24 \text{ mol dm}^{-3} \text{s}^{-1} \text{ and } -0.48 \text{ mol dm}^{-3} \text{s}^{-1}$
  - (C)  $-0.48 \text{ mol dm}^{-3}\text{s}^{-1} \text{ and } -0.24 \text{ mol dm}^{-3}\text{s}^{-1}$
  - (D)  $-0.12 \text{ mol dm}^{-3} \text{s}^{-1} \text{ and } -0.24 \text{ mol dm}^{-3} \text{s}^{-1}$
  - (E)  $-0.24 \text{ mol dm}^{-3} \text{s}^{-1}$  and  $-0.12 \text{ mol dm}^{-3} \text{s}^{-1}$
- 106. Choose the correct set of reactions which follow first order kinetics:
  - (i) Thermal decomposition of HI on gold surface.
  - (ii) Thermal decomposition of N<sub>2</sub>O<sub>5</sub>(g) at constant volume.
  - (iii) Hydrogenation of ethene.
  - (iv) Decomposition of NH3 on a hot Pt surface.
  - (v) Thermal decomposition of SO<sub>2</sub>Cl<sub>2</sub>(g) at constant volume.
  - (A) i, ii, iii
- (B) i, iii, iv
- (C) i, iv, v
- (D) ii, iv, v
- (E) ii, iii, v

- 107. Which one of the following is true?
  - (A) Chemisorption is not specific in nature
  - (B) Physisorption is irreversible
  - (C) Both physisorption and chemisorption depend on the nature of the gas
  - (D) Enthalpy of adsorption is high in physisorption
  - (E) Chemisorption increases with surface area of adsorbent while in physisorption it is not



| 108. | When zinc metal is reacted with aqueous sodium hydroxide, the products formed are |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |  |  |  |
|------|-----------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--|--|--|
|      | (A) zinc hydroxide and oxygen only                                                |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |  |  |  |
|      | (B) sodium zincate and o                                                          | oxygen only                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |  |  |  |
|      | (C) sodium zincate, hydr                                                          |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |  |  |  |
|      | (D) sodium zincate and hydrogen only                                              |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |  |  |  |
| 2    | (E) sodium zincate and h                                                          |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |  |  |  |
| 109. | 'Syngas' produced from s                                                          | ewage is a gaseous mixture o                                       | of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                        |  |  |  |
|      | (A) CH <sub>4</sub> and C <sub>2</sub> H <sub>6</sub>                             | (B) CO and H <sub>2</sub>                                          | (C) (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CO and CH <sub>4</sub> |  |  |  |
|      | (D) CS <sub>2</sub> and CO                                                        | (E) CS <sub>2</sub> and CH <sub>4</sub>                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |  |  |  |
|      | (iv) All the five bonds in (A) ii and iii (B) i an                                | PCl <sub>5</sub> molecule are equivalent<br>and iii (C) iii and iv | The contract of the contract o | (E) i and ii           |  |  |  |
| 11.  | Match the substances and their uses.                                              |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |  |  |  |
|      | a) Silicones                                                                      | (i) Cracking of hydrocarb                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |  |  |  |
|      | b) Zeolites                                                                       |                                                                    | ) Light composite material for aircraft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        |  |  |  |
|      | c) Quartz                                                                         |                                                                    | ii) Flux for soldering metals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                        |  |  |  |
|      | d) Borax                                                                          |                                                                    | iv) Waterproofing of fabrics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                        |  |  |  |
|      | e) Boron fibres (v) Piezoelectric material                                        |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |  |  |  |
|      |                                                                                   | (A) a)-(iv); b)-(ii); c)-(i); d)-(v); e)-(iii)                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |  |  |  |
|      | (B) a)-(i); b)-(ii); c)-(iv)                                                      |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |  |  |  |
|      | (C) a)-(iv); b)-(i); c)-(iii)                                                     |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |  |  |  |
|      | (D) a)-(iii); b)-(ii); c)-(i)                                                     |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |  |  |  |
|      | (E) a)-(iv); b)-(i); c)-(v);                                                      | , d)-(iii); e)-(ii)                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |  |  |  |



| 112.    | Choose the wron                                                                          | ig statement in the              | following with reg    | gard to orthobor   | ic acid:           |  |
|---------|------------------------------------------------------------------------------------------|----------------------------------|-----------------------|--------------------|--------------------|--|
|         | (A) It can be prepared by the hydrolysis of boron trihalide                              |                                  |                       |                    |                    |  |
|         | (B) It is not a p                                                                        | rotonic acid but ac              | ts as a Lewis acid    |                    |                    |  |
|         | (C) It has a laye                                                                        | er structure                     | mindin                |                    |                    |  |
|         | (D) It is freely                                                                         | soluble in cold wat              | ter                   |                    |                    |  |
|         | (E) On heating<br>yields B <sub>2</sub> O                                                | above 370K it fo                 | orms first metabor    | ic acid which o    | n further heating  |  |
| 113.    | The magnetic mo                                                                          | oment of a trivalen              | t ion of a metal wi   | th $Z = 24$ in aqu | eous solution is   |  |
|         | (A) 3.87 BM                                                                              | (B) 2.84 BM                      | (C) 1.73 BM           | (D) 4.90 BM        | (E) 5.92 BM        |  |
| 114. II | In the first row transition metals, the element that exhibits only +3 oxidation state is |                                  |                       |                    |                    |  |
|         | (A) zinc                                                                                 | (B) scandium                     | (C) nickel            | (D) titanium       | (E) iron           |  |
| 115.    | The metal that ha                                                                        | as the highest mel               | ting point in the fir | rst series of tran | sition elements is |  |
|         | (A) titanium                                                                             | (B) vanadium                     | (C) chromium          | (D) iron           | (E) manganese      |  |
| 116.    | In which one of electrolyte in aqu                                                       | of the following neous solution? | complexes, the c      | conductivity con   | rresponds to 1:2   |  |
|         | (A) Hexaammin                                                                            | necobalt(III) chlor              | ide                   |                    |                    |  |
|         | (B) Tetraammi                                                                            | nedichlorocobalt(I               | II) chloride          |                    |                    |  |
|         | (C) Pentaammi                                                                            | nechlorocobalt(III               | ) chloride            |                    |                    |  |
|         | (D) Triammine                                                                            | triaquachromium(l                | III) chloride         |                    |                    |  |
|         | (E) Diamminesilver(I) dicyanoargentate(I)                                                |                                  |                       |                    |                    |  |



| 117. | The complex ion formed when the film developed in black and white photography is washed with hypo solution is |                                                       |                                 |  |
|------|---------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|---------------------------------|--|
|      | (A) $[Ag_2(S_2O_3)_2]^{3^-}$                                                                                  | (B) $[Ag(S_2O_3)_2]^{3^-}$ (C) $[Ag(S_2O_3)_2]^{3^+}$ |                                 |  |
|      | (D) $[Ag_2(S_2O_3)_2]^{3+}$                                                                                   | (E) $[Ag(S_2O_3)_3]^{3-}$                             |                                 |  |
| 118. | Which one of the following is an                                                                              | ore of aluminium?                                     |                                 |  |
|      | (A) Kaolinite (B) Siderite                                                                                    | (C) Malachite (D                                      | Calamine (E) Haematite          |  |
| 119. | In the estimation of nitrogen pre-<br>cannot be applied to                                                    | esent in an organic con                               | npound, Kjeldahl's method       |  |
|      | (A) aniline (B) toluidine                                                                                     | (C) urea (D) py                                       | vridine (E) benzylamine         |  |
| 120. | Among the following, the alkene t                                                                             | hat exhibits optical ison                             | nerism is                       |  |
|      |                                                                                                               | 1-methyl-1-pentene                                    | (C) 3-methyl-1-pentene          |  |
|      | (D) 2-methyl-2-pentene (E) 2                                                                                  | 2, 3-dimethyl-2-butene                                | Tropic Court in the second con- |  |
|      | Space                                                                                                         | for rough work                                        |                                 |  |

collegedunia [s